
Truly Unordered Probabilistic Rule Sets
for Multi-class Classification

Lincen Yang[0000−0003−1936−2784] and Matthijs van Leeuwen[0000−0002−0510−3549]

LIACS, Leiden University, Leiden, The Netherlands
l.yang, m.van.leeuwen@liacs.leidenuniv.nl

Abstract. Rule set learning has long been studied and has recently
been frequently revisited due to the need for interpretable models. Still,
existing methods have several shortcomings: 1) most recent methods re-
quire a binary feature matrix as input, while learning rules directly from
numeric variables is understudied; 2) existing methods impose orders
among rules, either explicitly or implicitly, which harms interpretability;
and 3) currently no method exists for learning probabilistic rule sets for
multi-class target variables (there is only one for probabilistic rule lists).
We propose Turs, for Truly Unordered Rule Sets, which addresses these
shortcomings. We first formalize the problem of learning truly unordered
rule sets. To resolve conflicts caused by overlapping rules, i.e., instances
covered by multiple rules, we propose a novel approach that exploits the
probabilistic properties of our rule sets. We next develop a two-phase
heuristic algorithm that learns rule sets by carefully growing rules. An
important innovation is that we use a surrogate score to take the global
potential of the rule set into account when learning a local rule.
Finally, we empirically demonstrate that, compared to non-probabilistic
and (explicitly or implicitly) ordered state-of-the-art methods, our method
learns rule sets that not only have better interpretability but also better
predictive performance.

1 Introduction

When using predictive models in sensitive real-world scenarios, such as in health
care, analysts seek for intelligible and reliable explanations for predictions. Clas-
sification rules have considerable advantages here, as they are directly readable
by humans. While rules all seem alike, however, some are more interpretable
than others. The reason lies in the subtle differences of how rules form a model.
Specifically, rules can form an unordered rule set, or an explicitly ordered rule
list ; further, they can be categorized as probabilistic or non-probabilistic.

In practice, probabilistic rules should be preferred because they provide in-
formation about the uncertainty of the predicted outcomes, and thus are useful
when a human is responsible to make the final decision, as the expected “util-
ity” can be calculated. Meanwhile, unordered rule sets should also be preferred,
as they have better properties regarding interpretability than ordered rule lists.
While no agreement has been reached on the precise definition of interpretabil-
ity of machine learning models [16, 14], we specifically treat interpretability with

2 Yang, L and van Leeuwen, M.

domain experts in mind. From this perspective, a model’s interpretability intu-
itively depends on two aspects: the degree of difficulty for a human to compre-
hend the model itself, and to understand a single prediction. Unordered prob-
abilistic rule sets are favorable with respect to both aspects, for the following
reasons. First, comprehending ordered rule lists requires comprehending not only
each individual rule, but also the relationship among the rules, while compre-
hending unordered rule sets requires only the former. Second, the explanation for
a single prediction of an ordered rule list must contain the rule that the instance
satisfies, together with all of its preceding rules, which becomes incomprehensible
when the number of preceding rules is large.

Further, crucially, existing methods for rule set learning claim to learn un-
ordered rule sets, but most of them are not truly unordered. The problem is
caused by overlap, i.e., a single instance satisfying multiple rules. Ad-hoc schemes
are widely used to resolve prediction conflicts caused by overlaps, typically by
ranking the involved rules with certain criteria and always selecting the highest
ranked rule [24, 12] (e.g., the most accurate one). This, however, imposes implicit
orders among rules, making them entangled instead of truly unordered.

This can badly harm interpretability: to explain a single prediction for an
instance, it is now insufficient to only provide the rules the instance satisfies,
because other higher-ranked rules that the instance does not satisfy are also
part of the explanation. For instance, imagine a patient is predicted to have Flu
because they have Fever. If the model also contains the higher-ranked rule “Blood
in stool → Dysentery”, the explanation should include the fact that “Blood in
stool” is not true, because otherwise the prediction would change to Dysentery.
If the model contains many rules, it becomes impractical to have to go over all
higher-ranked rules for each prediction.

Learning truly unordered probabilistic rule sets is a very challenging prob-
lem though. Classical rule set learning methods usually adopt a separate-and-
conquer strategy, often sequential covering: they iteratively find the next rule
and remove instances satisfying this rule. This includes 1) binary classifiers that
learn rules only for the “positive” class [8], and 2) its extension to multi-class
targets by the one-versus-rest paradigm, i.e., learning rules for each class one by
one [4, 2]. Importantly, by iteratively removing instances the probabilistic predic-
tive conflicts caused by overlaps, i.e., rules having different probability estimates
for the target, are ignored. Recently proposed rule learning methods go beyond
separate-and-conquer by leveraging discrete optimization techniques [24, 21, 22,
12, 5], but this comes at the cost of requiring a binary feature matrix as input.
Moreover, these methods are neither probabilistic nor truly unordered, as they
still use ad-hoc schemes to resolve predictive conflicts caused by overlaps.

Approach and contributions. To tackle these challenges and learn truly un-
ordered probabilistic rules, we first formalize rule sets as probabilistic models.
We adopt a probabilistic model selection approach for rule set learning, for which
we design a criterion based on the minimum description length (MDL) principle
[10]. Second, we propose a novel surrogate score based on decision trees that we
use to evaluate the potential of incomplete rule sets. Third, we are the first to

Truly Unordered Probabilistic Rule Sets for Multi-class Classification 3

design a rule learning algorithm that deals with probabilistic conflicts caused
by overlaps already during the rule learning process. We point out that rules
that have been added to the rule set may become obstacles for new rules, and
hence carefully design a two-phase heuristic algorithm, for which we adopt di-
verse beam search [19]. Last, we benchmark our method, named Turs, for Truly
Unordered Rule Sets, against a wide range of methods. We show that the rule
sets learned by Turs, apart from being probabilistic and truly unordered, have
better predictive performance than existing rule list and rule set methods.

2 Related Work

Rule lists. Rules in a rule list are connected by if-then-else statements. Ex-
isting methods include CBA [13], ordered CN2 [3], PART [6], and the recently
proposed CLASSY [17] and Bayesian rule list [23]. We argue that rule lists are
more difficult to interpret than rule sets because of their explicit orders.

One-versus-rest learning. This category focuses on only learning rules for a
single class label, i.e., the “positive” class, which is already sufficient for binary
classification [21, 5, 22]. For multi-class classification, two approaches exist. The
first, taken by RIPPER [4] and C4.5 [18], is to learn each class in a certain
order. After all rules for a single class have been learned, all covered instances
are removed (or those with this class label). The resulting model is essentially
an ordered list of rule sets, and hence is more difficult to interpret than rule set.

The second approach does not impose an order among the classes; instead, it
learns a set of rules for each class against all other classes. The most well-known
are unordered-CN2 and FURIA [2, 11]. FURIA avoids dealing with conflicts of
overlaps by using all rules for predicting unseen instances; as a result, it cannot
provide a single rule to explain its prediction. Unordered-CN2, on the other hand,
handles overlaps by “combining” all overlapping rules into a “hypothetical” rule,
which sums up all instances in all overlapping rules and hence ignoring proba-
bilistic conflicts for constructing rules. In Section 6, we show that our method
learns smaller rule sets with better predictive performance than unordered-CN2.

Multi-class rule sets. Very few methods exist for directly learning rules for
multi-class targets, which is algorithmically more challenging than the one-
versus-rest paradigm, as the separate-and-conquer strategy is not applicable. To
the best of our knowledge, the only existing methods are IDS [12] and DRS [24].
Both are neither probabilistic nor truly unordered. To handle conflicts of over-
laps, IDS follows the rule with the highest F1-score, and DRS uses the most
accurate rule.

Last, different but related approaches include 1) decision tree based methods
such as CART [1], which produce rules that are forced to share many “attributes”
and hence are longer than necessary, as we will empirically demonstrate in Sec-
tion 6, and 2) a Bayesian rule mining [9] method, which adopts naive bayes with
the mined rules for prediction, and hence does not produce a rule set model
in the end. The ‘lazy learning’ approach for rule-based models can also avoid

4 Yang, L and van Leeuwen, M.

the conflicts of overlaps [20], but no global rule set model describing the whole
dataset is constructed in this case.

3 Rule Sets as Probabilistic Models

We first formalize individual rules as local probabilistic models, and then define
rule sets as global probabilistic models. The key challenge lies in how to define
P (Y = y|X = x) for an instance (x, y) that is covered by multiple rules.

3.1 Probabilistic Rules

Denote the input random variables by X = (X1, . . . , Xd), where each Xi is a
one-dimensional random variable representing one dimension of X, and denote
the categorical target variable by Y ∈ Y . Further, denote the dataset from which
the rule set can be induced as D = {(xi, yi)}i∈[n], or (xn, yn) for short. Each
(xi, yi) is an instance. Then, a probabilistic rule S is written as

(X1 ∈ R1 ∧X2 ∈ R2 ∧ . . .)→ PS(Y), (1)

where each Xi ∈ Ri is called a literal of the condition of the rule. Specifically,
each Ri is an interval (for a quantitative variable) or a set of categorical levels
(for a categorical variable).

A probabilistic rule of this form describes a subset S of the full sample
space of X, such that for any x ∈ S, the conditional distribution P (Y |X = x)
is approximated by the probability distribution of Y conditioned on the event
{X ∈ S}, denoted as P (Y |X ∈ S). Since in classification Y is a discrete variable,
we can parametrize P (Y |X ∈ S) by a parameter vector β, in which the jth
element βj represents P (Y = j|X ∈ S), for all j ∈ Y . We therefore denote
P (Y |X ∈ S) as PS,β(Y), or PS(Y) for short. To estimate β from data, we adopt

the maximum likelihood estimator, denoted as PS,β̂(Y), or P̂S(Y) for short.

Further, if an instance (x, y) satisfies the condition of rule S, we say that
(x, y) is covered by S. Reversely, the cover of S denotes the instances it covers.
When clear from the context, we use S to both represent the rule itself and/or
its cover, and define the number of covered instances |S| as its coverage.

3.2 Truly Unordered Rule Sets as Probabilistic Models

While a rule set is simply a set of rules, the challenge lies in how to define rule
sets as probabilistic models while keeping the rules truly unordered. That is, how
do we define P (Y |X = x) given a rule set M , i.e., a model, and its parameters?
We first explain how to do this for a single instance of the training data, using a
simplified setting where at most two rules cover the instance. We then discuss—
potentially unseen—test instances and extend to more than two rules covering
an instance. Finally, we define a rule set as a probabilistic model.

Class probabilities for a single training instance. Given a rule set M
with K individual rules, denoted {Si}i∈[K], any instance (x, y) falls into one of

Truly Unordered Probabilistic Rule Sets for Multi-class Classification 5

four cases: 1) exactly one rule covers x; 2) at least two rules cover x and no rule’s
cover is the subset of another rule’s cover (multiple non-nested); 3) at least two
rules cover x and one rule’s cover is the subset of another rule’s cover (multiple
nested); and 4) no rule in M covers x.

To simplify the notation, we here consider at most two rules covering an
instance—we later describe how we can trivially extend to more than two rules.

Covered by one rule. When exactly one rule S ∈ M covers x, we use PS(Y)
to “approximate” the conditional probability P (Y |X = x). To estimate PS(Y)
from data, we adopt the maximum likelihood (ML) estimator P̂S(Y), i.e.,

P̂S(Y = j) =
|{(x, y) : x ∈ S, y = j}|

|S|
,∀j ∈ Y . (2)

Note that we do not exclude instances in S that are also covered by other rules
(i.e., in overlaps) for estimating PS(Y). Hence, the probability estimation for
each rule is independent of other rules; as a result, each rule is self-standing,
which forms the foundation of a truly unordered rule set.

Covered by two non-nested rules. Next, we consider the case when x is covered
by Si and Sj , and neither Si ⊆ Sj nor Sj ⊆ Si, i.e., the rules are non-nested.

When an instance is covered by two non-nested, partially overlapping rules,
we interpret this as probabilistic uncertainty : we cannot tell whether the instance
belongs to one rule or the other, and therefore approximate its conditional prob-
ability by the union of the two rules. That is, in this case we approximate
P (Y |X = x) by P (Y |X ∈ Si ∪ Sj), and we estimate this with its ML estimator

P̂ (Y |X ∈ Si ∪ Sj), using all instances in Si ∪ Sj .
This approach is particularly useful when the estimator of P (Y |X ∈ Si∩Sj),

i.e., conditioned on the event {X ∈ Si ∩Sj}, is indistinguishable from P̂ (Y |X ∈
Si) and P̂ (Y |X ∈ Sj). Intuitively, this can be caused by two reasons: 1) Si ∩ Sj
consists of very few instances, so the variance of the estimator for P (Y |X ∈
Si ∩ Sj) is large; 2) P (Y |X ∈ Si ∩ Sj) is just very similar to P (Y |X ∈ Si) and
P (Y |X ∈ Si), which makes it undesirable to create a separate rule for Si ∩ Sj .
Our model selection approach, explained in Section 4, will ensure that a rule set
with non-nested rules has high goodness-of-fit only if this ‘uncertainty’ is indeed
the case.

Covered by two nested rules. When x is covered by both Si and Sj , and
Si is a subset of Sj , i.e., x ∈ Si ⊆ Sj , the rules are nested1. In this case, we
approximate P (Y |X = x) by P (Y |X ∈ Si) and interpret Si as an exception of
Sj . Having such nested rules to model such exceptions is intuitively desirable,
as it allows to have general rules covering large parts of the data while being
able to model smaller, deviating parts. In order to preserve the self-standing
property of individual rules, for x ∈ Sj \Si we still use P (Y |X ∈ Sj) rather than
P (Y |X ∈ Sj \ Si). Although this might seem counter-intuitive at first glance,
using P (Y |X ∈ Sj \ Si) would implicitly impose an order between Sj and Si,

1 Note that “nestedness” is based on the rules’ covers rather than on their conditions.
For instance, if Si is X1 <= 1 and Sj is X2 <= 1, Si and Sj could still be nested.

6 Yang, L and van Leeuwen, M.

or—equivalently—implicitly change Sj to another rule that only covers instances
in Sj ∧ ¬Si.

Not covered by any rule. When no rule in M covers x, we say that x belongs to
the so-called “else rule” that is part of every rule set and equivalent to x /∈

⋃
i Si.

Thus, we approximate P (Y |X = x) by P (Y |X /∈
⋃
i Si). We denote the else rule

by S0 and write S0 ∈M for the else rule in M . Observe that the else rule is the
only rule in every rule set that depends on the other rules and is therefore not
self-standing; however, it will also have no overlap with other rules by definition.

Predicting for a new instance. When an unseen instance x′ comes in, we
predict P (Y |X = x′) depending on which of the aforementioned four cases it
satisfies. An important question is whether we always need access to the training
data, i.e., whether the probability estimates we obtain from the training data
points are sufficient for predicting P (Y |X = x′). Specifically, if x′ is covered by
non-nested Si and Sj , P (Y |X = x′) is predicted as P̂ (Y |X ∈ Si ∪Sj). However,
if there are no training data points covered both by Si and Sj , then we would

not obtain P̂ (Y |X ∈ Si ∪Sj) in the training phase. Nevertheless, in this case we
have |Si ∪ Sj | = |Si|+ |Sj |, and hence

P̂ (Y |X ∈ Si ∪ Sj) =
|Si|P̂ (Y |X ∈ Si) + |Sj |P̂ (Y |X ∈ Sj)

|Si|+ |Sj |
. (3)

Thus, if x′ is covered by one rule, two nested rules, or no rule in M , the
corresponding probability estimates are already obtained during training. Thus,
we conclude that access to the training data is not necessary for prediction.

Extension to overlaps of multiple rules. Whenever an instance x is
covered by multiple rules, denoted J = {Si, Sj , Sk, ...}, three cases may happen.
The first case is all rules in J are nested. Without loss of generality, assume that
Si ⊆ Sj ⊆ Sk ⊆ ...; then, following the rationale for case of two nested rules,
P (Y |X = x) should be approximated by PSi

(Y). Therefore, when x is covered
by multiple nested rules, only the “smallest” rule matters and we can act as if
x is only covered by that single rule.

The second case is that all rules in J are non-nested with each other. Follow-
ing the solution for modeling two non-nested rules, we use P (Y |X ∈

⋃
S∈J S).

The third case is a mix of the previous two cases, i.e., rules in J are partially
nested. In this case, we iteratively go over all S ∈ J : if there exists an S′ ∈ J
satisfying S′ ⊆ S we remove S from J , and continue iterating until no nested
overlap in J remains. If one single rule is left, we act as if x is covered by
that single rule; otherwise, we follow the paradigm of modeling the non-nested
overlaps with the rules left in J .

Probabilistic rule sets. We can now build upon the previous to define rule
sets as probabilistic models. Formally, the probabilistic model corresponding
to a rule set M is a family of probability distributions, denoted PM,θ(Y |X) and
parametrized by θ. Specifically, θ is a parameter vector representing all necessary
probabilities of Y conditioned on events {X ∈ G}, where G is either a single
rule or the union of multiple rules. θ is estimated from data by estimating each
P (Y |X ∈ G) by its maximum likelihood estimator. The resulting estimated

Truly Unordered Probabilistic Rule Sets for Multi-class Classification 7

vector is denoted as θ̂ and contains P̂ (Y |X ∈ G) for all G ∈ G , where G consists
of all individual rules and the unions of overlapping rules in M .

Finally, we assume the dataset D = (xn, yn) to be i.i.d. Specifically, let us
define (x, y) ` G for the following two cases: 1) when G is a single rule (including
the else rule), then (x, y) ` G ⇐⇒ x ∈ G; and 2) when G is a union of multiple
rules, e.g., G =

⋃
Si, then (x, y) ` G ⇐⇒ x ∈

⋂
Si. We then have

PM,θ(y
n|xn) =

∏
G∈G

∏
(x,y)`G

P (Y = y|X ∈ G). (4)

4 Rule Set Learning as Probabilistic Model Selection

Exploiting the formulation of rule sets as probabilistic models, we define the task
of learning a rule set as a probabilistic model selection problem. Specifically, we
use the minimum description length (MDL) principle for model selection.

4.1 Normalized Maximum Likelihood Distributions for Rule Sets

The MDL principle is one of the best off-the-shelf model selection methods and
has been widely used in machine learning and data mining [10]. Although rooted
in information theory, it has been recently shown that MDL-based model selec-
tion can be regarded as an extension of Bayesian model selection [10].

The core idea of MDL-based model selection is to assign a single probability
distribution to the data given a rule set M , the so-called universal distribu-
tion denoted by PM (Y n|Xn = xn). Informally, PM (Y n|Xn = xn) should be a
representative of the rule set model—as a family of probability distributions—
{PM,θ(y

n|xn)}θ. The theoretically optimal “representative” is defined to be the
one that has minimax regret, i.e.,

arg min
PM

max
zn∈Y n

− log2 PM (Y n = zn|Xn = xn)−
(
− log2 Pθ̂(xn,zn)(Y

n = zn|Xn = xn)
)
.

(5)

We write the parameter estimator as θ̂(xn, zn) to emphasize that it depends on
the values of the target variables Y n. The unique solution to PM of Equation 5
is the so-called normalized maximum likelihood (NML) distribution:

PNML
M (Y n = yn|Xn = xn) =

PM,θ̂(xn,yn)(Y
n = yn|Xn = xn)∑

zn∈Y n PM,θ̂(xn,zn)(Y
n = zn|Xn = xn)

. (6)

That is, we “normalize” the distribution PM,θ̂(.) to make it a proper probability
distribution, which requires the sum of all possible values of Y n to be 1. Hence,
we have

∑
zn∈Y n PNML

M (Y n = zn|Xn = xn) = 1 [10].

4.2 Approximating the NML Distribution

A crucial difficulty in using the NML distribution in practice is the computation
of the normalizing term

∑
zn Pθ̂(xn,zn)(Y

n = zn|Xn = xn). Efficient algorithms

8 Yang, L and van Leeuwen, M.

almost only exist for exponential family models [10], hence we approximate the
term by the product of the normalizing terms for the individual rules.

NML distribution for a single rule. For an individual rule S ∈ M , we
write all instances covered by S as (xS , yS), in which yS can be regarded as a
realization of the random vector Y S = (Y, ..., Y), and Y S takes values in Y |S|,
the |S|-ary Cartesian power of Y . Then, the NML distribution for PS(Y) equals

PNML
S (Y S = yS |XS = xS) =

P̂S(Y S = yS |XS = xS)∑
zS∈Y S P̂S(Y S = zS |XS = xS)

. (7)

Note that P̂S depends on the values of zS . As P̂S(Y) is a categorical distribution,
the normalizing term can be written as R(|S|, |Y |), a function of |S|—the rule’s
coverage—and |Y |—the number of unique values that Y can take [15]:

R(|S|, |Y |) =
∑

zS∈Y S

P̂S(Y S = zS |XS = xS), (8)

which can be efficiently calculated in sub-linear time [15].
The approximate NML distribution. We propose to approximate the

normalizing term of PNML
M as the product of the normalizing terms of PNML

S

for all S ∈ M , and propose the approximate-NML distribution as our model
selection criterion:

P apprNML
M (Y n = yn|Xn = xn) =

PM,θ̂(xn,yn)(Y
n = yn|Xn = xn)∏

S∈M R(|S|, |Y |)
. (9)

Note that the sum over all S ∈ M does include the “else rule” S0. Finally, we
can formally define the optimal rule set M∗ as

M∗ = arg max
M

P apprNML
M (Y n = yn|Xn = xn). (10)

The rationale of using the approximate-NML distribution is as follows. First, it
is equal to the NML distribution for a rule set without any overlap, as follows.

Proposition 1. Given a rule set M in which for any Si, Sj ∈M , Si ∩ Sj = ∅,
then PNML

M (Y n = yn|Xn = xn) = P apprNML
M (Y n = yn|Xn = xn).

Second, when overlaps exist in M , approximate-NML puts a small extra
penalty on overlaps, which is desirable to trade-off overlap with goodness-of-fit:
when we sum over all instances in each rule S ∈ M , the instances in overlaps
are “repeatedly counted”. Third, approximate-NML behaves like the Bayesian
information criterion (BIC) asymptotically, which follows from the next propo-
sition.

Proposition 2. Assume M contains K rules in total, including the else rule,

and we have n instances. Then log
(∏

S∈M R(|S|, |Y |)
)

= K(|Y |−1)
2 log n+O(1),

where O(1) is bounded by a constant w.r.t. to n.

We defer the proofs of the two propositions to the Supplementary Material.

Truly Unordered Probabilistic Rule Sets for Multi-class Classification 9

5 Learning Truly Unordered Rule Sets from Data

As our MDL-based model selection criterion unfortunately does not enable effi-
cient search for the optimal model, we resort to heuristics. We first address the
challenge of evaluating incomplete rule sets, after which we explain how to grow
individual rules in two phases and implement this with beam search. Finally, we
show how everything comes together to iteratively learn rule sets from data.

5.1 Evaluating Incomplete Rule Sets with a Surrogate Score

When iteratively searching for the next “best” rule, defining “best” is far from
trivial: rule coverage and precision are contradicting factors and typical scores
therefore combine those two factors in some—more or less—arbitrary way.

This issue is further aggravated by the iterative rule learning process, in
which the intermediate rule set is evaluated as an incomplete rule set in each
step. Evaluating incomplete rule sets is a challenging task [7], mainly because
any good score needs to simultaneously consider two aspects: 1) how well do all
the rules currently in the rule set describe the already covered instances; and 2)
what is the “potential” for the uncovered instances, in the sense that how well
can those uncovered instances be described by rules that might be added later?

Without knowing the rules that will be added later, we cannot compute
the NML-based criterion for the complete rule set. Yet, we should take into
account the potential of the uncovered instances. We propose to approximate
the latter using a surrogate score, which we obtain by fitting a decision tree on
the uncovered instances and using the leafs of the resulting tree as a surrogate
for “future” rules. Formally, we define the tree-based surrogate score as

LT (M) = P apprNML
M⊕T (Y n = yn|Xn = xn), (11)

where M⊕T denotes the surrogate rule set obtained by converting the branches
of T to rules and appending those to M (parameters are estimated as usual).

Although the branches of the decision tree learned from the currently uncov-
ered instances may be different from the rules that will later be added to the rule
set, using the tree-based surrogate score will make it easier to gradually grow
good rule sets. We use decision trees because they are quick to learn and use,
and the correspondence of branches to rules makes using them straightforward.
We will empirically study the effects of the surrogate score on the predictive
performance of rule sets in Section 6.

5.2 Two-phase Rule Growth

To avoid having to traverse all possible rules when searching for the rule to add
to an incomplete rule set, we resort to a common heuristic: we start with an
empty rule and gradually refine it by adding literals—also referred to as growing
a rule [8]. In contrast to existing methods, we propose a two-phase method.

10 Yang, L and van Leeuwen, M.

0.0

0.5

1.0

1.5

2.0

0.0 0.5 1.0 1.5 2.0

X1

X
2

Y

0

1

0.0

0.5

1.0

1.5

2.0

0.0 0.5 1.0 1.5 2.0

X1

X
2

Y

0

1

Fig. 1. (Left) Simulated data with two overlapping rules: S1 : X1 < 0.5 (outlined in
black) and S2 : 0.5 < X2 < 1 (purple). (Right) S2 has grown to 0.5 < X2 < 1 ∧X1 <
1.8, which changes P (Y |X ∈ S2) and resolves the problematic overlap.

0.0

0.5

1.0

1.5

2.0

0.0 0.5 1.0 1.5 2.0

X1

X
2

Y

0

1

0.0

0.5

1.0

1.5

2.0

0.0 0.5 1.0 1.5 2.0

X1

X
2

Y

0

1

Fig. 2. (Left) Simulated data with a rule set containing two rules (black outlines).
(Right) Growing a rule to describe the bottom-right instances will create conflicts with
existing rules. I.e., adding either X1 > 1 (vertical purple line) or X2 < 0.8 (horizontal
purple line) would create a huge overlap that deteriorates the surrogate score (Eq. 11).

Motivation. A rule can only improve the surrogate score—and thus be
added to the rule set—if it achieves two goals: 1) it should improve the like-
lihood of currently uncovered instances (penalized by the approximate-NML
normalizing term); and 2) it should not deteriorate the goodness-of-fit of the
rule set by creating “bad” overlaps. These goals can be conflicting though, for
two reasons.

First, it is not necessarily bad to have overlaps between a rule being grown
and the current rule set, because the rule and its probability estimates for the
target variable may still change. For example, consider the left plot of Figure 1.
If the current rule set consists of S1 (indicated in black), then adding S2 (in
purple) would be problematic: this would strongly deteriorate the likelihood of
the instances covered by both rules. However, as we further grow S2, as shown
in the right plot, we get P (Y |S1) = P (Y |S2) and the problem is solved.

Second, rules already in the rule set may become obstacles to growing a new
rule. For example, consider the data and rule set with two rules (in black) in
Figure 2. If we want to grow a rule that covers the bottom-right instances, the
existing rules form a blockade: the right plot shows how adding either X1 > 1

Truly Unordered Probabilistic Rule Sets for Multi-class Classification 11

Algorithm 1: Find Next Rule Ignoring Overlaps

Input: rule set M , data (xn, yn)
Output: A beam that contains the w best rules

1 RULE ← ∅; Beam ← [RULE] // Initialize the empty rule and

beam

2 BeamList ← Beam // Record all the beams in the beam search

3 while length(Beam) 6= 0 do
4 candidates ← [] // initialized to store all possible

refinements

5 for RULE ∈ Beam do
6 Rs ← [Append L to RULE for L ∈ all possible literals]
7 candidates.extend(Rs)

8 Beam ← the w rules in candidates that have 1) the highest positive
gunc(), and 2) coverage diversity > α // w is the beam width

9 if length(Beam) 6= 0 then
10 BeamList.extend(Beam) // extend the BeamList as an

array

11 for Rule ∈ BeamList do
12 Beam ← w rules in BeamList with best LT (M ⊕ Sunc)
13 return Beam

or X2 < 0.8 to the empty rule (in purple) would create a large overlap with the
existing rules, with significantly different probability estimates.

Therefore, instead of navigating towards the two goals simultaneously, we
propose to grow the next rule in two phases: 1) grow the rule as if the instances
covered by the (incomplete) rule set are excluded; 2) further grow the rule to
eliminate potentially “bad” overlaps, to further optimize the tree-based score.

Method. Given a rule S, define Sunc as its uncovered “counterpart”, which
covers all instances in S not covered by M , i.e., Sunc = S \ ∪{Si ∈ M}. Then,
given M , the search for the next best rule that optimizes the surrogate tree-based
score is divided into two phases. First, we aim to find the m rules for which the
uncovered counterparts have the highest surrogate scores, defined as

LT (M ⊕ Sunc) = P apprNML
M⊕Sunc⊕T (Y n = yn|Xn = xn), (12)

where M ⊕ Sunc ⊕ T denotes M appended with Sunc and all branches of T .
Here, m is a user-specified hyperparameter that controls the number of candidate
rules that are selected for further refinement in the second phase. In the second
phase, we further grow each of these m rules to search for the best one rule that
optimizes

LT (M ⊕ S) = P apprNML
M⊕S⊕T (Y n = yn|Xn = xn). (13)

Given a rule S and its counterpart Sunc, the score of Sunc is an upper-bound
on the score of S: if S can be further refined to cover exactly what Sunc covers, we

12 Yang, L and van Leeuwen, M.

can obtain LT (M⊕Sunc) = LT (M⊕Sunc). This is often not possible in practice
though, and we therefore generate m candidates in the first phase (instead of 1).

5.3 Beam Search for Two-phase Rule Growth

In both phases we aim for growing a rule that optimizes the tree-based score
(Equation 11); the difference is that we ignore the already covered instances
in the first phase. To avoid growing rules too greedily, i.e., adding literals that
quickly reduce the coverage of the rule, we use a heuristic that is based on the
NML distribution of a single rule and motivated by Foil’s information gain [4].

Phase 1: rule growth ignoring covered instances. We propose the
NML-gain to optimize LT (M ⊕Sunc): given two rules S and Q, where we obtain
S by adding one literal to Q, we define the NML-gain as gunc(S,Q):

gunc(S,Q) =

(
PNML
Sunc

(ySunc |xSunc)

|Sunc|
−
PNML
Qunc

(yQunc |xQunc)

|Qunc|

)
|Sunc| (14)

=

(
P̂Sunc

(ySunc |xSunc)

R(|Sunc|, |Y |) |Sunc|
− P̂Qunc

(yQunc |xQunc)

R(|Qunc|, |Y |) |Qunc|

)
|Sunc|, (15)

which we use as the navigation heuristic.
The advantage of having a tree-based score to evaluate rules, besides the

navigation heuristic (local score), is that we can adopt beam search, as outlined
in Algorithm 1. We start by initializing 1) the rule as an empty rule (a rule
without any condition), 2) the Beam containing that empty rule, and 3) the
BeamRecord to record the rules in the beam search process (Line 1-2). Then,
for each rule in the beam, we generate refined candidate rules by adding one
literal to it (Ln 5-7). Among all candidates, we select at most w rules with the
highest NML-based gain gunc, satisfying two constraints: 1) gunc > 0; and 2) for
each pair of these (at most) w rules, e.g., S and Q, their “coverage diversity”
|Sunc∩Qunc|
|Sunc∪Qunc| > α, where α is a user-specified parameter that controls the diversity

of the beam search [19]. We update the Beam with these (at most) w rules (Ln
8-10). We repeat the process until we can no longer grow any rule with positive
gunc based on all rules in Beam (Ln 3). Last, among the record of all Beams
we obtained during the process, we return the best w rules with the highest
tree-based score L(Sunc ∪M) (Ln 11-13).

Phase 2: rule growth including covered instances. We now optimize
L(M ⊕ S) and select a rule based on the candidates obtained in the previous
step. We first define a navigation heuristic: given two rules S and Q, where S is
obtained by adding one literal to Q, we define the NML-gain g(S,Q) as

g(S,Q) =

(
P̂S(ySunc |xSunc)

R(|Sunc|, |Y |) |Sunc|
− P̂Q(yQunc |xQunc)

R(|Qunc|, |Y |) |Qunc|

)
|Sunc|. (16)

Note that the difference between g(S,Q) and gunc(S,Q) is that they use a
different maximum likelihood estimator: P̂Q is the ML estimator based on all

instances in Q, while P̂Qunc
is based on all instances in Qunc.

Truly Unordered Probabilistic Rule Sets for Multi-class Classification 13

Algorithm 2: Find Rule Set

Input: training data (xn, yn)
Output: rule set M

1 M ← ∅; M record ← [M]

2 scores ← [P apprNML
M (yn|xn)] // Record P apprNML

M while growing

3 while True do
4 S∗ ← FindNextRule(M, (xn, yn)) // find the next best rule

S∗

5 if S∗ = ∅ or LT (M ⊕ S) = P apprNML
M⊕S∗ (yn|xn) then

6 Break

7 else
8 M ←M ⊕S∗; M record.append(M) // update and record M

9 scores.append(P apprNML
M (yn|xn))

10 return the rule set with the maximum score in M record

The algorithm is almost identical to Algorithm 1, with four small modifica-
tions: 1) the navigation heuristic is replaced by g(S,Q); 2) LT (M ⊕ S) is used
to select the best rule from the BeamRecord instead of LT (M ⊕ Sunc) ; and 3)
the coverage diversity is based on the rules itself instead of the counterparts; 4)
only the best rule is returned.

5.4 Iterative search for the rule set

Algorithm 2 outlines the proposed rule set learner. We start with an empty rule
set (Ln 1-2), then iteratively add the next best rule (Ln 3–9) until the stopping
criterion is met (Ln 5–6). That is, it stops when 1) the surrogate score equals
the ‘real’ model selection criterion (i.e., the model’s NML distribution), or 2) no
more rules with positive NML-gain can be found. We record the ‘real’ criterion
when adding each rule to the set, and pick the one maximizing it (Ln 10).

6 Experiments

We demonstrate that Turs learns rule sets with competitive predictive per-
formance, and that using the surrogate score substantially improves the AUC
scores. Further, we demonstrate that Turs achieves model complexities compa-
rable to other rule set methods for multi-class targets.

We here discuss the most important parts of the experiment setup; for com-
pleteness, additional information can be found in the Supplementary Material2.

Decision trees for surrogate score. We use CART [1] to learn the trees
for the surrogate score. For efficiency and robustness, we do not use any post-
pruning for the decision trees but only set a minimum sample size for the leafs.

2 The source code is available at https://github.com/ylincen/TURS

14 Yang, L and van Leeuwen, M.

Beam width and coverage diversity. We set the coverage diversity α =
0.05, and beam width w = 5. With the coverage diversity as a constraint, we
found that w ∈ {5, 10, 20} all give similar results. Due to the limited space, we
leave a formal sensitivity analysis of α as future work.

Benchmark datasets and competitor algorithms. We test on 13 UCI
benchmark datasets (shown in Table 1), and compare against the following meth-
ods: 1) unordered CN2 [2], the one-versus-rest rule sets method without implicit
order among rules; 2) DRS [24], a representative multi-class rule set learning
method; 3) BRS [21], the Bayesian rule set method for binary classification; 4)
RIPPER [4], the widely used one-versus-rest method with orders among class
labels; 5) CLASSY [17], the probabilistic rule list methods using MDL-based
model selection; and 6) CART [1], the well-known decision tree method, with
post-pruning by cross-validation.

Table 1. ROC-AUC scores, averaged over 10 cross-validated folds. The rank (smaller
means better) is further averaged over all datasets. Among the four rule set methods,
Turs is substantially better on 7 out 13 datasets (AUC scores in bold).

data TURS CN2 DRS BRS CLASSY RIPPER CART TURS %overlap

anuran 0.998 1.000 0.858 — 0.983 0.999 0.996 0.395
avila 0.968 0.978 0.530 — 0.954 0.997 0.988 0.286
backnote 0.991 0.969 0.945 0.957 0.987 0.979 0.984 0.297
car 0.978 0.633 0.924 — 0.945 0.980 0.971 0.063
chess 0.995 0.536 0.823 0.945 0.991 0.995 0.994 0.264
contracept 0.667 0.597 0.544 — 0.630 0.626 0.600 0.074
diabetes 0.766 0.677 0.628 0.683 0.761 0.735 0.661 0.155
ionosphere 0.914 0.912 0.663 0.837 0.909 0.901 0.845 0.310
iris 0.964 0.985 0.935 — 0.960 0.973 0.965 0.018
magic 0.886 0.590 0.695 0.794 0.895 0.818 0.800 0.500
tic-tac-toe 0.972 0.826 0.971 0.976 0.983 0.954 0.847 0.231
waveform 0.902 0.775 0.588 — 0.833 0.884 0.803 0.528
wine 0.954 0.962 0.810 — 0.961 0.945 0.932 0.031

Avg Rank 2.231 4.077 5.846 5.462 3.154 3.000 4.231 /

6.1 Results

Predictive performance. We report the ROC-AUC scores in Table 1. For
multi-class classification, we report the weighted one-versus-rest AUC scores, as
was also used for evaluating the recently proposed CLASSY method [17].

Compared to non-probabilistic rule set methods—i.e., CN2, DRS, and BRS
(only for binary targets)—Turs is much better in terms of the mean rank of
its AUC scores. Specifically, it performs substantially better on about half of
the datasets (shown in bold). Besides, it is ranked better than rule list methods,
which produce explicitly ordered rules that may be difficult for domain experts to
comprehend and digest in practice. Next, CART attains AUCs generally inferior

Truly Unordered Probabilistic Rule Sets for Multi-class Classification 15

0.0

0.1

0.2

0.3

an
ur

an

av
ila

ba
ck

no
te

ca
r

ch
es

s

co
nt

ra
ce

pt

di
ab

et
es

io
no

sp
he

re

iri
s

m
ag

ic

tic
-t
ac

-t
oe

w
av

ef
or

m

w
in

e

A
U

C
im

p
ro

v
em

en
t

Fig. 3. Improvement in AUC by enabling the surrogate score for Turs.

to Turs, although it helps Turs to get a higher AUC as part of the surrogate
score.

Last, we report the percentage of instances covered by more than one rule for
Turs in Table 1, and we show that overlaps are common in the rule sets obtained
for different datasets. This empirically confirms that our way of formalizing rule
sets as probabilistic models, i.e., treating overlaps as uncertainty and exception,
can indeed lead to improved predictive performance, as the overlapping rules are
a non-negligible part of the model learned from data and hence indeed play a
role.

Effects of the surrogate score. Figure 3 shows the difference in AUC
obtained by our method with and without using the surrogate score (i.e., without
surrogate score means replacing it with the final model selection criterion). We
conclude that the surrogate score has a substantial effect on learning better
rule sets, except for three “simple” datasets, of which the sample sizes and the
number of variables are small, as shown in Table 2 (Left).

Model complexity. Finally, we compare the ‘model complexity’ of the rule
sets for all methods. As this is hard to quantify in a unified manner, as a proxy
we report the total number of literals in all rules in a rule set, averaged over
10-fold cross-validation (the same as used for the results reported in Table 1).

We show that among all rule set methods (TURS, CN2, DRS, BRS), Turs
has better average ranks than both CN2 and DRS. Although BRS learns very
small rule sets, it is only applicable to binary targets and its low model complex-
ity also brings worse AUC scores than Turs. Further, although rule list methods
(CLASSY, RIPPER) generally have fewer literals than rule sets methods, this
does not make rule lists easy to interpret, as every rule depends on all previ-
ous rules. Last, we empirically confirm that tree-based method CART produces
much larger rule sets.

7 Conclusion

We formalized the problem of learning truly unordered probabilistic rule sets as
a model selection task. We also proposed a novel, tree-based surrogate score for

16 Yang, L and van Leeuwen, M.

Table 2. Left: The sample sizes and number of features of datasets. Right: total number
of literals, i.e., average rule lengths × number of rules in the set, averaged over 10-fold
cross-validation. The rank is averaged over all datasets, for rule sets methods only.

#instances #features data TURS CN2 DRS BRS CLASSY RIPPER CART

1372 5 backnote 42 41 55 22 22 16 94
1473 10 contracept 75 275 73 — 14 14 6241
768 9 diabetes 55 152 131 10 10 6 827
150 5 iris 7 9 23 — 3 3 9
958 10 tic-tac-toe 86 90 108 24 27 60 816
178 14 wine 10 6 134 — 6 5 15
1728 7 car 211 163 325 — 92 111 718
7195 24 anuran 74 37 407 — 49 7 96
3196 37 chess 299 316 482 21 37 44 355
351 35 ionosphere 50 30 261 14 6 5 101
5000 22 waveform 707 802 60 — 139 115 3928
20867 11 avila 890 1296 179 — 988 574 8145
19020 11 magic 1321 2238 48 23 256 69 22566

Avg Rank 2.15 2.46 2.77 1.00 — — —

evaluating incomplete rule sets. Building upon this, we developed a two-phase
heuristic algorithm that learns rule set models that were empirically shown to
be accurate in comparison to competing methods.

For future work, we will study the practical use of our method with a case
study in the health care domain. This involves investigating how well our method
scales to larger datasets. Furthermore, a user study will be performed to investi-
gate whether, and in what degree, the domain experts find the truly unordered
property of rule sets obtained by our method helps them comprehend the rules
better in practice, in comparison to rule lists/sets with explicit or implicit orders.

Acknowledgements. We are grateful for the very inspiring feedback from
the anonymous reviewers. This work is part of the research programme ‘Human-
Guided Data Science by Interactive Model Selection’ with project number 612.001.804,
which is (partly) financed by the Dutch Research Council (NWO).

References

1. Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and regression
trees. CRC press (1984)

2. Clark, P., Boswell, R.: Rule induction with cn2: Some recent improvements. In:
European Working Session on Learning. pp. 151–163. Springer (1991)

3. Clark, P., Niblett, T.: The cn2 induction algorithm. Machine learning 3(4), 261–283
(1989)

4. Cohen, W.W.: Fast effective rule induction. In: Machine learning proceedings 1995,
pp. 115–123. Elsevier (1995)

5. Dash, S., Gunluk, O., Wei, D.: Boolean decision rules via column generation. Ad-
vances in Neural Information Processing Systems 31, 4655–4665 (2018)

Truly Unordered Probabilistic Rule Sets for Multi-class Classification 17

6. Frank, E., Witten, I.H.: Generating accurate rule sets without global optimization
(1998)

7. Fürnkranz, J., Flach, P.A.: Roc ‘n’rule learning—towards a better understanding
of covering algorithms. Machine learning 58(1), 39–77 (2005)

8. Fürnkranz, J., Gamberger, D., Lavrač, N.: Foundations of rule learning. Springer
Science & Business Media (2012)

9. Gay, D., Boullé, M.: A bayesian approach for classification rule mining in quantita-
tive databases. In: Joint European Conference on Machine Learning and Knowledge
Discovery in Databases. pp. 243–259. Springer (2012)

10. Grünwald, P., Roos, T.: Minimum description length revisited. International jour-
nal of mathematics for industry 11(01), 1930001 (2019)

11. Hühn, J., Hüllermeier, E.: Furia: an algorithm for unordered fuzzy rule induction.
Data Mining and Knowledge Discovery 19(3), 293–319 (2009)

12. Lakkaraju, H., Bach, S.H., Leskovec, J.: Interpretable decision sets: A joint frame-
work for description and prediction. In: Proceedings of the 22nd ACM SIGKDD.
pp. 1675–1684 (2016)

13. Liu, B., Hsu, W., Ma, Y., et al.: Integrating classification and association rule
mining. In: KDD. vol. 98, pp. 80–86 (1998)

14. Molnar, C.: Interpretable machine learning. Lulu. com (2020)
15. Mononen, T., Myllymäki, P.: Computing the multinomial stochastic complexity in

sub-linear time. In: PGM08. pp. 209–216 (2008)
16. Murdoch, W.J., Singh, C., Kumbier, K., Abbasi-Asl, R., Yu, B.: Inter-

pretable machine learning: definitions, methods, and applications. arXiv preprint
arXiv:1901.04592 (2019)

17. Proença, H.M., van Leeuwen, M.: Interpretable multiclass classification by mdl-
based rule lists. Information Sciences 512, 1372–1393 (2020)

18. Quinlan, J.R.: C4. 5: programs for machine learning. Elsevier (2014)
19. Van Leeuwen, M., Knobbe, A.: Diverse subgroup set discovery. Data Mining and

Knowledge Discovery 25(2), 208–242 (2012)
20. Veloso, A., Meira, W., Zaki, M.J.: Lazy associative classification. In: Sixth Inter-

national Conference on Data Mining (ICDM’06). pp. 645–654. IEEE (2006)
21. Wang, T., Rudin, C., Doshi-Velez, F., Liu, Y., Klampfl, E., MacNeille, P.: A

bayesian framework for learning rule sets for interpretable classification. The Jour-
nal of Machine Learning Research 18(1) (2017)

22. Yang, F., He, K., Yang, L., Du, H., Yang, J., Yang, B., Sun, L.: Learning in-
terpretable decision rule sets: A submodular optimization approach. Advances in
Neural Information Processing Systems 34 (2021)

23. Yang, H., Rudin, C., Seltzer, M.: Scalable bayesian rule lists. In: International
Conference on Machine Learning. pp. 3921–3930. PMLR (2017)

24. Zhang, G., Gionis, A.: Diverse rule sets. In: Proceedings of the 26th ACM SIGKDD.
pp. 1532–1541 (2020)

