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Abstract. In this paper we aim to provide machine learning practition-
ers with tools to answer the question: have the labels in a dataset been
corrupted? In order to simplify the problem, we assume the practitioner
already has preconceptions on possible distortions that may have affected
the labels, which allow us to pose the task as the design of hypothesis
tests. As a first approach, we focus on scenarios where a given dataset
of instance-label pairs has been corrupted with class-conditional label
noise, as opposed to uniform label noise, with the former biasing learn-
ing, while the latter — under mild conditions — does not. While previous
works explore the direct estimation of the noise rates, this is known to
be hard in practice and does not offer a real understanding of how trust-
worthy the estimates are. These methods typically require anchor points
— examples whose true posterior is either 0 or 1. Differently, in this paper
we assume we have access to a set of anchor points whose true posterior
is approximately 1/2. The proposed hypothesis tests are built upon the
asymptotic properties of Maximum Likelihood Estimators for Logistic
Regression models. We establish the main properties of the tests, includ-
ing a theoretical and empirical analysis of the dependence of the power
on the test on the training sample size, the number of anchor points, the
difference of the noise rates and the use of relaxed anchors.

1 Introduction

When a machine learning practitioner is presented with a new dataset, a first
question is that of data quality ( [24]) as this will affect any subsequent machine
learning tasks. This has led to tools to address transparency and accountability
of data ( |27128]). However, in supervised learning, an equally important concern
is the quality of labels. For instance, in standard data collections, data curators
usually rely on annotators from online platforms, where individual annotators
cannot be unconditionally trusted as they have been shown to perform inconsis-
tently [25]. Labels are also expected to not be ideal in situations where the data
is harvested directly from the web [31,|32]. In general this is a consequence of
annotations not being carried out by domain experts [13].

The existing literature primarily focuses on directly estimating the distor-
tion(s) present in the labels and mainly during the learning process (see Sec-
tion . In this paper we argue that, in most cases, that is too hard a problem
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and might lead to suboptimal outcomes. Instead, we suggest modifying this ap-
proach in two ways. First, we leverage the practitioner’s prior knowledge on
the type possible distortions affecting the labels and use their preconceptions
to design hypothesis testing procedures that would allow us (under certain as-
sumptions we state later) to provide a measure of evidence for the presence of
the distortion. This is of course a much simple task than addressing the esti-
mation of any possible distortion. As an example, in this paper, we focus on
class-conditional noise, as opposed to uniform noise (as we discuss later, class-
conditional noise biases the learning procedure, while uniform noise under mild
conditions does not). Secondly, with this information at hand, and given that
the tests are performed right after data collection and annotation and before
learning takes place, the practitioner can then make more informed decisions. If
the quality of the labels is deemed poor, then the practitioner could resort to:
(1) a modified data labelling procedure (e.g., active learning in the presence of
noise [29]), (2) seek methods to make the training robust (e.g., algorithms for
learning from noisy labels [30]), or (3) drop the dataset altogether.

Let us introduce the binary classification setting, where the goal is to train
a classifier g : X — {-1,+1}, from a labelled dataset DI " = {(z;,y;)}", €
(R4 x {-1,1}), with the objective of achieving a low miss-classification error:
Pxy(g(X) # Y). While it is generally assumed that the training dataset is
drawn from the distribution for which we wish to minimise the error for D" ~
p(X,Y), as mentioned above, this is often not the case. Instead, the task requires
us to train a classifier on a corrupted version of the dataset ﬁf{"”" ~ p(X, }7)
whilst still hoping to achieve a low error rate on the clean distribution.

In this work we focus on a particular type of corruption, instance-independent
label noise, where labels are flipped with a certain rate, that can either be uniform
across the entire data-generating distribution or conditioned on the true class of
the data point. A motivating example of class-conditional noise is given in [12]
in the form of medical case-control studies, where different tests may be used for
subject and control. An essential ingredient in our procedure is the input from
the user in the form of a set of anchor points. Differently from previous works, we
assume anchor points for which the true posterior distribution P(Y =1 | X = x)
is (approximately) %2. For an instance & this requirement means that an expert
would not be able to provide any help to identify the correct class label. While
this will be shown to be convenient for theoretical purposes, finding such anchor
points might be rather difficult to accomplish in practice, so we show how to
relax this notion to a more realistic n(z) ~ 1/2.

The tests rely on the asymptotic properties of the Mazximum Likelihood Es-
timate (MLE) solution for Logistic Regression models, and the relationship be-
tween the true and noisy posteriors. On the theoretical side, we show that when
the asymptotic properties of MLE hold and the user provides a single anchor
point, we can devise hypothesis tests to assess the presence of class-conditional
label corruption in the dataset. We then further extend these ideas to allow for
richer sets of anchor points and illustrate how these lead to gains in the power of
the test. In Section [2] we cover the necessary background on MLE, noisy labels
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and define the necessary tools. In Section [3] we illustrate how to carry a z-test
using anchor points on the presence of class-conditional noise. In Section [4] we
discuss related work and in Section [5] we present experimental findings.

2 Background

We are provided with a dataset (X,y) = {(z;,v:)}", € (R x {-1,1}), and our
task is to assess whether the labels have been corrupted with class-conditional
flipping noise. We use y to denote the true label, and 3 to denote the noisy label.
We assume the feature vectors (x) have been augmented with ones such that

we have & — (1, x). We assume the following model:
y; ~ Bernoulli (7;) ,
1
;= QTHZZ' = .
n U( 0 ) 1+ exp (—08—331)

Following the MLE procedure we have:

0, = argmax ¢, (6 | D,) = argmax H&- @ | i, vi)
beo bce iy
where: 1 1
Yi —Yi
O i, yi) = 5 -logn; + — ~log(1 — ;)

In this setting, the following can be shown (See for example Chapter 4 of [15]):

Vi (0= 00) 2> N (0, L(00)7) (1)
where Iy, denotes the Fisher-Information Matrix:
0%0,(0;Y | z)
I,(00) =Eg (_(W> =Eg (-Hn(0;Y | 7))

where the expectation is with respect to the conditional distribution, and H,, is
the Hessian matrix.

We will consider two types of flipping noise and in both cases the noise rates
are independent of the instance: P(Y = —i | Y =4, X =2) =P(Y = i | Y =)
for i € {-1, 1}.

Definition 1. Bounded Uniform Noise (UN)

In this setting the per-class noise rates are identical: P(Y = 1 |Y = -1) =
P(Y =-1|Y =1) =7 and bounded: 7 < 0.50. We will denote this setting with
UN(t), and a dataset D = (X ,y) inflicted by UN(T) by: D-.

Definition 2. Bounded Class-Conditional Noise (CCN)

In this setting the per-class noise rates are different, o # B and bounded o+ <
Lwith: P(Y =-1|Y =1)=a and P(Y =1 | Y = -1) = 3. We will denote
this setting with CCN(a, 3), and a dataset D = (X,y) inflicted by CCN(«, )
by.' Daﬁ-



4 R. Poyiadzi et al.

An object of central interest in classification settings is the posterior predic-
tive distribution: n(z) = P(Y = 1| X = z). Its noisy counterpart, fj(z) = P(Y =
1| X = ), under the two settings, UN(7) and CCN(a, ), can be expressed
as: (See Appendix 8.1 for full derivation)

_ (1 —-a—-p) -n(x)+p it (CCN)
n(e) = { (1—27)-n(x)+7  if (UN) (2)

We consider loss functions that have the margin property: £(y, f(z)) = ¥(yf(x)),
where f : R? — R is a scorer, and g(z) = sign(f(x)) is the predictor. Let
fr=argminger Exy¢(Y f(X)) and f* = argminger Ey y9(Y f(X)) denote
the minimisers under the clean and noisy distributions, under model-class F.

Definition 3. Uniform Noise robustness ( [14])
Empirical risk minimization under loss function £ is said to be noise-tolerant if
Pxy(g"(X) =Y) =Pxy(g"(X) =Y).

Theorem 1. Sufficient conditions for robustness to uniform noise

Under uniform noise 7 < 0.50, and a margin loss function, €(y, f(z)) = ¥ (yf(x))
satisfying: (f(x)) + ¥(-f(x)) = K for a positive constant K, we have that
§*(z) = sign(f*(x)) obtained from: f* = argmingecr IEX)}ﬂ/)()}f(X)) is robust
to uniform noise.

For the proof see Appendix 8.2. Several loss functions satisfy this, such as:
the square, unhinged (linear), logistic, and more. We now introduce our definition
of anchor pointsﬂ

Definition 4. (Anchor Points) An instance @ is called an anchor point if we
are provided with its true posterior n(x). Let A¥ denote a collection of k anchor
points, with n(x) = s Yo € AX. Furthermore, let us also define AI;’&, to imply that
n(x;) = s+ €, for ¢, ~ U([—0, J]), with 0 < § <K 1 (respecting 0 < n(x) < 1).
Also let As 5 = Aé,é.

A ) =1 = fl)=1-«
A, = @) =12 = )=
Ab o @) =0 - q(x)=p

The cases we will be referring to are shown to the right. The first and last,
A¥ and A%, have been used in the past in different scenarios. In this work we
will make use of the second case, A’f/z.

! Different notions -related to our definition- of anchor points have been used before
in the literature under different names. We review their uses and assumptions in
Section E|
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3 Hypothesis Tests based on anchor points

In this section we introduce our framework for devising hypothesis tests to exam-
ine the presence of class-conditional label noise in a given dataset (with uniform
noise, as the alternative), assuming we are provided with an anchor point(s). Our
procedure is based on a two-sided z-test (see for example Chapter 8 of [33]) with
a simple null hypothesis, and a composite alternative hypothesis (Eq. We first
define the distribution under the null hypothesis (Eq@, and under the alterna-
tive hypothesis (Eq[7), when provided with one strict anchor point (n(z) = 1/2).
In this setting, for a fixed level of significance (Type I error) (Eq7 we first
derive a region for retaining the null hypothesis (Eq@)7 and then we analyse the
power (Prop[l)) of the test (where we have that Type II Error = 1 - power). We
then extend the approach to examine scenarios that include: (1) having multiple
strict anchors (n(x;) = 1/2, Vi € [k], k > 1), (2) having multiple relaxed anchors
(n(x;) = /2, Vi € [k], k> 1), and (3) having no anchors.

With the application of the delta method (See for example Chapter 3 of [15])
on Eq[I] we can get an asymptotic distribution for the predictive posterior:

V(@) = n(@)) = N (0, (1)1 = n(@))* - =" 1)) 3)

This would not work in the case of n(x) € {0, 1}, so instead we work with
1/2. Which, together with the approximation of the Fisher-Information matrix
with the empirical Hessian, we get:

) 11 .
@) 2o A (5, 35 ) (@)
where H, = (X" DX)™*, where D is a diagonal matrix, with D;; = /;(1 — #;),
where 7; = o(x, 0).

For the settings: (D, Af/Q) and (D, .A{“/z), for an x € A’f/z we get: () = 3.
While for (Dq s, .A’f/Q) we get: 7(x) = # Note that under (D, A’f/z), we

also have (ji(z)(1 — 7j(x)))” = % similarly to (D, AL,).

3.1 A Hypothesis Test for Class-Conditional Label Noise

We now define our null hypothesis (Ho) and (implicit) alternative hypothesis
(H1) as follows:

Ho:a=p & Hi:a#p (5)
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Under the null and the alternative hypotheses, we have the following distri-
butions for the estimated posterior of the anchor:

where

((1 -« +6>(6 - a)) T
16

o(x) =

Level of Significance and Power of the test The level of significance (also known
as Type I Error) is defined as follows:

a = P(reject Ho | Ho is True) (8)

Rearranging Eql6| we get: % ~ N (0, 1), under the null. Which for a

chosen level of significance (a) allows us to define a region of retaining the null
Ho. We let za/, and 21 _a/, denote the lower and upper critical values for retaining
the null at a level of significance of a.

Retain Hq if:

Zapy -V 0(x) F 12 < N(x) < zi_ap - u(z) +1/2 9)

Using the region of retaining the null hypothesis, we can now derive the power
of the test.

Proposition 1. Power of the test (See Appendiz 8.3 for the full derivation.)
Under the distributions for the estimated posterior under the null and alternative
hypotheses in Eqs[0é{7, based on the definition of the hypotheses in Eql, the test
has power: P(reject Ho | Ho is False) = 1 — by, where:

Vi + 222 (e + 50

2 |-9 2 (10)

V() V()

A
by=P

3.2 Multiple Anchor Points

In this section we discuss how the properties of the test change in the setting
where multiple anchors points are provided.
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Let 7; correspond to the ith instance in A’f/z. Then for 77 = %Z?:l 7; we

have: L1

_ iy

n~N <2’ 16~ w)
where & = %Zle x; with x; € A’f/2 Vi. For the full derivation see Appendix
8.4.

Anchors chosen at random We have that x € A’fz — x' By = 0, so that for
an orthonormal basis U, £ = Ur. Without loss of generalisation we let U, o =
”gﬁ, and therefore n(z) =1/2 — ro = 0. In words: V& € .A’f/2 we have that a’s
component in the direction of 3y is 0.

Now we make the assumption that «’s are random with r; ~ U([—c¢, ]).
Therefore, Er; = 0, and Vr; = é In the following we use the subscript S in
the operator Eg to denote the randomness in choosing the set A. In words: we
assume that the set A* A is chosen uniformly at random from the set of all anchor
points.

Combining these we get:

Esv(z) = Egz'He =Egr UHU 'r
dc? dc?
== tr(UHUT) = Tq

where g = tr(H). While for k anchor points chosen independently at random,
we get:

k
1
Esv(z) = Eg e Z x] Ha,
L lj

k
1
=Es |13 > r]UHUTr,

i,J

@
3k

Following the same derivation as above we get:

z-\/v(ij)—l—ﬂ;a —z-\/v(a_:)—kﬂga
-
V() V()
If we let v = Eguv(x) (similarly © = Eg@(x)), then we have seen that Egv(T) =

7 (Reminder: expectations are with respect to the randomness in picking the
anchor points). Then we have:

b g_p(zﬁ—i:h\/E) B qj(—zﬁﬁ:h@)

2
tr(UHUT) = %

bp=F

b _ Vo Vo -
) ()
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with b = £52.

3.3 Multiple Relaxed Anchors-Points

In this section we see how the properties of the test change in the setting where
the anchors do not have a perfect n(x) = 1/2. We now consider the case of Af/Q 5

Let x be such that n(xz) = § + ¢, where € ~ U([-4, §]) with 0 < § < 1. (Note: by
definition ¢ < 1/2.)
For one instance we have the following: E;f =1/2+¢€, and EgEn =1/

For the variance component we have: (7(1 — 7)) = ((3+¢€) (3 — e))2 ~

1 _ e ignoring terms of order higher than €2, under the assumption that

6~ 2
0 < 1.
Under the law of total variance we have:

V() =EV(n|e)+V(E®M]e)

2 2
_ (1 _ 5) T He O (12)

For the full derivation see Appendix 8.6. Finally, bringing everything together
and ignoring 4% terms we get:

_ 1 1 6%\ 1.

11

3.4 What if we have no anchor points?

We have shown that we can relax the hard constraint on the anchor points to
be exactly n = 1/2, to n & 1/2. It is natural then to ask if we need anchor points
at all. If instead we were to sample points at random, then we would have the
following: E,xyn(X) = m. The importance of needing for set of anchor points,
either A’f/2 or A’f/27 5 is that, the anchor points would be centered around a known
value 1/2 | as opposed to having no anchor points and sampling at random, where
the anchor points would end up being centered around 7. Knowledge of the class
priors could allow for a different type of hypothesis tests to asses the presence of
label noise. We do not continue this discussion in the main document as it relies
on different type of information, but provide pointers in the Appendix [7.8|
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3.5 Practical Considerations & Limitations

Beyond Logistic Regression Our approach relies on the asymptotic properties of
MLE estimators, and specifically of Logistic Regression. More complex models
can be constructed in a similar fashion through polynomial feature expansion.
However the extension of these tests to richer model-classes, such as Gaussian
Processes, remains open.

Multi-class classification Multi-class classification setting can be reduced to one-
vs-all, all-vs-all, or more general error-correcting output codes setups as de-
scribed in [23|, which rely on multiple runs of binary classification. In these
settings then we could apply the proposed framework. The challenge would then
be how to interpret n = 1/2.

Finding anchor points While it might not be straightforward for the user to
provide instances whose true posterior is n(x) = 1/2, we do show how this can
be relaxed, by allowing n(x) ~ 1/2. We then show how multiple anchor points
can be stacked, improving the properties of the test.

Model Misspecification Our work relies on properties of the MLE and its asymp-
totic distribution (Eq. . These assume the model is exactly correct. Similarly,
under the null in the scenario of « = 8 > 0, we are at risk of model misspec-
ification. This is not a new problem for Maximum Likelihood estimators, and
one remedy is the so-called Huber Sandwich Estimator |34] which replaces the
Fisher Information Matrix, with a more robust alternative.

Instance-dependent Noise (IDN) In IDN the probability of label flipping depends
on the features. It can be seen as a generalisation over UN (which is unbiased
under mild conditions (See Theorem [1)) and CCN (where learning is in general
biased). Our theoretical framework for CCN serves as a starting point to devise
tests of IDN.

4 Related Work

Previous works have focused on the importance of (automatic) data preparation
and data quality assessment [24}/3638]. These data quality measures refer to
aspects such as the presence of noise in data, missing values, outliers, imbal-
anced classes, inconsistency, redundancy, timeliness and more [36,38]. Within
this context, in this work we focus on label noise and, in particular, assessing
the presence of class-conditional label noise, as opposed to uniform label noise.
Related approaches include the identification specific corrupted instances, or dis-
tilled examples, and the direct estimation of the noise rates. These are discussed
below.
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Noisy examples As presented in |11}26], the aim is to identify the specific exam-
ples that have been inflicted with noise. This is a non-trivial task unless certain
assumptions can be made about the per-class distributions, and their shape. For
example, if we can assume that the supports of the two classes do not overlap
(i.e. n(z)(1—n(x)) € {0, 1} Vz), then we can identify mislabelled instances using
per-class densities. If this is not the case, then it would be difficult to differentiate
between a mislabelled instance and an instance for which n(z)(1—n(z)) € (0,1).
A different assumption could be uni-modality, which would again provide a pre-
scription for identifying mislabelled instances through density estimation tools.

Distilled examples The authors in [16] go in the opposite direction by trying
to identify instances that have mot been corrupted — the distilled examples.
As a first step the authors assume knowledge of an upper—boun(ﬂ (Theorem 2
of [16]) which allows them to define sufficient conditions for identifying whether
an instance is clean. As a second step they aim at estimating the (local) noise
rate based on the neighbourhood of an instance (Theorem 3 of [16]).

Anchor points and perfect samples Finally, we can aim to directly estimate noise
rates (or general distortions) while training [17},/39]. A common approach is to
proceed by correcting the loss to be minimised, by introducing the notion of a
mizing matric M € [0,1]°%¢, where M; ; = P(y = €’ | y = €’) |8]. Using these
formulations, we are in a position where, if we have access to M, we can correct
the training procedure to obtain an unbiased estimator. However, M is rarely
known and difficult to estimate. Works on estimating M rely on having access
to perfect samples and can be traced back to |3], and the idea was later adapted
and generalised in [4L[5/17] to the multi-class setting. Interestingly, in |1] authors
do not explicitly define these perfect samples, but rather assume they do exist
in a large enough (validation) dataset X’ — obtaining good experimental results.
Similarly, [18] also work by not explicitly requiring anchor points, but rather
assuming their existence.

5 Experiments

In order to illustrate the properties of the tests, for the experiments we consider
a synthetic dataset where the per-class distributions are Gaussians, with means
[1, 1]7 and [-1, -1]7, with identity as scale. For this setup we know that anchor
points should lie on the line y = -z, and draw them uniformly at random
x € [-4, 4]. We analyse the following parameters of interest:

1. N € [500, 1000, 2000, 5000]: the training sample size.
2. (a—p) € [-0.05, 0.10, 0.20]: the difference between the per-class noise rates.

3. kell, 2, 4, 8, 16, 32]: the number of anchor points.

2 The paper aims at tackling instance-dependent noise.
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4. § €10, 0.05, 0.10]: how relaxed the anchor points are: n(z) € [0.50—4, 0.50+
s].

For all combinations of N and (a — 8) we perform 500 runs. In each run,
we generate a clean version of the data D, and then proceed by corrupting it to
obtain a separate version: D, g. For both datasets, we fit a Logistic Regression
model. We sample both the anchor points and relaxed anchor points. Finally, we
then compute the z-scores, and subsequently the corresponding p—valuesﬂ

The box-plots should be read as follows: Q1, Q2 & @3 separate the data
into 4 equal parts. The inner box starts (at the bottom) at Q1 and ends (at
the top) at @3, with the horizontal line inside denoting the median (Q2). The
whiskers extend to show Q1 — 1.5-IQR, and Q3 + 1.5 - IQR. IQR denotes the
Interquartile Range and IQR = Q3 — Q1.

In Figures 1] 2 and [B] we have the following: moving to the right we increase
the relaxation of anchor points, and moving downwards we increase the training
sample-size. On the subplot level, on the x-axis we vary the number of anchor
points, and on the y-axis we have the p-values. In all subplots we indicate with
a red dashed line the mark of 0.10, and with a blue one the mark of 0.05, which
would serve as rejection thresholds for the null hypothesis.

The experiments are illustrative of the claims made earlier in the paper.
Below we discuss the findings in the experiments and what they mean with
regards to Type I and Type II errors. We discuss these points in two parts; we
first discuss the effect on sample size (N), difference in noise rates (|a — 8]) and
number of anchor points (k).

Size of training set (N) As the size of training set (V) increases, the power
increases. This can be seen Figures & Bl By moving down the first column,
and fixing a value for k, where N increases, we see the range of the purple box-
plots decreasing, and essentially a larger volume of tests falling under the cut-off
levels of significance (red and blue dashed lines). This is expected given that

the variance of the MLE 60,1, g vanishes as N increases, as is seen in Eq and
discussion underneath it.

Difference in noise rates (Ja—f|) As |a— 3] increases, the power increases. This
can be seen in Figures [T} 2] & [3] by fixing a particular subplot in the first column
(for example, top-left one), and a value for k, we see again that the volume moves
down. As presented in Eq[I0] as 3 — « increases, the power also increases.

3 What we have so far presented is aligned with the Neyman-Pearson theory of hy-
pothesis testing. We have shown how to utilise anchor points to obtain the p-value —
a continuous measure of evidence against the null hypothesis- and then leverage the
implicit alternative hypothesis of class-conditional noise and a significance level to
analyse the power of the test. In this case, the p-value is the basis of formal decision-
making process of rejecting, or failing to reject, the null hypothesis. Differently, in
Fisher’s theory of significance testing, the p-value is the end-product [35]. Both the
p-value and the output of the test can be used as part of a broader decision process
that considers other important factors.
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Number of anchor points (k) The same applies to the number of anchor points
— as the number of anchor points (k) increases, the power of the test increases.
This can be seen in all three figures by focusing in any subplot in the first col-
umn, and considering the purple box-plots moving to the right. In Eq[TT] we see
effect of k on the power.

In all three discussions above we focused on the first column of each of the
figures — which shows results from experiments on strict anchors. What we also
observe in this case (the first column of all figures) is that the p-values follow
the uniform distribution under the null (as expected, given the null hypothesis
is true) — shown by the green box-plots. Therefore the portion of Type I Errors
= a (the level of significance Eq. When we relax the requirements for strict
anchors to allow for values close to 1/2, we introduce a bias in the lower and
upper bounds in Eq[9] of +e. While Ee = 0 this shift on the boundaries of the
retention region will increase Type I Error. On the other hand, in Eq[I2] we see
how this bias decreases as you increase the number of anchor points. Both of
these phenomena are also shown experimentally by looking at the latter two
columns of the figures.

Anchor point relaxation (6) Lastly, we examine the effect of relaxing the strict-
ness of the anchors (d), n(z) € [0.50 — 4, 0.50 + J] on the properties of the test.
As just discussed we see that as we increase the number of anchor points Type
I Error decreases (volume of green box-plots under each of the cut-off points).
We also observe that, as compared to only allowing strict anchors, the power is
not affected significantly — with the effect decreasing as the number of anchor
points increases. Furthermore, in the latter two columns we also observe the
phenomena mentioned in the discussion concerning the first column only.

6 Conclusion & Future Work

In this work we introduce the first statistical hypothesis test for class-conditional
label noise. Our approach requires the specification of anchor points, i.e. in-
stances whose labels are highly uncertain under the true posterior probability
distribution, and we show that the test’s significance and power is preserved
over several relaxations on the requirements for these anchor points. Our ex-
perimental analysis, which confirms the soundness of our test, explores many
configurations of practical interest for practitioners using this test. Of particular
importance for practitioners, since anchor specification is under their control,
is the high correspondence shown theoretically and experimentally between the
number of anchors and test significance.

Future work will cover both theoretical and experimental components. On
the theoretical front, we are interested in understanding the test’s value under
a richer set of classification models, and further relaxing requirements on true
posterior uncertainty for anchor points. Experimentally, we are particularly in-
terested in applying the tests to diagnostically challenging healthcare problems
and utilising clinical experts for anchor specification.
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Fig. 1: Fixed |8 — a] = 0.05. Red dotted line at 0.10, and blue at 0.05.
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