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Abstract. The task of portfolio management is the selection of portfolio
allocations for every single time step during an investment period while
adjusting the risk-return profile of the portfolio to the investor’s individ-
ual level of risk preference. In practice, it can be hard for an investor to
quantify his individual risk preference. As an alternative, approximat-
ing the risk-return Pareto front allows for the comparison of different
optimized portfolio allocations and hence for the selection of the most
suitable risk level. Furthermore, an approximation of the Pareto front
allows the analysis of the overall risk sensitivity of various investment
policies. In this paper, we propose a deep reinforcement learning (RL)
based approach, in which a single meta agent generates optimized port-
folio allocation policies for any level of risk preference in a given inter-
val. Our method is more efficient than previous approaches, as it only
requires training of a single agent for the full approximate risk-return
Pareto front. Additionally, it is more stable in training and only requires
per time step market risk estimations independent of the policy. Such
risk control per time step is a common regulatory requirement for e.g.,
insurance companies. We benchmark our meta agent against other state-
of-the-art risk-aware RL methods using a realistic environment based on
real-world Nasdaq-100 data. Our evaluation shows that the proposed
meta agent outperforms various benchmark approaches by generating
strategies with better risk-return profiles.

Keywords: Portfolio Selection - Multi-Objective Optimization - Deep
RL

1 Introduction

The modern financial system offers investors the possibility to store wealth over
long time horizons. Typically, wealth is accumulated in times of productivity
and is then consumed in times of need. This can for example allow a private
investor to retire or allow an institutional investor, such as an insurance company,
to distribute funds to its clients at a later point in time. Thereby arises the
fundamental question of how to manage the stored wealth while it is not needed
for consumption. The task of portfolio management addresses this question and
deals with the most suitable selection of assets out of a basket of available assets.
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Besides the obvious goal of maximizing the expected economic return, often, the
investor’s capacity to bear risk, i.e., the uncertainty in his economic returns,
has to additionally be taken into account. This bearing capacity of risk for an
investor is summarized in his individual risk preference level. The individual risk
preference level can depend on various factors, such as the investor’s investment
horizon, his return expectations as well as his individual risk appetite.

While there are various works on short-term trading such as [3,30], we focus
on the long-term task of portfolio selection which brings multiple practical chal-
lenges for investors. According to requirements for many institutional investors
from regulatory frameworks, such as Solvency II' , the risk in returns needs to
be considered on a per time step basis. Professional investors are furthermore
generally evaluated by their customers on their periodical performance, includ-
ing the periodical risk taken on. The aforementioned individual risk preference
of an investor can be difficult to quantify. In practice, the identification of a
risk preference parameter is therefore often done by comparing alternative risk-
return optimized allocation policies to one another and by then selecting the
allocation policy fitting best. However, the identification of various optimized
allocation policies on the Pareto front is computationally expensive, especially
in multi-period settings which allow the investor to dynamically adjust his asset
allocation during the trajectory. A typical example for the high computational
demand is the extensive use of Monte Carlo simulations in the field of Asset
Liability Management (ALM) applications, which can be seen as a specific type
of the portfolio selection task, as discussed e.g., in [1].

In this paper, we frame the task of portfolio selection as a Markov decision
process (MDP) which we set up to allow the modelling of a complex multi-period
stochastic financial environment. To solve the MDP, we propose a risk-aware
RL approach, which is able to control the risk in returns for each time step over
the entire investment horizon. We choose to estimate the risk independently
from the agent’s current policy, making it only dependent on a market risk
estimator as well as on the agent’s current action. Contrary to policy dependent
estimators in RL, such as critics, which can suffer from a moving target problem,
our proposed risk estimator does not suffer from this issue, thereby allowing
for sample efficiency and accelerated convergence. We propose a meta agent
which uses the risk preference level as an inference parameter rather than as
a hyperparameter. This allows for the agent to be trained over an interval of
risk preference levels. In contrast, previous approaches have relied on training
different agents for each level of risk preference, which has the drawback of
requiring separate computationally expensive trainings, separate model networks
and separate sets of hyperparameters. The usage of the risk preference level as
an inference parameter further allows for approximating the Pareto front in
a computationally efficient manner. One single trained meta agent is able to
generate optimized asset allocation policies for any risk preference level within
the specified interval during inference time. The implementation of our agent is
based on PPO by [26], using a Dirichlet action distribution. In our experiments,

! https://www.eiopa.europa.eu/browse/solvency-2_en
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our PPO based approach is able to outperform three alternative approaches:
firstly, a simple Equal Weight Buy and Hold strategy; secondly, a DDPG based
risk-aware RL approach by [1] and thirdly, a TD3 based risk-aware RL approach
by [32].

We benchmark all approaches in two different settings: on previously not
known data from the training environment and on a full year of unseen real
world Nasdag-100 data in a backtesting setting.

The main contributions of this paper are:

— A computationally efficient way to approximate the risk-return Pareto front
for a continuous interval of risk preference levels by training only a single
meta agent

— A method that allows estimating the risk of returns independently from the
agent’s current policy

— A PPO based approach with a Dirichlet action distribution suitable for the
task of multi-period portfolio selection

2 Related Work

The related work to our approach can be categorized into four main areas: risk
measures in risk-aware RL, portfolio optimization, RL applications to financial
tasks, approximation of the Pareto front.

The related work on risk measures in risk-aware RL considers several
different risk measures. Early works use the standard deviation as a measure of
risk such as [29] who proposed a risk-adjusted objective function by subtracting
the standard deviation from the cumulated discounted rewards. However, this
formulation violates the temporal persistence property necessary to guarantee
the convergence to an optimum for policy iteration algorithms. Alternative ap-
proaches such as [10] use the conditional value-at-risk (CVaR) as a risk measure,
thereby addressing the risk of small probability events with high impact. Recent
approaches have recognized the importance of measuring dispersion not solely
in cumulated returns, i.e., over the entire trajectory, but of also addressing the
variability in rewards per time step which can be highly relevant, e.g., for eco-
nomic tasks such as trading or portfolio construction. A risk measure addressing
this issue is the reward volatility defined by [6] which captures the variability of
rewards between steps. [32] too proposed a framework optimizing the variance
of a per-step reward. Another risk measure aiming to capture the variability per
time step was published by [1] where it is defined as the variance in rewards
per time step observed in the current trajectory. In contrast to the approaches
mentioned above, we exploit the fact that in our setting, the risk of a step can
be computed based solely on the current action and the market risk which is
estimated independently from the policy. This in turn allows for the estimation
of the risk in a very sample efficient way.

The foundations for portfolio optimization in financial literature were laid
by the work of [16] who formulated the modern portfolio theory which is the basis
of many works such as the one by [7]. They too used a mean-variance (MV)
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optimization approach in order to find the optimal weightings of investments in
a portfolio offering the best risk-return trade-off. Thereby, the risk is measured as
the variance in economic returns for a single time step. A more recent approach
by [11] introduces a regime-switching factor model which — while still in the MV
setup — allows for a single period optimization under different market regimes.
Such different market regimes correspond to different states of the market, e.g.,
optimistic and pessimistic market sentiments. Other works such as the one by
[8] introduce a framework extending the MV single-period optimization to a MV
multi-period optimization.

The area of RL applications to financial tasks has become more popular
in recent years, as RL methods can naturally handle multi-period problems as
well as different states, such as different market regimes, in the context of a MDP
and are thus well suited to tackle the requirements of financial tasks. Many of
the correspondingly published works, such as [3,30] focus on trading which is
characterized by a rather short term view. Other authors use RL methods to
find long term strategies to solve a portfolio selection task. [25] apply a policy
iteration algorithm to the portfolio selection problem in combination with a risk-
adjusted objective function. In order to model the actions of an investor in a MV
setup, [4] use a policy gradient method and propose the usage of the Dirichlet
distribution. [1] propose the usage of the DDPG algorithm to optimize the risk-
reward trade-off faced in a portfolio selection task for a life insurance company.
In contrast to the approaches mentioned above, our approach allows a single
meta agent to be trained over a continuous interval of risk preference levels,
instead of training different agents for each level of risk preference individually.

The approximation of a Pareto front in the context of a multi-objective
optimization (MOO) is discussed by authors such as [18]. In contrast to our
approach, they focus on a supervised MOO problem instead of a RL one. Other
authors such as [22] propose the approximation of the Pareto front in a RL
MOO setting. However, in their setting, they deal with a multi-objective Markov
decision process (MOMDP) with multiple reward functions, while we formulate
the task as an MDP using a scalarized objective function by linearly combining
the economic return objective and the economic risk objective. Thus, our method
computes all Pareto optimal solutions on the convex hull but neglects those being
Pareto optimal for non-linear scalarization functions [24]. Though this restriction
systematically reduces the number of found Pareto optimal policies, we argue
that the approximation generated by our method yields a sufficiently large and
intuitive set of user options.

3 Background

A discrete-time MDP is described by a five tuple (S,.A, R, P,), consisting of
the state space S, the action space A, a reward R which will be treated as a
random variable as well as the transition probability function P(s'|s,a) € [0, 1]
for 5,5’ € S and a € A and a discount factor v discounting future rewards.



Risk-Aware Reinforcement Learning for Multi-Period Portfolio Selection 5

The random variables for the next state S’ and for the reward R are deter-
mined jointly and depend only on the preceding state s and action a. Their joint
probability distribution is described by

p(s',r|s,a) = Pr(S" =5, R=r|S =54 =a).

In the case that R is a continuous reward random variable, we obtain

R(s,a) =B[R|S = 5,A=a] = // r p(s’,r|s,a)ds'dr.

s’ rep(-,|s,a)
A trajectory T = (so, ag,71, 81,01, ...) is a sequence of states and actions. Let

T-1

P(r|m) = po(s0) H P(St+1, Te1]St, ar)m(ar]se)
t=0

represent the probability of observing the trajectory 7 given policy 7. The term
o (so) describes the probability of observing sg as the initial state, i.e., so ~ u(-).

We define the return as the observed discounted cumulative rewards for the
trajectory 7, i.e.,

T—1
G(1) = Z Yiregn
t=0

where 741 are the observed rewards from time step t, given sy, a; and s441.
The objective function is then defined as the expected return for a given
policy 7 and thus

J(m) = IE(G) Z/P(T|7T)G(T)d7'.

T~P(7|T)

4 Risk-aware Portfolio Optimization

We consider an agent (i.e., investor) with a fixed investment horizon 7' who wants
to allocate his wealth into different assets in order to maximize the trade-off
between the expected return and the individual preference for risk for the periods
t = 0,...,T. The investable asset universe contains N assets. The discount
factor is set to v = 1.

We define the state space of the MDP as S =7 x W x V x U. Here, the
space T C R is populated by the parameter A which is used to represent the
agent’s individual risk preference level. In contrast to other approaches [32,1],
we thus use A as an inference parameter, rather than as a hyperparameter.
This parameter is crucial in enabling the agent to learn an interval of differ-
ent risk preference levels by being randomly sampled at the beginning of each
trajectory during training and then remaining constant until the end of the tra-
jectory. W C R} represents the current absolute wealth level of the agent while
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the standard-simplex V = {v eRN: Zf;l v;=1v;,>0fori=0,..., N — 1}

represents the current relative portfolio allocation. &« C RN represents all the
observed single asset returns from the previous time step.

The action space A is also defined as a standard-simplex to represent the
weighting vector chosen by the agent as action a; = [at,...,a,n-1] € A at
time step t. The choice of the action space A as a standard-simplex represents
the need of the agent to allocate all available funds into its portfolio within
each period, i.e., a] 1 = 1, whereby short-selling of assets is not permitted, i.e.,

The random vector © = [Oy,...,On_1] € U models the economic return
of each asset individually for each time step. The portfolio return is a random
variable with an expected value denoted as

E[@pr] = E[aT0] = " E[6).

Changes in the portfolio weightings a; in period ¢ by the agent cause trans-
action costs, defined by

tey = (lag —ve])T e
where the vector ¢ = [¢o,..,cy—1] contains the asset-specific transaction costs
caused by a trade of the respective asset. Note that the transaction costs are
non-stochastic and fully determined by action a;.

We then define the observed economic reward r as a combination of the trans-
action costs tc and a realization ¥pp of the random variable of the portfolio’s
economic return Opp, i.e.,

r=19Y9pp — tc. (1)

To include the element of risk awareness in the reward of the MDP, we shape
the reward to include the economic reward as well as a risk measure weighted
by a penalty term:

r'(s,a) =1(s,a) — Mrisk,0pr (S, a).

The term A is the risk penalty factor which reflects the agent’s individual
preference to take on risk. Note that the risk in the reward, i.e., frisk.0,x(S,a),
is measured per time step, cannot be observed directly and therefore has to be
estimated.

Subsequently, the risk-aware return is defined as:

!

-1

G/(T) = Vt (Tt+1 - /\frisk,@pF(St, at))
t

i
o

where friskﬁpF(st, at) is an estimated function to measure the risk in r441
and only depends on the state-action pair of time step ¢t. With our approach,
frish@ »r can therefore be estimated over different trajectories regardless of the
agent’s current policy.
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4.1 Risk measure

Based on the financial setting, we use the standard deviation as a risk measure.
This risk measure is widely accepted in finance, as e.g., discussed by [13]. Thus,
our approach requires estimating the risk per time step, i.e., the standard de-
viation in returns associated with each state-action pair. In our setting and in
line with other authors such as [8], the returns of financial assets are assumed
to be independent between time steps. The only source of stochasticity in the
estimator for the portfolio’s risk is the market risk of the individual assets, while
the action is a deterministic component of the estimator function.
The variance of the economic portfolio return is defined as:

Var(Opr) = a"Xoa

where Yg is the covariance matrix for asset-wise economic returns © and a
describes the weightings in the individual assets — which in our setting is the
action selected by the agent. Note that the standard deviation is a risk measure
free from assumptions about the underlying distribution. The N x N covariance
matrix Yo can be rewritten in terms of the first and second moment of ©:

Yo = E[0OT] — E[O]E[O]T .

The covariance matrix can be estimated independently from both the agent’s
action as well as from his current policy and solely depends on the state of
the market environment from which the estimator receives the latest observable
information w € U which is included in s € S, and thus

fC’ov(S) = Eg .

Including action a in our estimator function, the estimator for the risk of the
portfolio return in a single time step is defined as

frisk,@pp (s,a) = \/aTEga = \/anCov(s)a .

We use two neural networks, Ml and Mg, to estimate the first and second
moment of ©. Due to our multivariate setting with N individual assets, M, has
to estimate N values. For the second moment, M, has to estimate the unique
elements present in the symmetric matrix, i.e., (N +1) - N - 0.5 elements. These
moment estimators are trained simultaneously with the agent’s policy.

4.2 Policy

As a policy function for our PPO based implementation, we use the Dirichlet
distribution as proposed in a similar context by [4]. The Dirichlet distribution is
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a multivariate probability distribution governed by the concentration parameter
vector @ = [ayg,...,an—_1] where a; > 0 with ¢ = 0,..., N — 1. Its probability
density function for a random vector is defined as

1 N-1
f@io) = g 1 o0
=0

where B(«) is the multivariate beta function. A sample = = [zg,...,2Nn_1]
drawn from a Dirichlet distribution satisfies the properties Zij\;_ol r; = 1 and
x; > 0, and is thus a member of a standard simplex fulfilling the requirements
imposed on actions in the context of portfolio selection. In the experimental part,
we further examine for comparison purposes a DDPG based as well as a TD3
based implementation of our method. For both implementations, the natural
way of enforcing the sampled outputs to be members of a standard simplex is
by applying a softmax function in the output layer. The exploration is done
by adding the explorational noise to the parameters in the hidden layers of the
policy network, which is an approach described by [23].

4.3 Algorithm

The algorithm for the PPO based implementation can be found in Algorithm 1.
Note that in our setting the ability of the meta agent to learn asset allocation
policies for any level of risk preference on a continuous interval is enabled through
(a) the formulation of a policy independent risk measure and (b) the treatment
of the risk preference parameter A\ as an inference parameter by inclusion in the
state s € §. During training, at the beginning of each trajectory, the risk pref-
erence parameter A is sampled from a continuous uniform distribution. Within
each trajectory ¢ the initially sampled \; remains constant.

4.4 Network Architectures

For our PPO based framework, we have four different models: an actor network
7(als, ), a critic network v(s) and two moment estimating neural networks M,
and M, responsible for the estimation of the first and second moments of the
individual assets to form an estimated covariance matrix. The architecture of
the actor network and the critic network share the same body network of four
fully connected hidden layers of size 512, 256, 128 and 64 with ReLU activation
functions. These layers are followed by an attention based GTrXL architecture
by [21] allowing for also handling tasks requiring memory. The use of a GTrXL
element instead of the standard transformer architecture improves the architec-
ture’s optimization properties in RL settings significantly. The GTrXL element
consists of a single transformer unit with one encoder layer as well as one decoder
layer with four attention heads and an embedding size of 64. The network’s body
is then split into two heads, in which the actor network’s output layer utilizes
an exponential activation function. This enforces the output to be in the value
range of RT, to meet the requirements of the parameter input of the Dirichlet
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Algorithm 1 Risk controlling PPO
Input: environment ¢

1: init parameters: 0g,09, Yo, 09 # policy, value function, 1st & 2nd moment
estimate
2: for k=0,1,... do
3:  sample trajectories Dy = {7;} with policy m = 7(0x) in € for T time steps;
at each trajectory start sample risk preference A\; ~ U(a, b).

. . - 2
4:  Update risk estimator function fi(-,:) = \/M2$(;k(~7 ) = (Mlmc('? )) .

Calculate the est. risk fi (s, a¢) and then the risk adjusted reward T

Calculate advantage estimates, A, based on the current value function
Ve -
7:  Update policy by maximizing the PPO-Clip objective:

T
1
Opr1 = argmaax DRT Z Z

TED t=0

; mo(aels) )
min | —=-— =S Ak (s , At ),y €7A779k St, A .
(Wok,(atst) (st,a0), g (s¢,a¢))

. T 2
8 fry1 = Argming 17 Yorep, Yo (Vo(st) —7i41)" - # update ¢
. 2
9:  Apy1 = argmin, ﬁ ZTG'Dk Zf:o (Mlﬁk(st, ag) — 7"t+1) . # update v

2
. T ~

10: 041 = argming ﬁ ZTEBk Yoo (nggk (s¢,ap) — rfﬂ) . # update ¢

11: end for

distribution. The head of the critic network on the other hand is a basic linear
layer without activation function. We further need to estimate the covariance
matrix in order to estimate the risk associated with an action by estimating
the elements of the multivariate expressions of the first and second moment, i.e.
IE[©] and IE[GOT]. Since this is a standard supervised learning problem, we ap-
ply a standard transformer architecture to estimate a multivariate time series as
described by [31]. In our setting, this architecture consists of four encoder layers
and four decoder layers, each utilizing eight attention heads with an embedding
size of 512. Note that the actor and critic network are trained together, having
a joint loss function using the Adam optimizer with a learning rate of 5.0-107°.
The moment estimating networks use a separate loss function and utilize the
Adam optimizer with a learning rate of 1.0 - 1073.

5 Experiments
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5.1 Environment

We use the qlib package? to fetch and process real-world financial data for the
US market contained in the Nasdaqg-100. The Nasdaqg-100 is a modified market
value-weighted index containing the shares from the 100 largest non-financial
companies traded on the Nasdaq stock exchange. Over time, the composition
of the index changes. This is due to the (de)listing of shares and changes in
the market value of companies, which can then — according to the guidelines
of the Nasdag-100 — lead to removal from or addition to the Nasdaq-100. We
consider the monthly single share closing prices for the period from January 1,
2010 to December 31, 2020. In order to avoid having to deal with missing data,
we filter out the companies that were not included in the Nasdag-100 throughout
the entire period. From the remaining 35 companies, we randomly choose 16 to
represent the investable universe in the RL environment.

In literature, there is a multitude of approaches modelling the dynamics in the
time series of financial returns. One such approach is the application of classical
time series models, e.g., by [5,17]. Another approach is the usage of deep learning
based methods, e.g., by [15,20]. Furthermore, hidden markov models (HMMSs) are
applied, e.g., by [14,19]. In our setup, we decide to model the market dynamics
by applying a HMM. However, any method capable of modelling the dynamics
in a time series of financial returns could be used interchangeably.

To choose the HMM fitting best, we follow [19] and use two criteria, namely
the Akaike information criterion (AIC) by [2] and the Bayesian information
criterion (BIC) by [27]. Both criteria suggest the use of a two state HMM. In
our environment, we set the length of a trajectory to twelve time steps, reflecting
the investment horizon of a year. The transaction costs are set to 0.2% of the
traded volume.

5.2 Experimental Setup

The implementation of our approach is based on the RLIib framework® and the
agents were trained on a cluster utilizing various types of commercially available
single GPUs. For each evaluation step, we sample 1000 trajectories to calculate
the corresponding statistics.

For the implementation of our benchmark RL algorithms, we base [32] on
the publicly available GitHub code* while for the approach proposed by [1], we
rebuild the architecture as described in their paper.

5.3 Evaluation

Benchmarking with other approaches. For our evaluation setup, we com-
pare our approach with three alternative approaches. The first one is an Equal

2 https://github.com/microsoft/qlib/tree/main
3 https://docs.ray.io/en/master/r1lib/index.html
* https://github.com/ShangtongZhang/DeepRL
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Table 1: Evaluation results of 1000 trajectories from the environment (I) and
backtesting on the Nasdag-100 data trajectory of 2021 (II).

Sharpe Ratio

Total Econ. Payoff ~ Est. Std. Dev.

(ex-post)
(I) Environment
Equal Weight B&H 1.232 0.218 0.177
Ours 1.347 0.240 0.178
Zhang et al. (2021) 1.283 0.229 0.178
Abrate et al. (2021) 1.158 0.209 0.180
(IT) Backtesting
Equal Weight B&H 1.968 0.336 0.171
Ours 2.039 0.344 0.168
Zhang et al. (2021) 1.921 0.335 0.174
Abrate et al. (2021) 1.908 0.331 0.173

Weight Buy and Hold (Equal Weight B&H) policy, which is a simple investment
heuristic. At the beginning of the investment horizon, the funds are distributed
equally to all available assets. After buying the assets they are held until the
end of the investment horizon without any allocation adjustments. Despite its
low complexity, an Equal Weight policy is considered to be a performant al-
location policy. The second approach is a risk-aware RL DDPG based method
described by [1] which in their paper is specifically applied to the task of gener-
ating an optimized asset allocation policy for a single level of risk preference. In
the following, we will refer to their approach as Abrate et al. (2021). The third
approach is MVPI-TD3 by [32]. It is a state-of-the-art risk-aware RL method
based on the TD3 algorithm, originally introduced by [12]. In the following, we
will refer to the third approach as Zhang et al. (2021).

We evaluate two different settings: in setting (I) we evaluate the policies’
performances for 1000 unseen trajectories generated by the environment. Setting
(IT) follows a backtesting approach by evaluating the policies’ performances for
the unseen historical trajectory of the Nasdaq-100 data for the entire year of
2021. To allow for a consistent comparison of the asset allocation policies, every
approach needs to be adjusted to bear a comparable amount of risk. All of our
evaluated RL approaches are able to control the risk of the optimized asset
allocation policy by adjusting their specific risk preference level parameter A. In
contrast, the Equal Weight B&H approach does not have this feature, resulting
in the use of the risk level of the Equal Weight B&H approach as the baseline
level of risk to which the other approaches have to adapt. Accordingly, the A
in the other approaches are set in such a way to generate strategies with a
standard deviation in returns comparable to the one produced by the Equal
Weight B&H approach.

For (I), the policies’ standard deviations in returns over the entire trajectory
are estimated as the empirical standard deviations. To estimate the standard
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Fig. 1: Evaluation of a single PPO based meta agent for different levels of risk
preference.

deviations in returns in (II), a different approach is needed, since the real-world
data offer only a single observation per month, which makes it difficult to esti-
mate the monthly variances in returns. To address this issue, we use the daily
observations within a month. After estimating the daily variance, this value is
scaled up by the number of trading days within the month in order to estimate
the assets’ monthly variance — a method commonly used in finance [9]. The root
of the sum of the monthly variances is then used to obtain an estimate for the
policies’ standard deviations in returns in the backtesting evaluation setting.

Table 1 provides the evaluation results of our experiments. We evaluate the
approaches in regards to their ex-post Sharpe ratio, an evaluation metric com-
monly used in finance to compare investment performances [8,28]. In addition,
Table 1 shows the individual components of the Sharpe ratio, which in our set-
ting are the total economic payoff and the estimated standard deviation. In both
evaluation settings (I) and (II), our approach is able to provide the asset alloca-
tion policy scoring the highest Sharpe ratio and — under an approximately equal
level of risk — therefore also the highest total economic payoff.

Note that the risk preference parameters A of the different risk-aware RL
approaches cannot be compared directly, due to different definitions of risk and
different objective functions. For Zhang et al. (2021) we use a risk preference
parameter value of 0.55, for Abrate et al. (2021) a risk preference parameter
value of 0.3 and for our own approach a risk preference parameter value of 0.34.

Approximation of the Pareto front. A multi-period asset allocation po-
licy for a given level of risk preference incorporates a suggested asset allocation
for each single time step. Our meta agent approach generates an entire set of
asset allocation policies, whereby each single one is linked to a specific level of
risk preference within a continuous interval. Figure 1a shows the performance
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Fig.2: Computation time required for Fig.3: Comparison of meta agent ap-
training. proaches and PPO non-meta agents.

of our approach with respect to different levels of risk preference . Each point
represents an entire asset allocation policy evaluated over twelve time steps of
the trajectory. The y-axis shows the economic return including the transaction
costs, as defined in equation 1, cumulated over the entire trajectory. In the fol-
lowing, this value will be referred to as the total economic payoff. In Figure la
we are evaluating 21 different asset allocation strategies with corresponding risk
preference levels in the interval of 0.0 to 1.0 in steps of 0.05 generated by the
same meta agent. The figure shows that our method is capable of approximating
a monotonic decreasing Pareto front with increasing levels of risk preference.
In order to illustrate the measured uncertainty of the total economic payoff,
Figure la also includes the empirical 90% confidence interval. As in Figure 1la,
in Figure 1b the 21 asset allocation strategies, evaluated in relation to their
empirical standard deviation, form a Pareto front.

Stability during training. In order to find a suitable asset allocation po-
licy, the RL based approaches use their model specific risk preference parameter
A. To allow for a consistent comparison of the approaches, each approach needs
to generate a policy with a comparable level of risk, i.e, a comparable level of
standard deviation in returns measured over the trajectory. From this arises the
need to identify for each approach the corresponding individual risk preference
parameter A which produces a certain level of standard deviation. For the non-
meta agent approaches by Zhang et al. (2021) and Abrate et al. (2021), the
identification of a suitable risk preference parameter is done manually via an it-
erative interval search. Thereby, single agents need to be trained and evaluated.
Both the DDPG and TD3 based approaches require a considerable amount of
hyperparameter tuning for each single agent. When a suitable set of hyperpa-
rameters is found, it is then often not transferable between agents with different
levels of risk preference. This leads to unstable training results combined with
repeatedly extensive hyperparameter tuning.

To further investigate the stability properties of the DDPG and TD3 algo-
rithm in our setting, we also implement our meta agent for the DDPG and the
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TD3 algorithm. This allows for a direct comparison of all three implementations
trained with the same objective function with the same definition of risk. During
evaluation, neither the DDPG nor the TD3 implementation of a meta agent are
able to generate a meaningful Pareto front. Their proposed asset allocation poli-
cies are strictly dominated by the asset allocation policies generated by the PPO
implementation as shown in Figure 3. We also apply the PPO based approach
to a non-meta agent, i.e., to the optimization of a single level of risk preference
solely. We emphasize that for this PPO based approach, we are able to use a
single set of hyperparameters for training, thereby transferable between agents
for different levels of risk preference. Figure 3 further shows the comparison to
the PPO meta agent. Due to computational limitations, we only train and eval-
uate 11 optimized allocation policies with PPO non-meta agents. Nevertheless,
it can be seen that for the PPO based methods, both the meta agent as well as
the non-meta agents are able to approximate a Pareto front, with the non-meta
agents performing slightly worse. We hypothesize that the superior stability in
hyperparameters for a PPO based approach over the DDPG and the TD3 based
approaches plays an important role when successfully training a meta agent.

Efficiency. One advantage of our method when approximating the Pareto
front is its computational efficiency. Once the meta agent has been trained, we
are able to generate any number of optimized asset allocation strategies by sim-
ply changing the risk preference levels as an inference parameter. Thereby, the
respective asset allocation strategies can be evaluated without further training.
In contrast, previous approaches would need to train a different agent for each
level of risk preference. Figure 2 shows the training time required to generate
different optimized asset allocation strategies on the machine used for our ex-
periments. While the time required to train a single agent for an optimized asset
allocation using one single level of risk preference takes roughly 3 days, the train-
ing of a meta agent for an interval of levels of risk preference takes roughly 4.5
days on a system with an NVIDIA RTX 8000. When training multiple agents,
the cumulative computation time increases linearly with the amount of desired
optimized asset allocation strategies. In contrast, the training time of our ap-
proach stays constant due to the need of only training a single meta agent to
cover an entire interval of risk preference levels.

Performance of Risk Measure Estimation. With our approach, we fur-
ther introduce a method to estimate the risk per time step, which can be done
independently from the agent’s current policy. The experiments show fast con-
vergence for both the first and the second moment estimators after roughly 6%
of the total training time, i.e., after 150 out of a total of 2500 training iterations.

6 Conclusion

In this paper, we train an agent to invest a given amount of wealth into a set of
assets on a monthly basis. In order to control the risk of the investment, the agent
receives a risk preference parameter constraining the standard deviation in the
financial returns received per time step. This in turn also indirectly controls the
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risk of the financial returns over the entire trajectory. Our method of estimating
the risk in a time step is independent of the agent’s current policy and only
requires the agent’s current action as well as an estimate of the market risk. In
our approach a single meta agent is trained for any risk preference level within
a continuous interval, enabling a computationally efficient approximation of the
Pareto front. We evaluate our PPO based approach combined with a Dirichlet
action distribution against other state-of-the-art risk-aware RL approaches in
a setting based on real-world Nasdag-100 data. The results show that our new
method outperforms compared approaches w.r.t. stability during training as well
as generating asset allocation policies with better risk-return profiles. For future
work, we want to explore the setting of multiple competing meta agents able to
influence the market prices and their resulting interactions.
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