Monday & Friday on-site

Monday September 19th
9 – 10:30 a.m. 10:30 – 11 a.m. 11 a.m. – 1 p.m. 1 – 2:30 p.m. 2:30 – 4:30 p.m. 4:30 – 5 p.m. 5 – 6:30 p.m.
WTC Auditorium 243 – (W) eXplainable Knowledge Discovery Coffee break 243 – (W) eXplainable Knowledge Discovery Lunch break 243 – (W) eXplainable Knowledge Discovery Coffee break 243 – (W) eXplainable Knowledge Discovery
Makalu 280 – (W) Workshop on Trustworthy AI 280 – (W) Workshop on Trustworthy AI 254 – (W) PharML 254 – (W) PharML
Kilimandjaro
(1-2)
149 – (W) ML & DM for Sports Analytics 149 – (W) ML & DM for Sports Analytics 149 – (W) ML & DM for Sports Analytics 149 – (W) ML & DM for Sports Analytics
Kilimandjaro
(3-4)
286 – (W) AI in manufacturing 286 – (W) AI in manufacturing 260 (T) – Reward- Optimizing reco. 260 (T) – Reward- Optimizing reco.
Mont-Blanc
(1)
183 (T) Multi- Target Prediction with DNN 183 (T) Multi- Target Prediction with DNN 156 – (W) MACLEAN 156 – (W) MACLEAN
Mont-Blanc
(2)
270 – (W) Quantum Machine Learning 270 – (W) Quantum Machine Learning 277 – (W) Multi-Label Learning 277 – (W) Multi-Label Learning
Everest 198 – (T) Graph Embedding 198 – (T) Graph Embedding 273 – (W & T) Uplift Modeling 273 – (W & T) Uplift Modeling
La Meije 160 – (W) Active Inference 160 – (W) Active Inference
Minatec Chrome 1 Expedia
Cross-brand
Lodging Rec.
Lung Cancer
Survival Pred.
PRINCE
Out-of-distrib.
Generalization
PRINCE
Out-of-distrib.
Generalization
Palladium 2 PhD forum PhD forum 205 – (W) MLfor Cybersecurity 205 – (W)
ML for Cybersecurity
Chrome 2+3 281 (W) – ITEM: IoT for Embedded ML 281 (W) – ITEM: IoT for Embedded ML
Friday September 23rd
10 – 10:30 a.m. 10:30 – 1:30 p.m. 1:30 – 2:30 p.m. 2:30 – 4:30 p.m. 4:30 – 5 p.m. 5 – 6:30 p.m.
WTC Auditorium Coffee break Industrial Day
testimonies
Lunch break Industrial Day
Confiance AI
Coffee break Industrial Day
round table
Makalu 180 – (W) Learning on Temporal Data 180 – (W) Learning on Temporal Data 180 – (W) Learning on Temporal Data
Kilimandjaro
(1-2)
285 (W) – MIDAS 285 (W) – MIDAS 285 (W) – MIDAS
Kilimandjaro
(3-4)
288 (W & T) – Meta- Knowledge Transfer 288 (W & T) – Meta- Knowledge Transfer 288 (W & T) – Meta- Knowledge Transfer
Mont-Blanc (1) 279 (W) – KDID 2022: 20th anniversary 232 (W) – Interactive Adaptive Learning 232 (W) – Interactive Adaptive Learning
Mont-Blanc (2) 197 (W) – Data Science for Social Good 305 (W) – Graph Quality 305 (W) – Graph Quality
Everest 306 (W) – Learning to Quantify: Methods and Applications 282 (W) – New Frontiers in Mining Complex Data 282 (W) – New Frontiers in Mining Complex Data
La Meije 307 (T) – Sparse Neural Networks Training 255 (W) Fair & effective Talent management 255 (W) Fair & effective Talent management
Minatec Palladium 2 275 (W) – Learning with Imbalanced Domain 271 – (W) Teaching Machine Learning 271 – (W) Teaching Machine Learning
Chrome 2+3 269 (W) – MLG 150 (T) methods for reproducible ML 150 (T) methods for reproducible ML