
Is this bug severe? A text-cum-graph
based model for bug severity prediction

Rima Hazra1,2 �, Arpit Dwivedi1,2, and Animesh Mukherjee1,3

1 Indian Institute of Technology Kharagpur, India
2 {to_rima, arpitdwivedi}@iitkgp.ac.in

3 {animeshm}@cse.iitkgp.ac.in

Abstract. Repositories of large software systems have become common-
place. This massive expansion has resulted in the emergence of various
problems in these software platforms including identification of (i) bug-
prone packages, (ii) critical bugs, and (iii) severity of bugs. One of the
important goals would be to mine these bugs and recommend them to
the developers to resolve them. The first step to this is that one has to
accurately detect the extent of severity of the bugs. In this paper, we
take up this task of predicting the severity of bugs in the near future.
Contextualized neural models built on the text description of a bug and
the user comments about the bug help to achieve reasonably good per-
formance. Further information on how the bugs are related to each other
in terms of the ways they affect packages can be summarised in the form
of a graph and used along with the text to get additional benefits.

1 Introduction

Large software systems have become increasingly commonplace. As these repos-
itories grow, they become more and more complex. Malfunctions (aka bugs) in
such systems need to be tackled in a timely fashion. Such bugs can be reported
by the end-users (who are using the service), the developers or the testers. Since
these bugs need to be attended in a pipelined fashion, an important step is to
understand and prioritize the bug reports as per their severity. For instance, the
security related bug reports should possibly get more priority than any other
types of reports. Here, the term “severity" corresponds to the important bugs.
The importance can be of security, privacy, affecting users etc. Though the actual
definition of "severity" and "priority" from a business perspective is different,
the term "severity" has been used here to represent the critical bugs. Since the
number of bugs in a large software system could be in millions, it is difficult for
the developers to manually go through the list of bug reports and identify the
most important bug from that list. Not only is this a very tedious task but also
is prone to mistakes. Thus automatic methods to predict the severity of a bug
is very crucial. Such models can predict the bugs that are going to soon become
severe based on certain early indicators like the description and the comments
about the bug plus the number of packages that it already affects.

2 Hazra et al.

Bug severity prediction is a task of predicting the severity/impact of each
bug from a huge list of bugs. Bug severity prediction task has been performed
on many software platforms such as mozilla4, eclipse5, GCC6 etc. by past re-
searchers [1–4]. Most earlier models for bug severity detection assumes it to be
a classification problem whereby the task is to predict one of the severity states
– critical, major, normal, minor, trivial, enhancement. None of the datasets con-
tains actual parameter based scores of the bugs. The other issue is that none of
these models leverage the usefulness of both text and graph information jointly.
Even while the state of a bug is predicted by earlier models, there might still
be many bugs that need to be manually sorted within each class. Hence in this
paper, we present a regression model that generates the rank of each bug in the
list, allowing the developers to set their priorities accurately. To this purpose,
we curate a new dataset consisting of bugs mapped to the Ubuntu packages
that affect those packages over time. This new dataset allows us to perform the
experiments in the regression setup. Further, unlike earlier models, we use so-
phisticated neural architectures that suitably blend text and graph information
to harvest the benefits from both of these information sources.
Our contributions and results —
A new dataset : We curate a new dataset 7 consisting of ∼280K bugs along
with their meta data (e.g., the textual description of the bug, etc.). Further the
ground-truth severity scores of these bugs have been collected in two different
time points to facilitate the prediction experiments. In addition, we have also
curated the list of packages affected by these bugs over time.
Bug severity prediction : As noted earlier we perform the experiments in
the regression setup. In particular, we develop different neural models based on
the text obtained from the bug description and user/developer/maintainer com-
ments. We also use graph information in the form of how the bugs are related
to each other in terms of the packages they co-affect. This is one of the most
unique points of our approach. Of particular interest is the observation that
the use of the text-cum-graph based models outperform the text based models
in low training data settings. A summary of the key results are as follows –
with 70% training data the most competing text based method Sbert outper-
forms the text-cum-graph based methods like Gat and Gcn. However, in this
setting GraphSage performs the best. For the low data setting (≤ 25% train-
ing data), the text-cum-graph based models largely outperform the purely text
based models. Notably, for 5% training data, while Sbert achieves an MAE,
MSE and MAPE of 1.178, 2.268 and 0.1778 respectively while Gat reports an
MAE, MSE and MAPE of 0.849, 1.415 and 0.1101 respectively.

4 https://bugzilla.mozilla.org/home
5 https://bugs.eclipse.org/bugs/
6 https://gcc.gnu.org/bugzilla/
7 https://doi.org/10.5281/zenodo.5554974

Is this bug severe? A text-cum-graph based model for bug severity prediction 3

2 Related Work

Due to the large-scale of software project, many significant problems require au-
tomated systems. Some of the major problems of large-scale software systems
include identifying high impact bugs (security bug reports), recommending ap-
propriate developers to packages (/modules), identifying bug-prone packages,
retrieving duplicate bugs, predicting high priority bugs, predicting severe bugs.
Most of these problems were/are handled manually by developers/maintainers
in the past, but as the data increases, the automated system is the need of the
hour. Some of these problems have been studied for a long time. Researchers
have used various metadata, textual information, underlying graph structures
to build systems that can solve certain problems. There are very few datasets
available for each of the problems. In this section, first, we will discuss the
datasets available, then we briefly discuss the various earlier proposed methods
into two parts – text based methods and graph based methods. For high impact
bug reports (security bug prediction), there are four datasets – Ambari, Camel,
Derby, and Wicket had been first manually labelled by [5] and then further re-
labelled (only mislabelled data) by [6,7]. Two large scale projects – Chromium,
and OpenStack datasets8 were constructed by Wu et al. [6]. In [2], the authors
collected bug reports and their severity levels from GCC, OpenOffice, Eclipse,
NetBeans, and Mozilla for bug severity prediction. For predicting the severity of
bug reports, Ramay et al. [8] used the bug reports of seven open-source prod-
ucts – Platform, CDT, JDT, Core, Firefox, Thunderbird, and Bugzilla from the
repository created by [9]. So, the datasets available for severity prediction are
mostly around these open-source projects, and the severity has only the label but
not the scores. For most of the problems [3, 4, 7], researchers have used textual
information such as title, descriptions to solve problems like bug severity predic-
tion. In different papers [3,7,8], authors have used TF-IDF, word2vec [10], glove
embeddings, doc2vec, BM25 to represent the text. The bug severity prediction
is tackled as a classification problem in earlier works [3,4,11]. Authors have used
various classification algorithms like SVM, logistic regression, random forest and
XGboost to solve the problem. These studies have been performed on different
platforms like Mozilla, eclipse, GCC etc. In [2], the authors proposed a method
based on logistic regression to predict the severity of bugs. They used data from
all the above three platforms for their experiments. Ramay et al. [8] proposed a
deep learning approach to predict the severity of software bugs based on the text
present in the bug report. Umer et al [1] proposed an emotion-based approach to
predict the priority of bug reports. There is very little research on the utility of
graphs in the software domain to solve major software system problems. In [12],
the authors studied in detail the problem of bug urgency ranking and developer
recommendation with the help of underlying graph structures. The authors cu-
rated a dataset from the Ubuntu platform for their experiments and developed
various machine learning models for the ranking and recommendation problems.
Our work is unique in two different ways. The first and possibly simple point of

8 https://github.com/wuxiaoxue/cve-assisted

4 Hazra et al.

Table 1: Released metadata of a bug.
Field Information
Bug Id 1663552
Reported On mysql-5.7
Description Hi, on one of our servers we noticed that under certain conditions mysql-

server can be caused to go berserk, i.e. run with 400% CPU load, spit out
extrem tons of log messages and denial it’s work completely when contacted
by a client, that is not (!) authorized to connect...

Comments [2017-02-10 20:37:45 UTC] Thanks for the bug user; I’m marking this
public so that administrators can more quickly learn that using tcpwrap-
pers for access control has the potential ...
[2017-03-06 11:19:44 UTC] user, could you report the package version
number of mysql-5.7 in which you are seeing this please? ...
[2017-03-06 23:22:02 UTC] user, I did not keep the virtual machine.
On a host where the problem occured first we have ...

Affected packages [10-02-2017]mysql-5.7
[30-03-2017] mysql server

Bug heat score 16

difference is that we formulate the problem in a regression setup and curate a
new dataset for this purpose. The second and the most unique point is that we
propose a novel graph formulation of the problem that allows us to do reasonably
good predictions even when very low training data points are available.

3 Dataset

We collect ∼280K bug reports related to Ubuntu repositories reported within the
time span of 2004 to 2019. These bug reports are collected from the launchpad9

bug tracking system. Each bug page consists of various meta information such
as the title, the description, the name of the bug reporter, reporting timestamp,
comments with timestamp, activity log10, packages affected by the bug with
timestamp and the bug heat 11 (or severity). Bug description consists of textual
information written by the bug reporter. Given a bug, activity log keeps track
of each and every activity that are made on the bug. ‘Affected’ packages are
the packages that were affected by the given bug at a given time point. The
bug heat is the accumulated score based on factors like privacy issue, security
issue, duplicate nature, affected users and subscribers. This bug heat score is a
representative of the severity/urgency of a bug. The bug heat calculation score
is given in Table 2. An example of a bug entry is given in Table 1.

High bug heat represents a more severe bug. In our experiment, we have
considered only those bugs which have at least one comment. We have collected
9 https://launchpad.net/

10 https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1945590/+activity
11 https://bugs.launchpad.net/+help-bugs/bug-heat.html

Is this bug severe? A text-cum-graph based model for bug severity prediction 5

Table 2: Bug heat score calculation strategy
Attribute Calculation
Private adds 150 points
Security issue adds 250 points
Duplicates 6 points per duplicate bug
Affected users 4 points per affected user
Subscribers 12 2 points per subscriber

Table 3: Dataset statistics.
Basic information Count
Total number of bugs 273,544
Average number of comments 5.241
Average number of words in description 80.93
Maximum number of words in description 4967
Average number of words in comments 10.959
Maximum number of words in comments 436
Average number of affected packages 1.28

the bug heat of the bugs at two different time points – in November 2019 and
again in November 2020. Table 3 notes the basic statistics of the data collected.
In Figure 3, we show the distribution of bugs having a particular bug heat value.
The distribution is highly skewed with most bugs having low severity and a few
bugs with very high severity.

Bug-package network: From our dataset, we can conceive a bipartite net-
work where one set contains the list of bugs (B) and the other set contains the
list of packages (P). A bug b ∈ B can have a directed edge to a package p ∈ P if
the bug b affects the package p. An example of such a bipartite network shown
in Figure 1. Given a bug, affected packages are added typically along with a
timestamp. However, in a few cases, this timestamp is not available. In such
cases we replace the unavailable timestamp with the time of the bug creation
assuming that the package is being affected since the creation of the bug report.
Degree distribution: In Figure 4, we illustrate the distribution of bugs affecting
the different number of packages while in Figure 5 we show the distribution of
packages affected by the different number of bugs. Both these distributions ex-
hibit a scale-free behaviour.

Bug-bug network: From the bug-package bipartite network we construct
an one-mode projection, i.e., a bug-bug network where B is the set of nodes in
this network and two nodes bi and bj are connected if they co-affect a package.
Figure 2 shows the corresponding of bug-bug network constructed from Figure 1.
For instance, in this figure bug 45702 and 64371 are connected because both of
them affect the same package ‘mono’. We shall use the information from this
network for all our learning algorithms in the subsequent sections.

6 Hazra et al.

45702 64371 1022921 1566870 1298939

mono banshee rhythmbox

Fig. 1: Bipartite network between set of bugs
and set of packages. B ={45702, 64371, 1022921,
1566870 and 1298939}. P ={‘mono’, ‘banshee’,
‘rhythmbox’} are the affected packages.

45702

643711022921

1566870

1298939

Fig. 2: Bug-bug net-
work.

Fig. 3: Distribution of
bugs having a specific bug
heat.

Fig. 4: Distribution of
bugs affecting a given
number of packages.

Fig. 5: Distribution of
packages affected by a
given number of bugs.

To understand how the bug-bug network structure is correlated with the bug heat
ranks, we analyze a few known network properties of 100 top and bottom-ranked
bugs based on bug heat rank. First, we compute three node centric measures:
degree centrality, clustering coefficient, and PageRank. We have chosen these
measures because they will give us an idea of the neighbourhood quality (i.e.,
how dense it is and how many neighbours a node has). Given a node centrality
measure, we rerank the bugs based on these measures and compute the Spear-
man’s rank correlation with the actual 100 top-ranked and bottom-ranked bugs
based on bug heat. In Figure 6, we plot the correlation values for the top 100
and bottom 100 bugs for all three measures. In all cases we observe that the top
ranked bugs are more strongly correlated with the network properties. This gives
us the first indication that it is important to leverage the network structure in
order to efficiently perform bug severity prediction.

4 Bug severity prediction

Given a set of bugs (B), our objective is to predict their ranks based on the bug
heat score. In particular, as is usual in a regression setup we are interested to
predict the log(rank(bug-heat)). We do not directly predict the bug heat since
the distribution is very skewed (see Figure 3). To begin with every bug is en-
coded as a combination of the text description and the user comments. Often,
the description of the bug contains additional information like stack traces, code

Is this bug severe? A text-cum-graph based model for bug severity prediction 7

Fig. 6: (a) Spearman’s rank correlation between the (a) degree centrality, (b)
clustering coefficient and (c) PageRank and bug heat ranks for top 100 ranked
bugs and bottom 100 ranked bugs based on bug heat.

fragments email ids and urls. We remove these pieces of information using some
simple heuristics.
Text based approach: In case of text based approach, we primarily use the
textual description and the user comments for a bug for the purpose of predic-
tion.
Doc2Vec: Doc2Vec [13] algorithm is used to generate representation for a doc-
ument. It follows the same architecture as word2vec [10] along with a new vec-
tor called paragraph id. This paragraph id is used to represent each document
uniquely. While training, along with the word vectors, a document vector is also
trained and at the end it generates the representation of documents. We train
the doc2vec [13] model on our corpus. We construct 100 dimension embeddings
for the descriptions and the comments separately. Finally, a bug is a concatena-
tion of these two vectors. This is passed through an Mlp to obtain the regression
scores. The Mlp has one hidden layer followed by the output layer and the ac-
tivation function is RelU.
SBERT: SBERT [14] has the BERT [15] like architecture which can capture
better semantics in the sentence. It is the fine tuned BERT sentence embedding
model which can correctly capture the the semantic textual similarity (STS)
between a pair of sentences. We use the pretrained sentence BERT [14] model
(Sbert) to generate embeddings. For each bug, we pass the preprocessed de-
scription text and the comment text through the model and obtain separate
embeddings for each of these. We then concatenate these two embeddings and
pass it through the same Mlp model discussed earlier to obtain the regression
scores.
Graph based approaches:
GAT: Graph attention network (GAT) [16] algorithm can again be used for node
classification where the input features are linearly transformed to some output
features which is further followed by a self-attention layer on the nodes. This
self-attention mechanism captures the importance of one node on another. For

8 Hazra et al.

our purpose once again the bug-bug network is used as the input graph and each
node is initially encoded as a concatenated vector of the Sbert representations
of the bug description and the comments. Finally, the regression scores are once
again obtained using a linear layer and a RelU activation. Here again the model
is only shown the labels of the training nodes.
GCN: Graph convoluation network (Gcn) [17] is a transductive method for
node classification. For our purpose we have used the bug-bug network as the
input graph. To begin with each node is featurised as a concatenation of the
Sbert representations of the description and the comments. Finally, as earlier,
to obtain the regression scores, we pass the output features of the GCN layer to
a linear layer with RelU activation. Like before, we show the model only the
labels of the training nodes.
GRAPHSAGE: GraphSage [18] is a graph based algorithm for classifying
nodes. In this method, neighbourhood aggregation has been done using uni-
formly sampled neighbours and aggregating their features. In our case we use
the bug-bug network and feed it to GraphSage. The initial representation of
every bug (read node) is a concatenated vector of the Sbert embeddings of the
description and the comments. For the purpose of training we provide the label
of the nodes (i.e., their log(rank(bug-heat)) that are part of the training set only
(we shall discuss more about this in the following section on experimental setup).
We obtain the final predictions using a linear layer with RelU activation.

5 Experiments and results

Experimental setup
Training : In order to train the models, we consider all the bugs that have been
posted in between January 2017 – June 2017. We have considered only the bugs
which has at least one comment. This results in a total of 5835 bugs. Given a bug
in this time period, all comments posted about the bug in between January 2017
– June 2018 are considered to compute the comment based embedding. This en-
sures that each bug has at least one year span of comments for the computation
of the features. The ground truth bug heat scores that we use have been crawled
in November 2019. Out of the 5835 bugs obtained, we use different training set
sizes for our experiments ranging from 70% to 5%. The rest of the data is used
for validation in each case. For each of the training and the validation sets the
bugs selected are re-ranked within that set based on their heat scores.
Evaluation: In the test set, we consider all the bugs posted in between July 2018
– December 2018. Comments have been considered if it is posted in between
July 2018 – December 2019. This results in a total of 5302 bugs. Also, we have
considered only the bugs which has at least one comment. Once again this en-
sures that each bug has one year of commenting time. Here, we use ground truth
bug heat scores crawled in November 2020. The bugs in the test data are ranked
based on these scores. We used the same test data across all the methods.
Graph setup: While building the graph, we have considered only those packages
which were reported to be affected in time periods reported above. The graph

Is this bug severe? A text-cum-graph based model for bug severity prediction 9

setup is transductive, i.e., we consider all the bugs in the training and the test
data to construct the graph. Thus the graph consists of around 11137 nodes and
∼ 1205682 edges. However, the model is made to observe the ground truth ranks
of the nodes present in the training data only. The ground truth ranks for all
the other nodes are hidden from the model.
Evaluation metrics: In our experiments, we use three standard metrics to evalu-
ate all our models. These are MAE (mean absolute error), MSE (mean squared
error) and MAPE (mean average percentage error). Mean absolute error (MAE)
is calculated as the average of absolute difference between the true scores and
the predicted scores. Mean squared error (MSE) is calculated as the average of
the squared differences between true scores and predicted scores. Mean average
percentage error (MAPE) is calculated as the average of the absolute difference
between ground truth and predicted values expressed as a percentage of the
ground-truth value.
Hyperparameters – Text based approaches: In text based approaches, we
have run the models on 70% training data. Further, we choose the text based
model which performs best among all the text based models and compare it with
the graph based models.
Doc2Vec: In our experiment, the input feature is a concatenation of the 100
dimensional vector representations of the description and the comments. The hy-
perparameters of the Mlp for the regression task are set as follows. The learning
rate, ε are set to 5e− 4, 1e− 5 respectively. The batch size and weight decay are
set to 64 and 0.01 respectively. The number of neurons in hidden layer is 128
unit. We run the model for 20 epochs and saved the model where the current
validation loss is better than the current best validation loss.
SBERT: Here, we have used the pretrained Sbert model called ‘paraphrase-
mpnet-base-v2’. We have generated the embeddings for the description and com-
ments of each bug separately. The dimension for each embedding is 768. The two
embeddings are then concatenated to construct the feature. For 70% setup, the
Mlp learning rate, ε, batch size and weight decay are set to 5e − 3, 2e − 5, 64
and 0.3 respectively. We have used one hidden layer with 1024 unit neurons and
one output layer. For both the layers, we used RelU activation function. We
observed that Sbert performs better than Doc2Vec (see section 5). We therefore
use Sbert as the competing text-based baseline. Therefore we had to carry out
experiments on Sbert for other training data setup (50% - 5%). We use grid
search to obtain the best parameter for the different training setups. For a 50%
training setup, the learning rate is 1e − 3. The weight decay and ε remains the
same as that of the 70% training setup. The hidden layer and batch size remains
the same for all the setups, i.e., 1024, 2e − 5, and 64 respectively. The ε value
of 50% and 5% setups is the same as 70% setup. For 25% and 10% setups, the
ε value is 1e − 5. In the 25% and 5% training data setup, the learning rate is
4e−3. In the 50% and 10% training data setup, the learning rate is set to 1e−3.
For 25%, 10% and 5%, the value of weight decay is 0.01. The weight decay value
for the 50% setup is the same as the 70% setup.

10 Hazra et al.

Table 4: Results from the text based models for 70% training setup. Best results
are marked in boldface.

Methods Text based
MAE MSE MAPE

Doc2Vec 7.585 58.503 3.42e− 16

Sbert 1.081 1.56 0.1649

Results from text based approaches: The key results obtained from the
text-based models are noted in Table 4. The results show that the Sbert based
model outperforms the other models. Hence we have used this model to compare
the different graph-based approaches in the next section. The results of 50%-5%
data setup for the Sbert model are presented in Table 5.
Hyperparameters – Graph based approaches: In our graph based ap-
proaches, we perform the experiments for different proportions of training data:
70%, 50%, 25%, 10%, 5%. In each case, the rest of the data is used for validation.
GAT: In this experiment, we use Adam optimizer, MAE, as the loss function
and patience of early stopping at 15 in all the setups. We use grid search again
to obtain the best parameters. For 70% and 5% setup, the attention head size
is 32. For 25% and 10%, the size of the attention head is 64. In the case of
50% setup, the attention head size remains 16. For 70%, 50% and 5% training
data, the Gat layer sizes are 32, 16 and 32 respectively, and for other setups,
it remains at 64. The best learning rate for 70%, 25% and 10% training data
setup are 0.01. The best learning rate for 50% and 5% training data is 0.015,
respectively. The parameter in_dropout is 0.5 for 50% and 25% training setup,
respectively. For 70%, 10% and 5% training data, the in_dropouts are 0.9, 0.85
and 0.6 respectively. The attention dropout parameter is 0.1 for 10% training
setup. For other setups, it is 0.3. For all the setups, the activation function used
in Gat layer is elU.
GCN: For all the setup, we have used Adam optimizer, MAE as loss function,
patience is 15 for early stopping and elU activation for Gcn layer. We use grid
search to obtain the best parameters. For 70%, 25% and 5% setup, we have
set the learning rate at 0.01. For 50% and 10% setup, the learning rate is set
to 0.015 and 0.008, respectively. For all the setup except 5% setup, Gcn layer
size is kept at 64. For the 5% setup, the Gcn layer size is 32. For 70% and 5%
training setup, the dropout value is set at 0.85. For 25% and 10% training setup,
the dropout is set to 0.8. For 50% setup, the dropout is 0.9.
GRAPHSAGE: For all the setup, we use Adam optimizer, MAE as loss func-
tion and the early stopping patience at 15. Activation function used in Graph-
Sage layer is elU. In the last layer, we have used RelU activation function,
and bias is set to true. The batch size is set to 64. For each training proportion,
we use grid search to obtain the best parameter setting. For 70% setup, the size
of the GraphSage layer is 64, and for other setups, the size of the Graph-
Sage layer is 128. For 70% and 10%, the learning rate is 1e− 2. For 50%, 25%
and 5%, the learning rate is 15e−3. For 70% and 5% setup, the number of nodes

Is this bug severe? A text-cum-graph based model for bug severity prediction 11

Table 5: Results of the bug severity prediction using graph based methods. For
each node the initial feature is a concatenation of the Sbert embeddings of the
description and the comments. The best results are indicated in boldface and
second best are underlined.

Training data
Text based Graph based

Sbert Gat Gcn GraphSage
MAE MSE MAPE MAE MSE MAPE MAE MSE MAPE MAE MSE MAPE

70% 1.081 1.56 0.1649 1.151 1.722 0.1736 1.183 1.83 0.1804 1.148 1.796 0.1752
50% 0.908 1.19 0.1334 0.812 0.998 0.1131 0.831 1.038 0.1165 0.795 0.94 0.1129
25% 1.069 1.688 0.1622 0.757 1.11 0.1007 0.833 1.256 0.1148 1.062 1.436 0.1569
10% 1.282 2.565 0.2070 0.812 1.124 0.1096 1.034 1.885 0.1461 1.756 3.658 0.3001
5% 1.178 2.268 0.1778 0.849 1.415 0.1101 1.089 2.09 0.1532 2.242 5.721 0.4213

sampled in each GraphSage layer is 5. For 50%, 25% and 10% setup, the num-
ber of nodes sampled in GraphSage layer is 6. For 50% setup, the dropout in
GraphSage layer are 0.6 and for other setups the dropout in GraphSage layer
is 0.9.

Results from graph based approaches: Table 5 summarises the main
results of this section. We observe that for larger training data setup (70% and
50%), the text based model performs better than Gcn and Gat. However, in
this setting GraphSage performs the second best in terms of all the evaluation
metrics. For the low training data setup (5% – 25%), the graph based models
Gcn and Gat outperform the text based model. In fact, in this setup, Gat per-
forms the best in terms of all the evaluation metrics. This shows that enabling
self-attention on the neighbourhood of a bug in the bug-bug network could be
very beneficial for predicting bug severity when the number of training data
points are severely low.

6 Ablation study

In our experiments, we have used a concatenation of representations of both the
description and the comments. This section investigates the importance of each
of these separately for the text and graph-based methods. The results obtained
by using only the description are reported in Table 6. The results for both the
text-based and graph-based models obtained using only the comments are re-
ported in Table 7.
Only description: We execute the text-based model (Sbert) and graph-based
models (Gat , Gcn , GraphSage) on only the description feature. In both
types of models, we have used the text of the description as a feature. Further,
we compute the results for all the training data setups (70%-5%). We wanted to
observe whether one can obtain the additional support from graph information
even if (s)he uses only one feature (i.e., description in this case).
Observations: Out of all the setups, Sbert has performed slightly better than

12 Hazra et al.

Table 6: Ablation study: MAE, MSE and RMSE values are reported to com-
pare best text based methods with different graph based methods. Only de-
scription of the bugs are used to generate the embedding.

Training data
Text based Graph based

Sbert Gat Gcn GraphSage
MAE MSE MAPE MAE MSE MAPE MAE MSE MAPE MAE MSE MAPE

70% 1.035 1.474 0.1530 1.152 1.735 0.1738 1.194 1.931 0.1841 1.093 1.629 0.1635
50% 0.905 1.205 0.1294 0.821 1.03 0.114 0.85 1.081 0.1193 0.812 1.019 0.1125
25% 0.987 1.555 0.144 0.784 1.119 0.1049 0.934 1.465 0.1341 0.717 0.954 0.0949
10% 1.275 2.458 0.2082 0.892 1.607 0.1164 1.067 2.026 0.154 1.677 3.286 0.2782
5% 1.183 2.401 0.1731 0.87 1.54 0.1153 1.057 2.004 0.1531 2.213 5.566 0.412

Table 7: Ablation study: MAE, MSE and RMSE values are reported to com-
pare best text based methods with different graph based methods. Only com-
ments of the bugs are used to generate the embedding.

Training data
Text based Graph based

Sbert Gat Gcn GraphSage
MAE MSE MAPE MAE MSE MAPE MAE MSE MAPE MAE MSE MAPE

70% 0.958 1.298 0.1414 1.103 1.621 0.1651 1.195 1.89 0.1838 1.107 1.66 0.1660
50% 0.908 1.196 0.1337 0.802 0.984 0.1109 0.806 0.996 0.112 0.782 0.925 0.1113
25% 1.018 1.677 0.1537 0.743 1.044 0.0984 0.871 1.334 0.1226 1.081 1.489 0.1603
10% 1.431 3.35 0.2348 0.924 1.322 0.1305 1.122 2.128 0.1682 1.724 3.518 0.2916
5% 1.485 3.601 0.2618 1.004 1.809 0.1420 1.171 2.244 0.1794 2.205 5.531 0.4099

one of the graph-based models in the 70% setup. However, as the training data re-
duces, the performance of Sbert drops. For the 50% setup, GraphSage model
outperforms the other models, and Gat is the second best. However, the MAE
score difference between the best model (GraphSage) and the Sbert is neg-
ligible (∼ 0.09). For 25% setup, GraphSage is again the top performer and
Gat is the second best. The difference in MAE scores of Sbert and Graph-
Sage models now are pretty large (∼ 0.27). For the 10% setup, Gat model per-
forms better than other models. TheMAE score difference between Sbert and
Gat is as large as 0.38. For 5% setup, once again Gat performs better than
other models. Here the second-best model is Gcn. It is visible that if the train-
ing data is reduced, then the text-based model does not perform well as was also
observed in our original results (see Table 5). Nevertheless, the additional graph
structure helps the model to predict better in a low training data setup.

Only comments: Here we carry out the experiments using only one feature,
i.e., comments. Once again the idea is to verify whether the graph structure is
useful even when one of the feature types are available. We have taken the texts
of the comments in this experiment. We ran the experiments for all the text-
based and graph-based models. We perform these experiments for all the training
setups (70%-5% training data).
Observations: For 70% training setup, like in the previous experiment (subsec-

Is this bug severe? A text-cum-graph based model for bug severity prediction 13

Table 8: Outcomes of the error analysis. Results are only shown for the low data
setup to investigate the importance of the graph neighborhood.

Training data ∆Gat < ∆Sbert ∆Gat < ∆Sbert #nodes in training
(has neighbor in training)

25% 3485 (65.72%) 2609 (74.86%) 1458
10% 3712 (70.01%) 2359 (63.55%) 583
5% 3324 (62.69%) 1998 (60.10%) 291

tion 6), Sbert is performing well than other graph-based models. But theMAE
score difference between the Sbert and best performing graph model (Gat)
is quite less (∼ 0.145). For the 50% training setup, all the three graph mod-
els are performing better than the Sbert model. Out of three graph models,
GraphSage performed best (MAE 0.782), and Sbertis performs the worst
(MAE 0.908). For the 25% setup, the Gat model outperforms other mod-
els, and the MAE difference between the Sbertand Gatmodel is quite high
(∼ 0.275). Here, the GraphSage performs the worst, and Sbert performs
better than the GraphSagemodel. For 10% setup, again Gat model tops the
list and Gcn comes as second best. For 5% setup, Gat outperforms other mod-
els, and Gcn is the second in the list. Overall once again we observe that the
graph structure is always helpful whatever be the text feature especially in the
low data setting.

7 Error analysis

In this section, we will test our models for various cases and identify which models
fail when and why. First, we shall test the importance of the graph structure.
Second, we shall study some cases where Sbert fails, but Gat wins and vice
versa. From the description+comments results, we observe that for low data, the
GraphSage performs poorer than Gat (best) model. Hence we shall consider
some use cases to analyze this fact first.
Testing the importance of graph structure: We perform error analysis for
low training data setup (5%-25%) to understand the importance of the graph
structure. Among all the models, Gat performs better for low training data
setup. In order to carry out the analysis, given a model, we first calculate the
absolute difference (i.e., ∆) between the predicted rank and the true rank of
the bugs. Further, we compute the number of bugs where absolute difference
(∆Gat) in Gat is lesser (i.e., better) than (∆Sbert) in Sbert. The results
of this analysis are summarised in Table 8. As we can observe, for 5% data, in
62.69% of test cases, ∆Gat < ∆Sbert. Out of these, 60.10% of the test bugs
have a neighbor in the bug-bug network that was part of the training node of
Gat. Similar results hold for the other cases. This shows that the graph structure
indeed helps in improving the predicted ranks in low data settings.

Usecase: Gat wins Sbert fails: In Table 9, we present a few example test
bugs where the Gat model predicts a better rank value than the Sbert model.

14 Hazra et al.

Table 9: Few test examples where the Gat model predicts a nearer value to
the true rank compared to Sbert. In all these cases the instances have a lot of
neighbors present in training data.
Bug Id True rank Prediction Sbert Prediction Gat ∆Sbert ∆Gat #neighbors

(in training)
1799406 7.669 8.450 8.050 0.780 0.380 29
1792783 7.920 5.804 8.048 2.116 0.128 28
1798690 7.920 6.086 8.251 1.833 0.330 28
1788045 8.338 7.354 8.252 0.983 0.085 27

For this analysis, we use the prediction value from the models trained with 5%
training data. We have chosen 5% training data because, especially for low data,
the graph-based method outperforms the text-based model. For each of the test
bugs, we calculate the number of neighbours present in training set. We observe
that in case of test bugs with a large number of neighbours in the training set
for Gat predicts nearer ranks to the ground truth rank compared to Sbert . In
these examples, most of the test bugs have 27-29 neighbouring nodes in training
data (note: the total number of nodes in training data is 291).

Usecase: Sbert wins Gat fails: Converse to the data points in the pre-
vious section, here we find that there are a set of test points for which Gat fails
even in the low (i.e., 5%) training data setup, i.e., the ranks predicted by Gat are
further from the ground truth compared to Sbert. In all these cases we observe
that the number of nodes in the training set for each of these test points is 0 (see
Table 10). The absence of neighbours of these points in the training set does not
allow the Gat model to take the advantage of the graph structure and hence
the worse rank.

Table 10: Few test examples where the Sbert model predicts a nearer value to
the true rank compared to Gat. In all these cases the instances have 0 neighbors
present in training data.
Bug Id True rank Prediction Sbert Prediction Gat ∆Sbert ∆Gat #neighbors

(in training)
1797179 7.397 8.332 9.005 0.934 1.607 0
1788706 6.772 7.881 8.511 1.108 1.738 0
1810154 6.050 7.127 7.759 1.076 1.708 0
1791333 8.338 8.556 7.509 0.218 0.828 0

Usecase: Gat wins GraphSage fails: In Table 11, we list a few test
cases where the Gat wins but GraphSage fails for low data setup (5%). We
list those cases where there is a sufficient number of neighbours in training data,
but still, the performance of GraphSage is poor. The ∆Gat is much lesser
than the ∆GraphSage for all the cases. We pick up every instance and try to

Is this bug severe? A text-cum-graph based model for bug severity prediction 15

Table 11: Test examples where the Gat model predicts ranks closer to the
ground truth compared to the GraphSage model.
Bug Id True rank Prediction GraphSage Prediction Gat ∆GraphSage ∆Gat #neighbors

(in training)
1799406 7.669 5.609 8.050 2.060 0.380 29
1793137 8.338 5.564 8.055 2.773 0.282 28
1798690 7.920 5.614 8.251 2.305 0.330 28
1788045 8.338 5.619 8.252 2.718 0.085 27

understand the 1.5 hop neighbourhood structure. We focus on those neighbours
specifically who are present in the training set. So, for each test bug (say the
anchor node), we build a 1.5 neighbourhood (taking only those neighbours which
are present in the training data) graph. 1.5 neighbourhood graph contains the
anchor node and its neighbours and connection among themselves (i.e., anchor
to neighbours as well as among neighbours). We observe that the degree cen-
trality of the neighbours vary. Thus one can hypothesize that all the neighbours
(present in training set) are not equally important for the prediction of the rank
of the anchor node. In the Gat architecture, the model provides different at-
tention coefficients to different neighbours of each anchor node to compute the
representation of the node. Also, the feature aggregation has been done based
on the importance (attention coefficient) of immediate neighbours of the anchor
node. However, in case of the GraphSage model, a certain number of nodes
has been uniformly sampled from the set of neighbours. Further, the feature
aggregation for each anchor node is done based on the sampled neighbourhood.
Using the differences in the attention coefficients the Gat model possibly lever-
ages more information from the high degree neighbors in order to predict the
rank of the anchor node thus outperforming the GraphSage model which gives
uniform importance to all the neighbors of the anchor node.

8 Conclusion

In this paper, we presented a new dataset comprising bugs, its metadata and
ground truth severity scores (i.e., bug heat) from two time points. Further, we
collected the list of affected packages by a bug along with the timestamp. We
build regression models for bug severity prediction which is one of the well known
problems in the software community. We performed the experiments using two
type of models – (i) text based models, and (ii) graph based models. We observed
that the Sbert model performed better (/similar) for high training data (70%,
50%) setup than graph based models. However, for low training data setup, the
Gat model outperformed Sbert by a large margin. Error analysis shows that
the performance of Gat is due to the nodes in the training set of the model that
are in the neighbourhood of the bug-bug network of the test bugs. In future, we
would like to carry out the studies such as how the packages are being affected
temporally using our new dataset.

16 Hazra et al.

References

1. Q. Umer and H. Liu and Y. Sultan.: Emotion Based Automated Priority Prediction
for Bug Reports. IEEE Access, vol. 6, pp. 35743–35752 (2018).

2. Youshuai Tan and Sijie Xu and Zhaowei Wang and Tao Zhang and Zhou Xu and
Xiapu Luo.:Bug severity prediction using question-and-answer pairs from Stack
Overflow. Journal of Systems and Software, vol. 165, pp. 110567 (2020).

3. Arokiam, Jude and Bradbury, Jeremy S.:Automatically Predicting Bug Severity
Early in the Development Process. Proceedings of the ACM/IEEE 42nd Interna-
tional Conference on Software Engineering: New Ideas and Emerging Results, pp.
17–20 (2020).

4. Xiaoxue Wu and Wei Zheng and Xiang Chen and Yu Zhao and Tingting Yu and
Dejun Mu.: Improving high-impact bug report prediction with combination of in-
teractive machine learning and active learning. Information and Software Technol-
ogy, vol. 133, pp. 106530 (2021).

5. Ohira, Masao and Kashiwa, Yutaro and Yamatani, Yosuke and Yoshiyuki, Hayato
and Maeda, Yoshiya and Limsettho, Nachai and Fujino, Keisuke and Hata, Hideaki
and Ihara, Akinori and Matsumoto, Kenichi.: A Dataset of High Impact Bugs:
Manually-Classified Issue Reports. 2015 IEEE/ACM 12th Working Conference on
Mining Software Repositories, pp. 518-521 (2015).

6. Xiaoxue Wu and Wei Zheng and Xiang Chen and Fang Wang and Dejun Mu.:
CVE-assisted large-scale security bug report dataset construction method. Journal
of Systems and Software, vol. 160, pp. 110456 (2020).

7. Peters, Fayola and Tun, Thein Than and Yu, Yijun and Nuseibeh, Bashar.: Text
Filtering and Ranking for Security Bug Report Prediction. IEEE Transactions on
Software Engineering, vol. 45, pp. 615-631 (2019).

8. Ramay, Waheed Yousuf and Umer, Qasim and Yin, Xu Cheng and Zhu, Chao and
Illahi, Inam.: Deep Neural Network-Based Severity Prediction of Bug Reports.
IEEE Access, vol. 7, pp. 46846-46857 (2019).

9. Lamkanfi, Ahmed and Pérez, Javier and Demeyer, Serge.: The Eclipse and Mozilla
Defect Tracking Dataset: A Genuine Dataset for Mining Bug Information. Pro-
ceedings of the 10th Working Conference on Mining Software Repositories, pp.
203-206 (2013).

10. Mikolov, Tomas and Chen, Kai and Corrado, Greg and Dean, Jeffrey.: Efficient
Estimation of Word Representations in Vector Space. 1st International Conference
on Learning Representations (ICLR) (2013).

11. Goseva-Popstojanova, Katerina and Tyo, Jacob.: Identification of Security Related
Bug Reports via Text Mining Using Supervised and Unsupervised Classification.
2018 IEEE International Conference on Software Quality, Reliability and Security
(QRS), pp. 344-355 (2018).

12. Hazra, Rima and Aggarwal, Hardik and Goyal, Pawan and Mukherjee, Animesh
and Chakrabarti, Soumen.: Joint Autoregressive and Graph Models for Software
and Developer Social Networks. Advances in Information Retrieval (ECIR), pp.
224–237 (2021).

13. Le, Quoc and Mikolov, Tomas.: Distributed Representations of Sentences and Doc-
uments. Proceedings of the 31st International Conference on Machine Learning,
vol. 32, pp. 1188–1196 (2014).

14. Reimers, Nils and Gurevych, Iryna.: Sentence-BERT: Sentence Embeddings us-
ing Siamese BERT-Networks. Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing (EMNLP) (2019).

Is this bug severe? A text-cum-graph based model for bug severity prediction 17

15. Jacob Devlin and Ming-Wei Chang and Kenton Lee and Kristina Toutanova.:
BERT: Pre-training of Deep Bidirectional Transformers for Language Understand-
ing. Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, vol. 1,
pp. 4171–4186 (2019).

16. Veličković, Petar and Cucurull, Guillem and Casanova, Arantxa and Romero, Adri-
ana and Liò, Pietro and Bengio, Yoshua.: Graph Attention Networks. International
Conference on Learning Representations (2018).

17. Kipf, Thomas N. and Welling, Max.: Semi-Supervised Classification with Graph
Convolutional Networks. International Conference on Learning Representations
(ICLR) (2017).

18. Hamilton, William L. and Ying, Rex and Leskovec, Jure. Inductive Representation
Learning on Large Graphs. NIPS (2017).

