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Abstract. This paper introduces the novel task of scoring paraphrases
for Algebraic Word Problems (AWP) and presents a self-supervised
method for doing so. In the current online pedagogical setting, para-
phrasing these problems is helpful for academicians to generate multiple
syntactically diverse questions for assessments. It also helps induce vari-
ation to ensure that the student has understood the problem instead
of just memorizing it or using unfair means to solve it. The current
state-of-the-art paraphrase generation models often cannot effectively
paraphrase word problems, losing a critical piece of information (such as
numbers or units) which renders the question unsolvable. There is a need
for paraphrase scoring methods in the context of AWP to enable the train-
ing of good paraphrasers. Thus, we propose ParaQD, a self-supervised
paraphrase quality detection method using novel data augmentations that
can learn latent representations to separate a high-quality paraphrase
of an algebraic question from a poor one by a wide margin. Through
extensive experimentation, we demonstrate that our method outperforms
existing state-of-the-art self-supervised methods by up to 32% while also
demonstrating impressive zero-shot performance.

1 Introduction

Algebraic Word Problems (AWPs) describe real-world tasks requiring learners
to solve them using mathematical calculations. However, providing the same
problem multiple times may result in the learner memorizing the mathematical
formulation for the corresponding questions or exchanging the solution approach
during exams without understanding the problem. Hence, paraphrasing would
help prepare diverse questions and help to evaluate whether the student can
arrive at the correct mathematical formulation and solution1.

The paraphrasing task can be tackled using supervised approaches like in [3]
or self-supervised approaches like in [8]. As shown in Figure 1, we observed that
the generated paraphrases are of low quality as critical information is lost and the
solution is not preserved. Some common issues that arose for the paraphrasing
? Equal Contribution
1 https://cutt.ly/MWqHsN8
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Fig. 1: Paraphrases by SOTA generation models. a is output from PEGASUS
fine-tuned on PAWS, b is from T5 fine-tuned on Quora Question Pairs dataset
and c is from PARROT paraphraser built on T5. x represents the cosine similarity
scores assigned by the pretrained encoder MiniLM, while y represents the scores
with our proposed approach, ParaQD.

models were replacement or removal of numerical terms, important entities,
replacement of units with irrelevant ones and other forms of information loss.
These issues result in the generated question having a different solution or being
rendered impossible to solve. Thus, there exists a need to automatically evaluate
if a paraphrase preserves the semantics and solution of the original question. This
is a more challenging problem than detecting similarity for general sentences.
The existing state-of-the-art semantic similarity models give a relatively high
score even to very low-quality paraphrases of algebraic questions (where some
critical information has been lost), as seen in Figure 1 and Table 1. In Figure 1,
our approach ParaQD assigns the cosine similarity as -0.999, thereby preventing
the low-quality paraphrases from getting chosen. There is a need for solutions
like ParaQD because poor paraphrases of algebraic questions cannot be given to
the students as they are either unsolvable (as observed in the figure) or do not
preserve the original solution.

To tackle the issues mentioned above, we need a labelled dataset for training
a proper scoring model. However, there does not exist a dataset for AWP
with labelled paraphrases. Therefore, we propose multiple unsupervised data
augmentations to generate positive and negative paraphrases for an input question.
To model our negative augmentations, we identify crucial information in AWPs
like numbers, units and key entities and design operators to perturb them.
Similarly, for the positive augmentations, we design operators that promote
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diversity and retain the crucial information, thereby yielding a semantically
equivalent AWP. On the other hand, existing augmentation methods like SSMBA
[9] and UDA [15] do not capture the crucial information in AWPs. Using the
positive and negative paraphrases, we train a paraphrase scoring model using
triplet loss. It explicitly allows for the separation of positives and negatives to
learn representations that can effectively score paraphrases. In summary, our
core contributions are :

– We formulate a novel task of detecting paraphrase quality for AWPs, which
presents a different challenge than detecting paraphrases for general sentences.

– We propose a new unsupervised data augmentation method that drives our
paraphrase scoring model, ParaQD.

– We demonstrate that our method leads to a scoring model that surpasses the
existing state-of-the-art text augmentation methods like SSMBA and UDA.

– We evaluate ParaQD using test sets prepared using operators disjoint from
train augmentation operators and observe that ParaQD demonstrates good
performance. We also demonstrate the zero-shot performance of ParaQD on
new AWP datasets.

Code and Data are available at: https://github.com/ADS-AI/ParaQD

2 Related Work

This section briefly discusses prior work in text data augmentation methods. One
of the notable initial works in data augmentation for text [19] replaced words
and phrases with synonyms to obtain more samples for text classification. In
the work [16], the authors propose noising methods for augmentations where
words are replaced with alternate words based on unigram distribution, but
it introduces a noising parameter. A much easier text augmentation method,
EDA, was proposed in the work [14]. The authors propose several operators such
as random word deletion and synonym replacement to generate new sentences.
The above works are based on heuristics and depend on a hyperparameter for
high-quality augmentations.

More recently, self-supervised text augmentation methods have provided a
superior performance on multiple tasks. In UDA [15], the authors propose two
text augmentation operators, namely backtranslation and TF-IDF based word
replacement, where words with low TF-IDF scores are replaced. In SSMBA [9],
the authors propose a manifold-based data augmentation method where the
input sentences are projected out of the manifold by corrupting them with token
masking, followed by a reconstruction function to project them back to the
manifold. Another self-supervised augmentation method named InvDA (Inverse
Data Augmentation) was proposed in Rotom [8] which was similar to SSMBA
in that it tried to reconstruct the original sentence from the corrupted version.
Several rule-based text augmentation methods have also been proposed, like [5]
which uses Natural Language Inference (NLI) for augmentation, and [1] leverages
linguistic knowledge for the question-answering task.
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3 Methodology

In this section, we describe the proposed method for paraphrase quality detection
for algebraic word problems. The section is divided into two components: Data
Augmentation and Paraphrase Quality Detection.

3.1 Data Augmentation

For data augmentation, we define 10 distinct operators to generate the training
set. Out of the 10, 4 are positive (i.e. information preserving) transformations, and
6 are negative (information perturbing) transformations. Our negative operators
are carefully chosen after observing the common mistakes made by various
paraphrasing models to explicitly teach the quality detection model to assign a
low score for incorrect paraphrases.

Let Q = {Q1, Q2, Q3, . . . Qn} denote the set of questions. Each question Qi
can be tokenized into sentences Qi1, Qi2 . . . Qip where p denotes the number of
sentences in question Qi. Let an augmentation be denoted by a function f , such
that fi(Qj) represents the output of the ith augmentation on the jth question.

The function λ : Q×Q 7→ {0, 1} represents a labelling function which returns
1 if the input (Qi, Q′i) is a valid paraphrase, and 0 if not. Based on the design of
our augmentations (explained in the next section), we work under the following
assumption for the function f :

λ(Qa, fi(Qa)) =

{
1, 1 ≤ i ≤ 4

0, 5 ≤ i ≤ 10

For the purposes of explanation, we will use a running example with question
Q0 = Alex travelled 100 km from New York at a constant speed of 20 kmph. How
many hours did it take him in total?

3.2 Positive Augmentations

f1: Backtranslation Backtranslation is the procedure of translating an example
Qi from language A to language B, and then translating it back to language A,
yielding a paraphrase Q′i. In our case, given an English question Qi comprised of
precisely p sentences Qi1 . . . Qip, we translate each sentence Qij to German Q∗ij ,
and then translate Q∗ij back to English yielding Q′ij ∀j ∈ {1, 2, . . . p}. Further
details are provided in Appendix ??.

f1(Qi) = concat(Q′i1, Q
′
i2 . . . Q

′
ip)

f1(Q0) : Alex was driving 100 km from New York at a constant speed of 20 km /
h. How many hours did it take in total?
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f2: Same Sentence Inspired by SimCSE [4], we explicitly provide the same
sentence as a positive augmentation as the standard dropout masks in the encoder
act as a form of augmentation.
f2(Q0) : Alex travelled 100 km from New York at a constant speed of 20 kmph.
How many hours did it take him in total?

f3: Num2Words Let α be a function that converts any number to its word
form. Given a question Qi, we extract all the numbers Ni = {ni1, ni2 . . . nik}
from Qi. For each number nij ∈ Ni, we generate its word representation α(nij),
and replace nij by α(nij) in Qi to get f3(Qi). This is done because paraphrasing
models can replace numbers with their word form, and thus to ensure the scoring
model does not consider it as a negative, we explicitly steer it to consider it a
positive.
f3(Q0): Alex travelled one hundred km from New York at a constant speed of
twenty kmph. How many hours did it take him in total?

f4: UnitExpansion Let υ be a function that converts the abbreviation of a
unit into its full form. We detect all the abbreviated units Ui = {ui1, ui2 . . . uik}
from Qi (using a predefined vocabulary of units and regular expressions). For
each unit uij ∈ Ui, we generate its expansion υ(uij), and replace uij by υ(uij) in
Qi. This transformation helps the model to learn the units and their expansions,
and consider them as the same when scoring a paraphrase.
f4(Q0): Alex travelled 100 kilometre from New York at a constant speed of 20
kilometre per hour. How many hours did it take him in total?

3.3 Negative Augmentations

f5: Most Important Phrase Deletion The removal of unimportant words
like stopwords (the, of, and) from an algebraic question will not perturb the
solution or render it impossible to solve.

Thus, to generate hard negatives, we chose the most critical phrase, pimp in
any question, deleting which would generate Q′i such that λ(Qi, Q

′
i) = 0. Let

Ψ : Q 7→ P denote a function which returns the set of k most critical phrases
(p1, p2, . . . , pk) in the input Qi.

pimp = argmin
p

(cossim(Qi, Qi\p)) ∀p ∈ Ψ(Qi)

f5(Qi) = Qi\pimp

where cossim denotes cosine similarity and Qi\p denotes the deletion of p from
Qi. Further details are present in Appendix ??.
f5(Q0): Alex travelled 100 km from New York at a constant speed of 20 kmph.
How did it take him in total?
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f6: Last Sentence Deletion When using existing paraphrasing models such
as Pegasus, the last few words or even the complete last sentence of the input
question got deleted in the generated paraphrase in some cases. Thus, to account
for this behaviour, we use this transformation as a negative. More formally, let
the input Qi be tokenized into p sentences Qi1, Qi2 . . . Qip and the sentence Qi1

be tokenized into k tokens Qi11, Qi12 . . . Qi1k. Then,

f6(Qi) =

{
concat(Qi11, Qi12 . . . Qi1(k−3)) p = 1

concat(Qi1, Qi2 . . . Qi(p−1)) p > 1

f6(Q0): Alex travelled 100 km from New York at a constant speed of 20 kmph.

f7: Named Entity Replacement Since named entities are an important part
of questions, we either replace them with a random one of the same category
(from a precompiled list) or with the empty string (deletion). Let ε : Q 7→
E denote a function which returns a set of all named entities present in the
input Qi, such that (e1, e2, . . . , ek) = ε(Qi). We randomly sample w elements
Ei = (ea, eb . . . ew) from (e1, e2, . . . , ek) and replace/delete the entities. We set
w = rand(1,min(3, k)) where rand(a, b) represents the random selection of a
number from a to b (inclusive). This restricts w from being more than 3, thus
increasing the difficulty of the generated negative.
f7(Q0): Sarah travelled 100 km from at a constant speed of 20 kmph. How many
hours did it take him in total?

f8: Numerical Entity Deletion Since numbers are critical to algebraic ques-
tions, their removal perturbs the solution and helps generate hard negatives. Let
ν : Q 7→ N represent a function which returns a set of all numbers present in the
input Qi, such that (n1, n2, . . . , nk) = ν(Qi). We randomly sample a subset of
numbers Ni from (n1, n2, . . . , nk), and sample a string s from S = ("some", "a
few", "many", "a lot of", ""). For each number nj ∈ Ni, we replace it by s in
Qi. We set |max(Ni)| = 2. Similar to f7, this makes it more challenging for the
scoring model as we don’t necessarily delete all the numbers, thereby generating
harder negatives. This allows the model to learn that even the loss of one number
renders the resultant output as an invalid paraphrase, thus getting assigned a
low score.
f8(Q0): Alex travelled some km from New York at a constant speed of some kmph.
How many hours did it take him in total?

f9: Pegasus Pegasus [18] is a transformer-based language model, fine-tuned on
PAWS [20] for our purpose. Pegasus consistently gave poor results for paraphrasing
algebraic questions, as shown in Figure 1. This provided the impetus for using it
to generate hard negatives.
f9(Q0): = The journey from New York to New Jersey took Alex 100 km at a
constant speed.
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f10: UnitReplacement Paraphrasing models sometimes have a tendency to
replace units with similar ones (such as feet to inches). Since this would change
the solution to an algebraic question, we defined this transformation to replace
a unit with a different one from the same category. We identified 5 categories,
C = [Currency, Length, Time, Weight, Speed] to which most units appearing
in algebraic problems belong. Our transformation was defined such that a unit
ua belonging to a particular category Ci is replaced with a unit ub, such that
ub ∈ Ci and ua 6= ub. For instance, hours could get converted to minutes or days,
grams could get converted to kilograms.

Let C be the set of identified unit categories and Υ : U 7→ U be a function
that takes as input unit ua ∈ Ci and returns a different unit ub ∈ Ci, where
Ci ∈ C. Given the input Qi containing units Ui = (ua, ub . . . un), we sample a set
of units Uis = {ux, . . . uz} and replace them with {Υ (ui) ∀ui ∈ Uis} to generate
f10(Qi).
f10(Q0): Alex travelled 100 m from New York at a constant speed of 20 kmph.
How many hours did it take him in total?

In the next section, we will detail our approach to training a model to detect
the quality of paraphrases and how it can be used to score paraphrases.

3.4 Paraphrase Quality Detection

For detecting the quality of the paraphrases, we use MiniLM [13] as our base
encoder (specifically, the version with 12 layers which maps the input sentences
into 384-dimensional vectors)2. We utilize the implementation from Sentence-
Transformers [11], where the encoder was trained for semantic similarity tasks
using over a billion training pairs and achieved high performance with a fast
encoding speed3.

We train the model using triplet loss. For each question Qi, let the positive
transformation Q+

i be denoted by pos(Qi) and the negative transformation Q−i
by neg(Qi) where pos ∈ (f1, . . . f4) and neg ∈ (f5, f6 . . . f10). Let the vector
representation of any question Qi when passed through the encoder be denoted
as ENC(Q). Then the loss is defined as

Loss(Q,Q+, Q−) =
∑
i

max(0, α− dist(Qi, Q
−
i ) + dist(Qi, Q

+
i ))

where α is the margin parameter, dist(Qi, Q
l
i) = 1−cossim(ENC(Qi), ENC(Ql

i))
and l ∈ {+,−}. The loss ensures that the model yields vector representations
such that the distance between Qi and Q+

i is smaller than the distance between
Qi and Q−i .

At inference time, to obtain the paraphrase score of Qi and Q′i, we use cosine
similarity. Let score : Q ×Q 7→ [−1, 1] denote the scoring function, then for a

2 https://bit.ly/3F2c9vH
3 https://sbert.net/docs/pretrained_models.html
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pair of questions (Qi, Q
′
i):

ρi, ζi = ENC(Qi), ENC(Q
′
i)

score(Qi, Q
′
i) = cossim(ρi, ζi) =

ρi · ζi
|ρi| · |ζi|

4 Experiments

All the experiments were performed using a Tesla T4 and P100. All models,
including the baselines, were trained for 9 epochs with a learning rate of 2e-5
using AdamW as the optimizer with seed 3407. We used a linear scheduler, with
10% of the total steps as warm-up having a weight decay of 0.01.

4.1 Datasets

The datasets used in the experiments are:
AquaRAT [6] (Apache, V2.0) is an algebraic dataset consisting of 30,000

(post-filtering) problems in the training set, 254 problems for validation and 220
problems for testing. After applying the test set operators to yield paraphrases,
we get 440 samples for testing with manual labels.

EM_Math is a dataset consisting of mathematics questions for students from
grades 6-10 from our partner company ExtraMarks. There are 10,000 questions
in the training set and 300 in the test set. After applying the test operators, we
get 600 paraphrase pairs.

SAWP (Simple Arithmetic Word Problems) is a dataset that we collected
(from the internet) consisting of 200 algebraic problems. We evaluate the proposed
methods in a zero-shot setting on this dataset by using the model trained on the
AquaRAT dataset. After applying the test set operators, we get 400 paraphrase
pairs.

PAWP (Paraphrased Algebraic Word Problems) is a dataset of 400 algebraic
word problems collected by us. We requested two academicians from the partnering
company (paid fair wages by the company) to manually write paraphrases (both
valid and invalid) rather than using our test set operators. We use this dataset
for zero-shot evaluation to demonstrate the performance of our model on human-
crafted paraphrases.
Our data can also be used as a seed set for the task of paraphrase generation
for algebraic questions.

4.2 Test Set Generation

For generating the synthetic test set (for AquaRAT, EM_Math and SAWP), we
define a different set of operators to generate positive and negative paraphrases
to test the ability of our method to generalize to a different data distribution.
For any question Qi in the test set, we generate two paraphrases and manually
annotate the question-paraphrase pairs with the help of two annotators. The
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annotators were instructed to mark valid paraphrases as 1 and the rest as 0. We
observed Cohen’s Kappa values of 0.79, 0.84 and 0.70 on AquaRAT, EM_Math
and SAWP, respectively, indicating a substantial level of agreement between the
annotators.

Operator Details We defined two positive (fa, fb) and three negative (fc, fd,
fe) test operators. For each question, we randomly chose one operator from each
category for generating paraphrases. These functions are:

fa: Active-Passive: We noticed that most algebraic questions are written
in the active voice. We used a transformer model for converting them to pas-
sive voice4, followed by a grammar correction model5on top of this to ensure
grammatical correctness.

fb: Corrupted Sentence Reconstruction: We corrupt an input question
by shuffling, deleting and replacing tokens, similar to ROTOM [8] but with
additional leniency (Appendix ??). We then train a sequence transformation
model (t5-base) to reconstruct the original question from the corrupted one,
which yields a paraphrase.

fc: TF-IDF Replacement: Instead of the usual replacement of words with
low TF-IDF score [15], we replace the words with high TF-IDF scores with
random words in the vocabulary. This helps us generate negative paraphrases as
it removes the meaningful words in the original question rendering it unsolvable.

fd: Random Deletion: Random deletion is the process of randomly removing
some tokens in the input example [14] to generate a paraphrase.

fe: T5: We used T5 [10] fine-tuned on Quora Question Pairs to generate
negatives as it was consistently resulting in paraphrases with missing information
(Figure 1).

4.3 Baselines

We compare against two SOTA data augmentation methods, UDA and SSMBA.
For all the baselines, we use the same encoder (MiniLM) as for our method to
maintain consistency across the experiments and enable a fair comparison.

UDA: UDA uses backtranslation and TF-IDF replacement (replacing words
having a low score) to generate augmentations for any given input.

SSMBA: SSMBA is a data augmentation technique that uses corruption
and reconstruction functions to generate the augmented output. The corruption
is performed by masking some tokens in the input and using an encoder (such as
BERT [2]) to fill the masked token.

Since the baselines are intended to generate positive paraphrases, we consider
other questions in the dataset (in-batch) as negatives to train using the triplet
loss. Alongside the direct implementation of UDA and SSMBA, we also compare
pseudo-labelled versions of these baselines. The version of baselines without

4 https://bit.ly/3FbPIEu
5 https://bit.ly/3HGOMcQ
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pseudo-labelling is used in all the experiments unless stated with suffix (with pl).
The details of pseudo labelling are provided in Appendix ??.

Table 1: Precision, Recall, F1 and Separation across all methods and datasets.

Dataset Method Macro Weighted
µ+ µ− µs

P R F1 P R F1

AquaRAT

Pretrained 0.658 0.502 0.569 0.784 0.318 0.453 0.977 0.897 0.080
UDA 0.661 0.512 0.577 0.786 0.332 0.467 0.995 0.966 0.029
UDA (w pl) 0.659 0.507 0.573 0.785 0.325 0.460 0.996 0.973 0.023
SSMBA 0.645 0.554 0.596 0.757 0.395 0.520 0.965 0.829 0.137
SSMBA (w pl) 0.663 0.522 0.584 0.787 0.345 0.480 0.997 0.928 0.069
ParaQD (ours) 0.678 0.695 0.687 0.762 0.625 0.687 0.770 -0.010 0.780

EM_Math

Pretrained 0.694 0.534 0.604 0.773 0.415 0.540 0.955 0.796 0.158
UDA 0.648 0.523 0.579 0.716 0.403 0.516 0.991 0.912 0.079
UDA (w pl) 0.683 0.587 0.631 0.751 0.485 0.589 0.963 0.751 0.213
SSMBA 0.615 0.564 0.588 0.669 0.470 0.552 0.871 0.729 0.142
SSMBA (w pl) 0.655 0.586 0.619 0.716 0.492 0.583 0.937 0.629 0.308
ParaQD (ours) 0.665 0.665 0.665 0.708 0.622 0.662 0.667 0.012 0.655

SAWP

Pretrained 0.162 0.500 0.245 0.106 0.325 0.159 0.964 0.896 0.068
UDA 0.557 0.514 0.535 0.636 0.358 0.458 0.958 0.912 0.046
UDA (w pl) 0.667 0.519 0.583 0.783 0.350 0.484 0.990 0.929 0.061
SSMBA 0.662 0.594 0.626 0.763 0.460 0.574 0.929 0.758 0.172
SSMBA (w pl) 0.649 0.537 0.588 0.757 0.378 0.504 0.978 0.864 0.115
ParaQD (ours) 0.636 0.645 0.640 0.709 0.582 0.640 0.656 0.068 0.589

PAWP

Pretrained 0.749 0.502 0.602 0.751 0.500 0.600 0.948 0.905 0.042
UDA 0.558 0.507 0.532 0.559 0.505 0.530 0.960 0.948 0.012
UDA (w pl) 0.668 0.510 0.578 0.669 0.507 0.577 0.988 0.961 0.026
SSMBA 0.536 0.512 0.524 0.536 0.510 0.523 0.874 0.853 0.021
SSMBA (w pl) 0.551 0.510 0.530 0.552 0.507 0.529 0.939 0.913 0.026
ParaQD (ours) 0.703 0.669 0.685 0.703 0.668 0.685 0.749 0.076 0.673

4.4 Metrics

Our main goal is to ensure the separation of valid and invalid paraphrases by a
wide margin. This allows for extrapolation to unseen and unlabelled data (the
distribution of scores for positive and negative paraphrases is unknown, thus
threshold can be set to the standard 0.5 or a nearby value due to wider margins). It
allows for the score to be used as a selection metric using maximization strategies
like Simulated Annealing [7] or as reward using Reinforcement Learning [12, 17]
to steer generation. To this end, along with Precision, Recall, and F1 (both macro
and weighted), we compute the separation between the mean positive and mean
negative scores. More formally, let the score of all (Qi, Q

+
i ) pairs be denoted
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by score(Q,Q+) and the score of all (Qi, Q
−
i ) pairs be denoted by score(Q,Q−)

where λ(Qi, Q
+
i ) = 1 and λ(Qi, Q

−
i ) = 0. Then,

µs (separation) = µ+ − µ−

µl = E[score(Q,Ql)] ∀ l ∈ {+,−}

4.5 Test Set Details

The number of positive and negative pairs are (139, 301) in AquaRAT, (223,
377) in EM, (130, 270) in SAWP and (199, 201) in PAWP. The details of the
success of test set operators are shown in the form of confusion matrices in
Figure ?? (supplementary). The average precision, recall and accuracy of the
operators across the datasets are 0.4, 0.59 and 0.56. The low precision is due to
the inability of positive operators to generate valid paraphrases consistently, as
the task of effectively paraphrasing algebraic questions is challenging. This further
demonstrates the usefulness of a method like ParaQD that can be effectively
used to distinguish the paraphrases as an objective to guide paraphrasing models
(4.4).

Table 2: Summarizing the top-2 positive (Op+) and negative (Op-) operators
across datasets.

Dataset Op+ Op-
1 2 1 2

AquaRAT f3 f1 f9 f5
EM_Math f4 f1 f9 f8
SAWP f2 f1 f9 f6
PAWP f1 f2 f10 f9

5 Results and Analysis

The performance comparison and results of all methods are shown in Table 1.
Across all datasets, for the measures macro-F1, weighted-F1 and separation,
ParaQD outperforms all the baselines by a significant margin. For instance, the
margin of separation in ParaQD is 5.69 times the best baseline SSMBA. To
calculate the precision, recall and F1 measures, we threshold the obtained scores
at the standard τ = 0.5. Since this is a self-supervised method, there are no
human-annotated labels available for the training and validation set. This means
that the distribution of scores is unknown, and thus, the threshold can not be
tuned on the validation set.
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5.1 Performance

Our primary metric is separation (for reasons detailed in 4.4). Weighted F1 is
more representative of the actual performance than macro F1 due to imbalanced
data (4.5), and the results are discussed further.

AquaRAT and EM_Math : ParaQD outperforms the best-performing baseline
by 32.1% weighted F1 on AquaRAT and 12.4% weighted F1 on EM_Math. The
separation achieved by ParaQD on AquaRAT is 0.78 while the best performing
baseline achieves 0.137, and on EM_Math, our method achieves a separation of
0.655 while the best performing baseline achieves a separation of 0.308.
SAWP: Evaluating zero-shot performance on SAWP, ParaQD outperforms the
best performing baseline by 11.5% weighted F1 and achieves a separation of
0.589 as compared to the 0.172 achieved by the best baseline. This demonstrates
the ability of our method to perform well even on zero-shot settings, as the
distribution of this dataset is not identical to the ones that the model was trained
on.
PAWP: Our method beats the best performing baseline by 14% weighted F1 on
the manually created dataset PAWP, which also consists of a zero-shot setting. It
demonstrates an impressive separation of 0.673, while the best performing baseline
only has a separation of 0.042. This is practically applicable as it highlights that
our method can also be used to evaluate paraphrases that have been manually
curated by academicians (especially on online learning platforms) instead of only
on automatically generated paraphrases.

To analyze and gain a deeper insight into these results, we plotted the
confusion matrices (Figure 4), and observed that ParaQD is able to consistently
recognize invalid paraphrases to a greater extent than the baselines as it learns
to estimate the true distribution of negative samples more effectively through our
novel data augmentations.

5.2 Embedding Plots

To qualitatively evaluate ParaQD, we use t-SNE to project the embeddings
into a two-dimensional space (Appendix ??) as seen in Figure 2. We observe
that the separation between anchors and negatives of triplets is minimal for the
baselines, while ParaQD is able to separate them more effectively. Perhaps a
more interesting insight from Figure 2a is that our method is able to cluster
negatives together, which is not explicitly optimized by triplet loss as it does
not account for inter-sample interaction. We note that our negative operators
(with the possible exception of f7 and f10) are designed to generate unsolvable
problems serving as good negatives for training the scoring model (ParaQD).

5.3 Operator Ablations

To measure the impact of all operators, we trained the model after removing
each operator one by one. The summary of the results is in Table 2 (complete
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Fig. 2: Embedding plots on AquaRAT. Figure ?? in supplementary covers re-
maining plots.

in Table ?? (supplementary)). We note that f1 (defined in Section 3.2) seems
to be the most consistently important operator amongst the positives, while f9
(defined in Section 3.3) is the most consistently important operator amongst the
negatives. One possible reason for the success of f1 could be that it is the only
positive operator that actually changes the words and sentence structure, which
is replicated by our test operators and by the human-generated paraphrases.

Also, for the synthetically generated test sets (for AquaRAT, EM_Math and
SAWP), since f9 is a transformer model, it might generate paraphrases with a
closer distribution (especially to fe), but it also performs well on the human
crafted paraphrases on PAWP. f4 performs really well on EM_Math as the
dataset involves more mathematical symbols, and thus the distribution of the
data is such that technical operators (like f4 and f8) would have a more profound
impact on the dataset.

The results also show that operator importance depends on the data, as
certain data distributions might possess patterns that are more suitable to a
certain set of operators. We also note that all operators are critical as removing
any operator reduces performance for multiple datasets, thus demonstrating the
usefulness of the combination of augmentations as a general framework.
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Fig. 3: Embedding plots for different loss functions on AquaRAT

Table 3: Analysis of model scores for different examples

Original Paraphrase LabelParaQD
A bag of cat food weighs 7 pounds
and 4 ounces. How much does the

bag weigh in ounces?

A bag of cat food weighs 7 pounds
and ounces. How much does the

bag in ounces?
0 -0.922

A cart of 20 apples is distributed
among 10 students. How much
apple does each student get?

20 hats in a cart are equally
distributed among 10 students.

How much apple does each student
get?

0 -0.999

A cart of 20 apples is distributed
among 10 students. How much
apple does each student get?

20 hats in a cart are equally
distributed among 10 students.

How many hats does each student
get?

1 0.999

John walked 200 kilometres. How
long did he walk in terms of

metres?

john walked 200 centimetres. How
long did he walk in terms of

metres?
0 -0.999

John walked 200 kilometres. How
long did he walk in terms of

metres?

john walked 200 km. How long did
he walk in terms of metres? 1 0.999

5.4 Effects of Loss Functions, Encoder and Seed

We analyzed the impact of the loss function by performing an ablation with
Multiple Negative Ranking Loss (MNRL) (Appendix ??) when training ParaQD.
Since MNRL considers inter-sample separation, rather than explicitly distancing
the generated hard negative, it is not able to provide a high margin of separation
between the positives and negatives (µs = 0.416) as high as the triplet loss (µs =
0.78) but does result in a minor increase in the F1 scores. This can be observed
in Figure 3 and Table ?? (supplementary). We also analyzed the effects of the
encoder and seed across methods on AquaRAT (Table ??, ??; detailed analysis
in Appendix ??) to demonstrate the robustness of our approach. We observe that
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Fig. 4: Confusion matrices for all methods on AquaRAT. Others can be found in
supplementary (Figures ??, ??)

we outperform the baselines on all the metrics for three encoders we experimented
with, namely MiniLM (12 layers), MiniLM (6 layers) and MPNet for different
seeds.
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5.5 Error Analysis and Limitations

Does the model check for the preservation of numerical quantities?:
From example 1 in Table 3, we observe that the number 4 is missing in the
paraphrase rendering the problem unsolvable. Our model outputs a negative
score, indicating it is a wrong paraphrase. This general phenomenon is observed
in our reported results.
Does the model check for entity consistency?: We also observe that our
model checks for entity consistency. For instance, in example 2, we observe that
the paraphraser replaces apples with hats in the first sentence of the question.
However, it fails to replace it in the second part of the question retaining the
term apple which leads to a low score from ParaQD due to inconsistency. We
observe from example 3 that when entity replacement is consistent throughout
the question (apple replaced by hats, the model outputs a high score indicating
it is a valid paraphrase.
Does the model detect changes in units?: Changing the units in algebraic
word problems sometimes may render the question unsolvable or change the
existing solution requiring manual intervention. For instance, from example 4 in
Table 3, we observe that the unit kilometres is changed to centimetres in the
paraphrase, which would change the equation to solve the question and by conse-
quence the existing solution. Since we prefer solution preserving transformation
of the question, ParaQD assigns a low score to this paraphrase. However, when
kilometres is contracted to km in example 5, we observe that our model correctly
outputs a high score.
Does the model make errors under certain scenarios?: We also analyzed
the errors made by the model. We noted that samples that have valid changes
in numbers are not always scored properly by the model. Thus, a limitation of
this approach is that it is not robust to changes in numbers that preserve the
solution. For instance, if we change the numbers 6 and 4 to 2 and 8 in Figure 1,
the underlying equation and answer would still be preserved. But ParaQD may
not output a high score for the same. We must note, however, that generating
these types of paraphrases is something that is beyond the ability of general
paraphrasing models. As a potential solution (in the future), we propose that
numerical changes can be handled through feedback from an automatic word
problem solver.

6 Conclusion

In this paper, we formulated the novel task of scoring paraphrases for algebraic
questions and proposed a self-supervised method to accomplish this. We demon-
strated that the model learns valuable representations that separate positive
and negative paraphrases better than existing text augmentation methods and
provided a detailed analysis of various components. In the future, we plan to
use the scoring model as an objective to steer language models for paraphrasing
algebraic word problems and also investigate the usage of our method for the
novel task of solvable problem detection.
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