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Abstract. In many real-world networks (e.g., social networks), nodes
are associated with multiple labels and node classes are imbalanced, that
is, some classes have significantly fewer samples than others. However,
the research problem of imbalanced multi-label graph node classification
remains unexplored. This non-trivial task challenges existing graph neu-
ral networks (GNNs) because the majority class could dominate the loss
functions of GNNs and result in overfitting to those majority class fea-
tures and label correlations. On non-graph data, minority over-sampling
methods (such as SMOTE and its variants) have been demonstrated to
be effective for the imbalanced data classification problem. This study
proposes and validates a new hypothesis with unlabeled data oversam-
pling, which is meaningless for imbalanced non-graph data; however, fea-
ture propagation and topological interplay mechanisms between graph
nodes can facilitate representation learning of imbalanced graphs. Fur-
thermore, we determine empirically that ensemble data synthesis through
the creation of virtual minority samples in the central region of a minor-
ity, and the generation of virtual unlabeled samples in the boundary
region between a minority and majority is the best practice for the im-
balanced multi-label graph node classification task. Our proposed novel
data over-sampling framework is evaluated using multiple real-word net-
work datasets, and it outperforms diverse, strong benchmark models by
a large margin.

Keywords: Imbalanced learning - graph representation learning - data
over-sampling - generative adversarial network

1 Introduction

Graphs are becoming ubiquitous across a large spectrum of real-world appli-
cations in the forms of social networks, citation networks, telecommunication
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networks, biological networks, etc. |32]. For a considerable number of real-world
graph node classification tasks, the training data follows a long-tail distribution,
and the node classes are imbalanced. In other words, a few majority classes have
a significant fraction of samples, while most classes only contain a handful of
instances. Taking the NCI chemical compound graph as an example, only about
5% of molecules are labeled as active in the anticancer bioassay test [25]. On the
other hand, graph nodes are associated with multiple labels in many real-world
networked data instead of a single one. Many social media sites, such as Flickr
and YouTube, allow users to join diverse groups representing their various inter-
ests. A person can join several interest groups on Flickr, such as Landscape and
Travel, and different video genres on YouTube, such as Cooking and Wrestling.

To date, a large body of work has been focused on the representation learn-
ing of graphs with balanced node classes and simplex labels [8,/11,23}/29]. How-
ever, these models do not perform well on the widely-existing imbalanced and
multi-label graphs because of the following reasons. (1) Problem caused by the
imbalanced setting: The imbalanced data makes the classifier overfit the majority
class, and the features of the minority class cannot be sufficiently learned [9].
Furthermore, the above problem is aggravated by the presence of the topolog-
ical interplay effect [25] between graph nodes, making the feature propagation
dominated by the majority classes. (2) Problem caused by the multi-label setting:
Multi-label graph architectures typically encode significantly more complex in-
teractions between nodes with shared labels [25], which is challenging to capture.
Therefore, it is essential to develop a specific graph learning method for class
imbalanced multi-label graph data. However, research in this direction is still
in its infancy. Thus, in this study, we propose imbalanced multi-label graph rep-
resentation learning to address this challenge while also contributing to graph
learning theory.

Many past studies [2}/34,35] have demonstrated that for imbalanced data,
minority over-sampling is an effective measure to improve classification accu-
racy. This strategy has recently been confirmed to be still effective for graph
data [33]. Traditional over-sampling techniques mainly consist of two steps: (1)
selecting some minority instances as “seed examples”; (2) generating synthetic
data with features and label similar to the seed examples and adding them
into the training set. For example, the most popular over-sampling technique
SMOTE |2 addresses the problem of minority generation by performing interpo-
lation between randomly-selected minority instances and their nearest neighbors.
However, mainstream over-sampling techniques have the following shortcomings
when applied to graph data: (1) the selection of seed examples prioritizes global
minority nodes while ignoring local minority nodes; (2) each synthetic instance
is always assigned a label based on some specific strategy, which may be in-
correct. Different from i.i.d. non-graph data, because the relationship between
graph nodes are explicitly expressed by the edge connecting them, the represen-
tation learning of a node can be heavily dependent on its neighboring unlabeled
nodes through the feature propagation mechanism on graphs.
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Motivated by the observations above, we propose and validate the follow-
ing assumption. In addition to synthetic minority samples, synthetic unlabeled
samples can also facilitate the debiasing of GNNs on an imbalanced training
set. In particular, for nearby global minority samples which are a local majority,
we can “safely” produce virtual samples of the same class and add them into
the training sets to balance class distribution. Global minority samples, which
are also a local minority, are more likely to be local outliers and thus risky for
selection as seed examples for further over-sampling; for nearby global minority
samples whose neighbors are class-balanced, it is difficult to determine the la-
bels of virtual samples. Thus, the production of unlabeled virtual nodes should
be encouraged, which can help minorities by “blocking” the over-aggregation
of majority features delivered through edges. This idea is illustrated in Fig. [I}
‘We argue that the key to over-sampling on an imbalanced multi-label
graph is to flexibly combine the synthesis of both labeled and unla-
beled instances enriched by label correlations.

. majority node . majority node
. minority node O synthetic minority node . minority node O synthetic minority node
unlabeled node unlabeled node . synthetic unlabeled node
GraphSMOTE Our method

Fig.1: A comparison between our method and the current state-of-the-art graph
over-sampling method GraphSMOTE [33]|. The latter’s idea is to generate new
minority instances near randomly selected minority nodes and create virtual
edges (dotted lines in the figure) between those synthetic nodes and real nodes.
Instead, we synthesize minority instances in safe areas (i.e., Al), generate un-
labeled instances in locally balanced areas (i.e., A2), and do not conduct data
over-sampling near minority nodes which are outliers (i.e., A3). For the simplic-
ity of illustration, only a single-label scenario is shown.

We extend the existing over-sampling algorithms to a novel framework for
the imbalanced multi-label graph node classification task based on the above
considerations. We extend the classic global minority-based seed examples selec-
tion to the local minority perspective (see Sec. . Distinct from interpolation
that is commonly-used in mainstream over-sampling techniques [18], we use a
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generative adversarial network (GAN) [7] to generate new instances. As a repre-
sentative deep generative model, GAN can capture label correlation information
by estimating the probability distribution of seed examples [31]. We propose an
ensemble architecture of GAN and ¢cGAN [16] for the flexible generation of both
unlabeled and labeled synthetics (see Sec. . To make use of the graph topol-
ogy information, we propose to obtain new edges between generated samples
and existing data with an edge predictor (see Sec. . The augmented graph
is finally sent to a graph convolutional network (GCN) |11] for representation
learning, together with the learned label correlations (see Sec. . We name
our proposed framework as SORAG, which is abbreviated from Synthetic data
Oversampling StRAtegy on Graph.
In summary, our contribution is three-fold:

— We advance the traditional simplex-label graph learning to an imbalanced
multi-label graph learning setting, which is more general and common in
real-world applications. To the best of our knowledge, this study is the first
to focus on this task.

— We propose a novel and general framework which extends a previous over-
sampling algorithm to adapt to graph data. It flexibly ensembles the syn-
thesis of labeled and unlabeled nodes to support the minority classes and
leverage label correlations to generate more natural nodes.

— Extensive experiments on multiple real-world datasets demonstrate the high
effectiveness of our approach. Compared with the current state-of-the-art
model GraphSMOTE [33], our method has an improvement of 1.5% in terms
of Micro-F1 and 3.3% in terms of Macro-F1 on average.

2 Related Works

2.1 Graph Neural Networks

Graph representation learning (GRL) has evolved considerably in recent years.
GNN can be broadly regarded as the third (and latest) generation of GRL after
traditional graph embedding and modern graph embedding [15]. GNNs can be
classified into spatial and spectral types based on their graph filter. Spatial-
based graph filters explicitly leverage the graph structure. Representative works
in this field include the GraphSAGE filter 8], GAT-filter [29], the ECC-filter
[26], GGNN-filter |12], Mo-filter [17], and so on. Spectral-based graph filters use
graph spectral theory to design filtering operations in the spectral domain. An
early work [1] deals with the eigendecomposition of the Laplacian matrix and
the matrix multiplication between dense matrices, thus being computationally
expensive. To overcome this problem, the Poly-Filter 3], Cheby-Filter [3], and
GCN-Filter [11] have been successively proposed. In particular, our task is semi-
supervised, which means we need to learn the representation of all nodes from
a small portion of labeled nodes. Some recent works on semi-supervised graph
node classification can be found in [15].
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2.2 Imbalanced Learning

Learning from imbalanced data has been a long-standing challenge in machine
learning. With an imbalanced class distribution, existing methods addressing this
issue can be grouped into three categories |9]: (1) pre-processing the training
data, (2) post-processing the output, and (3) direct learning methods. Data
pre-processing aims to make the classification results on the new training set
equivalent to imbalance-aware classification decisions on the original training set,
typically like sampling [5] and weighting [35]. Post-processing the output makes
the classifier biased toward minority classes by adjusting the classifier decision
threshold [4124]. Direct learning methods embed class distribution information
into the component (e.g., objective function) of the learning algorithm, with
typical methods being cost-sensitive decision tree [14], cost-sensitive SVM [19)],
and so on. Studies on multi-class single-label imbalanced GRL have emerged
only recently [25,30,133]. However, different from these works, our proposal is
the first to utilize synthetic unlabeled nodes to weaken the tendency of GNNs to
overfit to majority without introducing contradictory labels. Additionally, our
proposed model is also applicable to multi-label datasets.

3 Problem Formulation

Input. The input is a graph G = {V, A, X, L, B}. V = {v1, v, ...,v,} denotes
the set of nodes. A € R™*" is the adjacency matrix. A;; = 1 when there is an
undirected edge between nodes v; and v;; otherwise A;; = 0. The self-loops in
G have been removed, so A; = 0,4 € {1,2,...,n}. X € R"*¥ is the feature
matrix, where z; € R1** is the feature vector of node v;. L = {c1,¢2,...,cp } is
a set of unique labels. B is a n x m affiliation matrix of labels with B;; = 1 if
v; has label ¢;; otherwise B;; = 0. Our task is in a semi-supervised transductive
manner. Only a tiny portion of the nodes is used for training, which we denote
as Vtrain'

Output. Our goal is to learn a graph neural network f that maps the input
graph G into a dense vector representation Z € R™*?¢, where z; € R'*? is the
vector of node v;, and predicts the class labels for the test nodes set V#¢5¢,

Imbalanced learning. Let |¢;| represent the number of samples associated
with the label ¢;. The distribution of {|e1],|cal, .., |¢m|} is imbalanced. That is,
a few labels contain most samples, and most labels contain only a few samples.
When presented with imbalanced data, existing GNNs tend to bias toward ma-
jority groups, leaving minority instances under-trained. We aim to learn a neural
network classifier f that can work well for both majority and minority classes.

4 Methodology

An illustration of the proposed framework is shown in Fig. [2l We elaborate on
each component as follows.
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Fig. 2: Overview of the proposed method.

4.1 Imbalance Measurement

In multi-label learning, a commonly used measure that evaluates the global
imbalance of a particular label is TRLbl. Let |C;| be the number of instance
whose i-th label value is 1; IRLbI is then defined as follows.

max {|Cl|7 |02|7 ey |cm|}
C; '

TRLbl; = (1)

Therefore, the larger the value of IRLbI for a label, the more minority class
it is. For a node v;, its GMD is defined as follows.

IRLb; - [By; = 1]
Yo [Bij=1]

where [B;; = 1] means v; has the j-th label, and 377", [B;; = 1] counts the
number of labels v; has.

The local minority degree (LMD) of a node can be measured by the propor-
tion of opposite class values in its local neighborhood. For v;, let N¥ denote its
K-hop neighbor nodes. Then, for label c;, the proportion of neighbors having an
opposite class to the class of v; is computed as

> v ent [Bij # Bmj]
| VF| ’

GMD,; =

(2)

Sij = 3)

where S € R™ ™ is a matrix defined to store the local imbalance of all nodes
for each label. Given S, a straightforward way to compute LMD for v; is to
average its S;; for all labels as follows.

" S,[By = 0
LMDi:EJ’l ;Bij 9]]’ (4)

m
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where g; € {0,1} denotes the minority class of j-th label. Namely, if |¢;| >
0.5-n, g; = 1; else, g; = 0. Here, n is the total number of vertices. Further, we
group global minority nodes into different types based on LMD, and each type is
identified correctly by the classifier with different difficulties. Following [13}[20],
we discretize the range [0,1] of LM D; to define four types of nodes, namely
safe (SF), borderline (BD), rare (RR) and outlier (OT), according to their local
imbalance.

— SF: 0 < LMD, < 0.3. Safe nodes are basically surrounded by nodes contain-
ing similar labels.

— BD: 0.3 < LMD; < 0.7. Borderline nodes are located in the decision bound-
ary between different classes.

— RR: 0.7 < LM D; < 1.0. Rare nodes are located in the region overwhelmed
by different nodes and distant from the decision boundary.

— OT: LM D; = 1.0. Outliers are totally connected to different nodes.

Furthermore, for v;, we define two metrics: labeled seed probability (LSP) and
unlabeled seed probability (USP) to describe the probability of being selected
as a seed example to generate labeled synthetic nodes and unlabeled synthetic
nodes, respectively. The LSP and USP are calculated as follows.

USP,=GMD; - LMD;,v; € BD (6)

We compute the LSP and USP scores for all nodes and sort them in de-
scending order. The top-ranked nodes (controlled by the hyper-parameter seed
example rate p) will be selected as seed examples. A min-max normalization
processes all the GMD and LMD scores to improve the computation stability.

4.2 Node Generator

We denote the joint distribution of node feature x and label y in SF region
as Psp(x,y), the marginal distribution of y as Pgp(y), and the marginal dis-
tribution of x in BD region as Ppp(xz). Generator G; is expected to gener-
ate labeled instances in the SF region, while generator G, should output un-
labeled synthetics in the BD region. Let the data distribution produced by
G; and G, be denoted as Pj(z,y) and P,(z), respectively; then, we expect
Ppp(z) = P,(x) and Psp(z,y) =~ P(x,y). Furthermore, a more flexible goal is to
have Ppp(z) = a-Py(z)+(1—a)-P/(z), Psp(x,y) = B-P(z,y)+(1-8)-Pu(z,y),
a =~ 1,8 ~ 1. By adjusting the values of @ and 3, we can control GG; and G, to
produce various data distributions to fit the original data. Here, P,(x,y) is the
joint distribution of P,(z) and Psp(y), and P;(x) is the marginal distribution
of Pi(x,y).

To achieve the above goal, we propose a node generator, which is essentially
an ensemble of a GAN [7] and a conditional GAN (cGAN) [16]. The GAN is
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responsible for generating unlabeled synthetic nodes, whose generator and dis-
criminator are respectively denoted as G,, and D,,. The cGAN is used for gen-
erating labeled synthetic instances, where its generator and discriminator are
denoted as G and Dy, respectively. Our loss function for training the GAN is

rgin I%aX Laan = E$NPBD(£)ZOQDH($) + o ]E;chu(z)ZOQ(l — Du(fli)) (7)

u

For ¢cGAN, our objective is given as

ngn max Lecan = B yymPsp(@y)109D1(7,y) + 8- E@ )Py 2,9y l09(1 — Di(, y))

(8)

To achieve flexible control over G; and G, we design the following loss func-
tion based on the interaction of GAN and cGAN

éil,igz ax Loan-caan = (1 —a) - E,op,(z)log(l — Dy(x)) 9

+ (1 - ﬂ) : ]E(;I;,y)NPu(;L',y)lOg(l - Dl($7y))

Putting all these together, our final loss for node generation L, o4 is

Liode = 5{118’ ax Loan + Legan + LGAN—cGAN (10)

For our proposed generator, the following theoretical analysis is performed.

Proposition 1 For any fized G,, and Gy, the optimal discriminator D, and D
of the game defined by Lyoqe 15

ciy Ppp(x) Psr(z,y)
Du(l‘) o PBD($)+PQ($) PSF(x,y)—i-Pg(:v,y) (11)

where P, () =a- P,(x) + (1 —«a) - P(z), and Pg(z,y) = 8- P(z,y) + (1 —
B) - Pu(x,y).
Proof. We have

,Df (z,y) =

Enode == /PBD($)ZOQDu(=’C)diC + / PSF(CE,y)ZOQDl(CE,y)d.Tdy

+a [ Pualoglt - Du(o)dz + 5+ [ Pilr.plog(1 - Difey)dady
+(1-a) / Pi(x)log(1 — Dy(a))dz + (1 - ) - / Po(z,y)log(1 — Di(x.y))dady

= /PBD(m)logDu(x) + P,(z) - log(1 — Dy(x))dz

+/ Psp(x,y)logDi(x,y) + Ps(x,y) - log(1 — Dy(z,y))dzdy
x,y
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For any (a,b) € R?\{0,0}, the function f(y) = alogy + blog(1 — y) achieves
its maximum in [0, 1] at ;5. This concludes the proof.

Proposition 2 The equilibrium of Lyede is achieved if and only if Pgp(z) =
P,(z) and Psp(z,y) = Pg(x,y) with D}(x) = D} (z,y) = %, and the optimal
value of Lyode 1S -4log2.

Proof. When D, (z) = D}(x), Di(z,y) = D;(z,y), we have

Ppp(z) / Psp(z,y)
Lrode z/P r)log—————"——dx + Psp(x,y)lo
o z BD() gPBD(SL')-i-Pa(CL') z,y SF( y) gPSF(xvy)+P3(‘T7y)
P (z) Py (z,y)
+ | Pi(2)log5————5——dz+ [ Ps(z,y)lo
/x (z) Y Pop(z) + Pal(x) ey 5(@:9) I Psp(w,y) + Palr,y)

—4log2 +2- JSD(Ppp(2)||Pa(2)) + 2 JSD(Psr(z,y)||Ps(z,y))
> —4log?2

dxdy

dxdy

(13)

where the optimal value is achieved when the two Jensen-Shannon diver-
gences are equal to 0, namely, Ppp(x) = P.(x), and Psp(z,y) = Ps(z,y).
When o = 8 =1, we have Pgp(x) = P,(x), Psr(z,y) = Pi(x,y).

In the implementation, both G, and G; are designed as a 3-layer feed-forward
neural network. In contrast, D, and D; are designed with a relatively weaker
structure: a 1-layer feed-forward neural network for facilitating the training.

4.3 Edge Generator

The edge generator described in this section is responsible for estimating the rela-
tion between virtual nodes and real nodes, which facilitates feature propagation,
feature extraction, and node classification. Such edge generators will be trained
on real nodes and existing edges. Following a previous work [33|, the inter-node
relation is embodied in the weighted inner product of node features. Specifically,
for two nodes v; and vj, let E;; denote the probability of the existence of an
edge between them, which is computed as

By = o(w; - Wei9e . oT) (14)

where z; and x; are the feature vectors of v; and v;, respectively. Wedge ¢

R¥*k is the weight parameter matrix to be learned, and ¢ = Sigmoid(). Then,
the extended adjacency matrix A’ is defined as follows

a A, if v; and v; are real nodes (15)

W\ By, if v; or v, is synthetic node

Compared to A, A’ contains new information about virtual nodes and edges,
which will be sent to the node classifier in Sec. [f.4] As the edge generator is
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expected to be partially trained based on the final node classifier (see Sec. ,
predicted edges should be set as continuous so that the gradient can be calculated
and propagated from the node classifier. Thus, E;; is not discretized to some
value in {0,1}. The edge generator should be capable of predicting real edges
accurately to generate realistic virtual nodes. Then, the pre-trained loss function
for training the edge generator is

Leage = |2~ Al (16)

where E refers to predicted edges between real nodes.

4.4 Node Classifier

We now obtain an augmented balanced graph G’ = {V', A’, X', B}, where V'
consists of both real nodes and synthetic labeled and unlabeled nodes; further,
A’, X', and B’ denote the edge, feature, and label information of the enlarged
vertex set, respectively. A classic two-layer GCN structure [11] is adopted for
node classification, given its high accuracy and efficiency. Its first and second

layers are denoted as L' and L?, respectively, and their corresponding outputs
{0, O?} are

O' = ReLU(D * A'D 2 X'W") (17)

0> =g(FD 2 A'D"20'W?) (18)

where A’ = A’+1, I is an identity matrix of the same size as 4’. D is a diago-
nal matrix and D;; = Zj A’ij. D=2 A’D~7% is the normalized adjacency matrix.
Further, W' and W? are the learnable parameters in the first and second lay-
ers, respectively. ReLU and o are the respective activation functions of the first
and the second layer, where ReLU(Z); = max(0,Z;), 0(Z); = Sigmoid(Z); =
m. 0? is the posterior probability of the class to which the node belongs.
F is the label correlation matrix that is computed in the same way as in [25],
which provides helpful extra-label correlation and interaction information. Even-
tually, given the training labels B"%" we minimize the following cross-entropy
error to learn the classifier, where p is the number of training samples, m is the
size of the label set, and nc stands for node classifier.

P m

Lne=—)Y_Y BE“"In0}; (19)

i=1 j=1

4.5 Optimization Objective

Based on the above content, the final objective function of our framework is
given as

in L AL -L 20

(g}gg?zlb ne T node 1 [ edge ( )
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where @, @, and ¥ are the sets of parameters for the synthetic node generator
(Sec. , edge generator (Sec. and node classifier (Sec. , respectively.
A and p are weight parameters. The best training strategy in our experiments is
to pre-train the node generator and the edge generator first, and then minimize
Eq. to train the node classifier and fine-tune the node generator and edge
generator at the same time. Our entire framework is easy to implement, general,
and flexible. Different structural choices can be adopted for each component,
and different regularization terms can be enforced to provide prior knowledge.

4.6 Training Algorithm

The([T]algorithm illustrates the proposed framework. SORAG is trained through
the following components: (1) the selection of seed examples based on node LSP
and USP scores; (2) the pre-training of the node generator (i.e., the ensemble of
GAN and cGAN) for synthetic data generation; (3) the pre-training of the edge
generator to produce new relation information; and finally, (4) the training of
the node classifier on top of the over-sampled graph and the fine-tuning of node
generator and edge generator.

5 Experimental Settings

5.1 Datasets

We use three multi-label networks: BLOGCATALOG3, FLICKR, and YOUTUBE as
benchmark datasets. In Table[I] we list the statistical information of all datasets
used, including the number of nodes, the number of edges, the number of node
classes, and the tuned optimal value of key parameters of SORAGF: {learning
rate, weight decay, dropout rate, k (Sec. [4.1)), p (Sec. [1.1)), a (Sec. [4.2)), B (Sec.
, A (Sec. |4.5), u (Sec. } For each dataset, we assume that a majority
class is one with more samples than the average class size, while a minority class
is one with less samples. Below is a brief description of each dataset used.

— BLOGCATALOGS [27] is a network of social relationships provided by blogger
authors. The labels represent the topic categories provided by the authors,
such as FEducation, Food, and Health. This network contains 10,312 nodes,
333,983 edges, and 39 labels.

— FLICKR [27] is a network of contacts between users of the photo-sharing
website. The labels represent the interest groups of the users, such as black
and white photos. This network contains 80,513 nodes, 5,899,882 edges, and
195 labels.

— YouTUBE [2§] is a social network between users of the popular video sharing
website. The labels represent groups of viewers that enjoy common video
genres such as anime and wrestling. This network contains 1,138,499 nodes,
2,990,443 edges and 47 labels.
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Algorithm 1 Full Training Algorithm

Inputs: Graph data: G = {V, A, X, L, B}
Outputs: Network parameters, node representations, and predicted node class
1: Initialize the node generator, edge generator, and node classifier
2: Compute the node LSP and USP scores based on Eq. and Eq. @, re-
spectively
3: Select the fraction of nodes with the highest LSP and USP scores as seed
examples for D; and D,,, respectively

4: while Not Converged do > Pre-train the node generator
5: Update D; by ascending along its gradient based on L,04. (Eq. )

6: Update G; by descending along its gradient based on L;,,4¢

7 Update D, by ascending along its gradient based on L4

8: Update G, by descending along its gradient based on L4

9: end while
10: while Not Converged do > Pre-train the edge generator

11: Update the edge generator by descending along its gradient based on
Ledge (Eq. )

12: end while

13: Construct label-occurrence network and extract label correlations [25]

14: while Not Converged dor Train the node classifier and pre-train the other

components
15: Generate new unlabeled nodes using G,
16: Generate new labeled nodes using G|
17: Generate the new adjacency matrix A’ using the edge generator

18: Update the full model based on Lync + A - Lyode + 1t Ledge (Eq. )
19: end while
20: Predict the test set labels with the trained model

For all datasets, we attribute each node with a 64-dim embedding vector
obtained by performing dimensionality reduction on the adjacency matrix using
PCA [6], similar to [25,|33]. All of the above datasets are available at http:
//zhang18f .myweb.cs.uwindsor.ca/datasets/.

5.2 Analyzed Methods and Metrics

To validate the performance of our approach, we compare it against a num-
ber of state-of-the-art and representative methods for multi-label graph learn-
ing and imbalanced graph learning, which include GCN [11], ML-GCN |25],
SMOTE [2], GraphSMOTE |[33], and RECT ([30|. Additionally, three vari-
ants of our proposed method are implemented, which are SORAGF (the full
model), SORAG/ (only labeled nodes are generated), and SORAGy (only
unlabeled nodes are generated).

It is necessary to mention that all the baselines above except ML-GCN
(which is intrinsically designed as a multi-label classifier) are manually set to
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Table 1: Dataset statistics.
Dataset BLoGCATALOG3 FLICKR YOUTUBE

# Nodes 10,312 333,983 39
# Edges 80,513 5,899,882 195
# Classes 1,138,499 2,990,443 47
learning rate 0.05 0.01 0.1
weight decay 5e-4 le-4 le-3
dropout rate 0.5 0.5 0.9
k 2 2 2

p 0.5 0.5 0.5
o 0.9 0.5 0.8
B 0.8 0.9 0.8
A 0.1 1 1

I 1 1 1

conduct the multi-label node classification by modifying the last layer of their
network structure. The implementation of the baseline approaches relies on pub-
licly released code from relevant sourced'PF[} We adopt Micro-F1 and Macro-F1
to evaluate the model performance, which are commonly used in imbalanced
data classification.

5.3 Training Configurations

Following the semi-supervised learning setting, we randomly sample a portion
of the labeled nodes (i.e., sampling ratio) of each dataset and use them for eval-
uation. Then, we randomly split the sampled nodes into 60% / 20% / 20% for
training, validation, and testing, respectively. Similar to [22], the sampling ratios
for the BLOGCATALOG3 network, the FLICKR network, and the YOUTUBE net-
work are set as 10%, 1%, and 1%, respectively. To make the class size balanced,
we experiment with different over-sampling rates, and finally they are set as those
in Tab. |2l All the analyzed models are trained using Adam optimizer |10] in Py-
Torch (2020.2.1, community edition) [21]. Each result is presented as a mean
based on 10 replicated experiments. All models are trained until they converge,
with a typical number of training epochs as 200.

! SMOTE: https://github.com/analyticalmindsltd/smote_variants
2 GraphSmote: https://github.com/TianxiangZhao/GraphSmote

3 RECT: https://github. com/zhengwang100/RECT

* GCN: https://github.com/tkipf/pygcn


https://github.com/analyticalmindsltd/smote_variants
https://github.com/TianxiangZhao/GraphSmote
https://github.com/zhengwang100/RECT
https://github.com/tkipf/pygcn
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Table 2: The optimal over-sampling rates for the synthetic unlabeled nodes (de-
noted as Ratey) and the synthetic labeled nodes (denoted as Rater) on each
dataset. N/A abbreviates for “not applicable”.

BrocCaraLoGg3| FLICKR YOUTUBE

Ratey| Rater |Ratey|Rater|Ratey|Rater
SORAGy| 0.9 N/A 0.6 | N/A| 0.7 | N/A
SORAG.| N/A 0.1 N/A| 03 |N/A| 0.6
SORAGpFg| 0.1 0.9 0.2 0.9 0.2 0.4

6 Experimental Results

6.1 Imbalanced Multi-label Classification Performance

Table 3| shows the performance of all methods in terms of Micro-F1 and Macro-
F1. The results are presented as a mean based on 10 repeated experiments. Based
on the results, we reach the following conclusions.

Table 3: Imbalanced multi-label classification comparison. The 1°¢ and 2"¢ best
results are boldfaced and underscored, respectively.

Metrics Micro-F1 (%) Macro-F1 (%)
Methods \Datasets| BLOGCATALOG3|FLICKR|YOUTUBE|BLOGCATALOG3|FLICKR|YOUTUBE

GCN 37.36 34.03 36.19 30.27 21.17 26.53
ML-GCN 37.51 38.91 37.64 30.39 21.56 27.52
SMOTE 40.24 39.30 39.01 30.65 23.08 28.53
GraphSMOTE 42.82 40.01 43.70 35.58 24.25 33.81
RECT 41.72 41.23 42.66 38.66 24.47 33.94
SORAG, 44.58 41.61 | 41.98 38.45 26.48 | 35.01
SORAGy 43.21 37.92 40.83 37.28 26.15 32.53
SORAGF 44.89 43.13 42.86 40.01 26.85 | 36.57

— When compared with the GCN and ML-GCN methods, which do not con-
sider class distribution, the three variants of SORAG show significant im-
provements. For example, compared with ML-GCN, the improvement brought
by SORAG ¢ is 7.4%, 4.2%, and 5.2% in terms of Micro-F1 and 9.6%, 5.3%,
and 9.1% in terms of Macro-F1, respectively. This demonstrates that our
proposed data over-sampling strategy effectively enhances the classification
performance of GNNs on imbalanced multi-label graph data.

— SORAG provides much more benefits than when applying the previous
imbalanced graph node classifier (SMOTE, GraphSMOTE, RECT). On av-
erage, it outperforms earlier methods by 3.3%, 3.0%, and 1.1% in terms
of Micro-F1 and 2.5%, 2.9%, and 4.5% in terms of Macro-F1, respectively.
This result validates the advantage of SORAG over previous over-sampling
techniques in combining the generation of minority and unlabeled samples.




Title Suppressed Due to Excessive Length 15

— Both minority over-sampling and unlabeled data over-sampling can improve
classification performance. In particular, the former is more effective. A com-
bination of the two strategies works the best. As a supporting evidence,
SORAGrF is the best performer in 5/6 tasks and the second-best performer
in the remaining task.

7 Conclusions

This study investigated a new research problem: imbalanced multilabel graph
node classification. In contrast to existing oversampling algorithms, which only
generate new minority instances to balance the class distribution, we proposed a
novel data generation strategy named SORAG which ensembles the synthesis
of labeled instances in minority class centers and unlabeled instances in minor-
ity class borders. The new supervision information brought about by labeled
synthetics and the blocking of over-propagated majority features by unlabeled
synthetics facilitates balanced learning between different classes, taking advan-
tage of the strong topological interdependence between nodes on a graph.

We conducted extensive comparative studies to evaluate the proposed frame-
work on diverse naturally imbalanced multilabel networks. The experimental
results demonstrated the high effectiveness and robustness of SORAG in han-
dling imbalanced data. In the future, we will work on developing graph neural
network models that are more adapted to the nature of real-world networks (e.g.,
scale-free and small-world features, etc.).
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