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Abstract. Topological characteristics of graphs, that is, properties that
are invariant under continuous transformations, have recently emerged
as a new alternative form of graph descriptors which tend boost perfor-
mance of graph neural networks (GNNs) on a wide range of graph learn-
ing tasks, from node classification to link prediction. Furthermore, GNNs
coupled with such topological information tend to be more robust to at-
tacks and perturbations. However, all prevailing topological methods for
GNNs consider a scenario of a fixed learning approach and do not allow
for distinguishing between topological noise and topological signatures
of the graph which might be the most valuable for the current learning
task. To exploit the inherent task-specific topological graph descriptors,
we propose a new versatile framework known as Topological Attention
Neural Networks (TopoAttn-Nets)'. As the first meta-representation of
topological knowledge, TopoAttn-Nets employs the attention operation
on both local and global data properties and offers their geometric aug-
mentation. We derive theoretical guarantees of the proposed topologi-
cal learning framework and evaluate TopoAttn-Nets in conjunction with
graph classification. TopoAttn-Nets delivers the highest accuracy, out-
performing 26 state-of-the-art classifiers on benchmark datasets.

Keywords: Meta-representation - Topological signatures - Representa-
tion learning - Graph classification

1 Introduction

Accurately classifying graphs by inferring their geometric and topological prop-
erties has recently witnessed an ever increasing interest in many data science
applications [6, 10, 33]. In particular, an emerging sub-field of geometric deep
learning (GDL) aims to generalize the concept of deep learning (DL) to data in

1 Our code is available at https://github.com/TopoAttn-Nets/TopoAttn-Nets.git
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non-FEuclidean spaces by bridging the gap between graph theory and deep neural
networks [3]. In turn, many recent studies indicate that integration of topolog-
ical descriptors, i.e., systematic shape characteristics, into graph learning often
results in noticeable performance gains in such tasks as graph classification, link
prediction, and anomaly detection [6,12,18,33,46,47]. Furthermore, incorporat-
ing the topological signatures into GDL enhances robustness of graph learning
to perturbations and attacks. This phenomenon can be explained by important
complementary information and deeper insight into the intrinsic graph organiza-
tional structure provided by topological data summaries, as compared to conven-
tional non-topological descriptors. Here we aim to further advance topological
approaches to graph learning by offering a systematic and versatile framework
for extracting the essential task-specific shape information.

In particular, topological data analysis (TDA) offers rigorous mathematical
tools to explore structural shape properties of the graph-structured data [4,9,14].
Here by shape we broadly understand data properties which are invariant under
continuous transformations such as stretching, bending, and twisting. Persis-
tence homology (PH) is a methodology under the TDA framework that ana-
lyzes evolution of various patterns in a graph G as we vary certain user-selected
(dis)similarity threshold (i.e., a scale). As such, we can say that PH studies the
observed graph G at multiple resolutions or evaluates its structural properties
through multiple lenses. All extracted shape patterns can be then summarized in
a form of multi-set in R, known as a persistence diagram (PD). PDs record a type
of the topological patterns we detect as well as how long we observe each topolog-
ical feature as a function of the scale parameter. We are particularly interested
in topological features with a longer lifespan, since such features tend to contain
valuable information about hidden mechanisms behind graph organization and
as such, play a more important role in graph learning. Features with a longer
lifespan are said to persist. In turn, features with shorter lifespans are likely
to be attributed to topological noise. However, there exists a number of inter-
linked fundamental challenges on the way of successful integration of topological
information into graph learning. The first key problem is how to distinguish im-
portant topological features from topological noise [8,9,15]. Second, since PDs
are point multi-sets, there exists no straightforward approach to combine the
extracted topological summaries in a form of PDs with DL models, as DL often
requires input data in vector form. As such, there are multiple approaches to
make PDs compatible with DL inputs [1, 18, 24]. One of the most popular PD
representations allowing for construction of a fully trainable topological layer
is adaptively kernelization of PDs. However, existing kernel representations of
PDs assume that influence of persistent features on the learning process is fized.
Furthermore, typically only a single PD is computed from the graph G—, either
upon extracting topological features directly from G, referred to as the topolog-
ical domain, or from the spectral signatures of G, (e.g., Heat Kernel Signatures
(HKS) with a single (fixed) diffusion parameter ¢), referred to as the spectral
domain. As such, the current kernel representations of PDs do not allow for dis-



TopoAttn-Nets: Topological Attention in Graph Representation Learning 3

tinguishing topological graph characteristics which are the most valuable for the
current learning task, from topological noise.

New Topological Meta-Representation Paradigm We propose a new
flexible and unified framework, TopoAttn-Nets, for meta-representation topolog-
ical signatures of the graph G extracted from its PDs. That is, we instill topologi-
cal signatures from different domains and embed them into meta-representation
with attention mechanism which shows an end-to-end learning approach that
in turn can be used to learn multiple persistence representations. Furthermore,
inspired by the recent meta-learning mechanisms in deep neural networks [20],
we combine all kernel-based representation of PDs in various domains into a
joint aggregated attention layer, where attention mechanism is used to explicitly
encode the structural information of G from a global perspective. The result-
ing TopoAttn-Nets represents a trainable, task-specific framework to extract the
most informative topological signatures of graph G from multiple domains in an
efficient and provably stable manner.

Contributions. Contrary to all conventional TDA methods in DL where
a given task is tackled using a fized learning approach, this paper aims to en-
hance the topological learning algorithm itself, thereby being the first step to-
ward the paradigm of topological meta-learning. The ultimate idea of TopoAttn-
Nets is to systematically integrate joint topological features, persistence-based
information from multiple domains, and PD transform learning. Specifically,
compared to all previous approaches for topological features/kernels/layers, our
meta-representation: (1) is not restricted to a particular type of input data and
a fixed parametrization map of topological summaries, (2) is more robust to per-
turbations, (3) allows for learning relationships among topological signatures by
providing their geometric augmentation. As a part of the new topological meta-
representation, the attention mechanism learns to focus on the most essential
topological characteristics of the data and learning algorithms. This is particu-
larly important for web-based data, e.g., usage graphs from social media or other
web sources, that exhibit variation at different scales. Capturing both finer scale
and larger scale variations using a fixed learning model is challenging. In con-
trast, TopoAttn-Nets offers a representation that captures both local and global
properties, and as a result, improved tractability and generalization performance.
Our extensive numerical results indicate that TopoAttn-Nets is competitive in
graph classification in comparison to the state of the art: it outperforms 26 top
methods in accuracy and is more robust under graph perturbations.

2 Related Work

Kernels for Graph Classification Traditionally, one of the most popular
graph classification tools over the past two decades were graph kernel approaches.
There is a wide variety of graph kernel frameworks, including marginalized ker-
nel [21], shortest-path kernel [2], graphlet kernel [35], Weisfeiler-Lehman graph
kernel [34], and Weisfeiler—-Lehman hash graph kernel [29]. These more classi-
cal graph-based kernels only consider generating graph level features through
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aggregating node representations. While powerful and expressive, the existing
kernel-based techniques suffer from limited ability to capture similarities among
higher order graph properties of local neighborhoods which in contrast can be
inferred from topological structures. To address this limitation, we propose a
new flexible topological meta-representation neural network model which cou-
pled with attention mechanism, enables the graph-based learning framework to
systematically incorporate higher order graph information both at the local and
global levels.

Neural Networks for Graph Classification There generally exist three
neural network-based approaches for graph classification: (i) GNN architectures
that encode both local graph structure and features of nodes [22,26, 28, 39, 41],
(ii) stable vectorizations of PDs within GNNs [1,46] or embedding multiple
graph filtrations [19], and (iii) kernelization of topological information within
GNNs [19,24,45,47]. In contrast, our approach is built upon meta-representation
of multiple kernelized PDs, that is, choice of topological meta-knowledge to meta-
learn. Armed with the proposed meta-representation machinery, we can then
exploit the relations between tasks or domains, and learning algorithms.

3 Background on Persistent Homology

Let G = (V, €) be the observed graph, where V denotes the set of nodes, £ denotes
the set of edges, and e,, € £ denoting an edge between nodes u,v € V. The
fundamental postulate is to view G as a sample from some metric space M whose
intrinsic topological structure has been lost due to sampling. Our goal is then to
regain knowledge on the lost structural properties of M via characterizing shape
of the observed graph G. The key approach here is to first associate G with some
filtration of G: let G; C Go C ... C G = G be a nested sequence of subgraphs, and
let C; be the simplicial complex induced by the subgraph G; (e.g., clique complex).
Then, the nested sequence of these simplicial complexes C; C Cy C ... C Cy, is
called a filtration of G. We then can track lifespan of shape characteristics of
G throughout this nested sequence of simplicial complexes. Such shape features
include connected components, loops, cavities, and more generally k-dimensional
holes. We detect them by means of a homology, an algebraic topological invariant.
To define the lifespan of a topological feature, we say that the feature is born
at Gy if it does not come from G,_1, and it dies at G4 (d > b) if the feature
disappears entering G4 [5]. Hence, its corresponding lifespan, or persistence is
d — b. The resulting persistent homology can be then coded as a multi-set D
of points in R?, called a PD, with 2 and y coordinates being the birth and
death of each topological feature, respectively. Since d > b, all points in D are
in the half-space on or above y = z. The multiplicity of a point (b,d) € 2 =
{(x,y) € R? : y > z} is the number of k-dimensional topological features that
are born at b and die at d, while points at the diagonal A = {(b,0)|b € R}
have infinite multiplicities. Finally, there exist multiple approaches to construct
a filtration of G [9]. One common method is to use a descriptor function (usually
conveys domain information) f : ¥V — R and a sequence of real numbers a; <
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as < --- < ag, one can define a nested sequence of subgraphs with G; = (V;, &;)
where V; = {v € V|f(v) < a;} and G; is the induced subgraph of G by V;, i.e.,
& = {ew € EJu,v € V;}. Similarly, for a weighted graph G = (V,€,w) and a
sequence of real numbers a} < ah < -+ < al, one can use the weights to define
Gj = (V},&;) with & = {ew € E|lwyy < a;} and V; = {v € Ve, € &}

4 Learnable Topological Meta-Representation for Deep
Attention Networks

4.1 Persistence Meta-Representation

In spirit of recent approaches to learnable PD vectorizations [6,18,24], we define
an individual representation function s of D as a composite function of three
point transformations in R* s =kor,0p: © — {f: 2UA — R}, where k is
a parametrized functional (e.g., the Gaussian kernel) such that k(z, —oc0) = 0,
p: R? — R? is a linear birth-lifetime coordinate transform such that p(x,y) =
(x,y—x), T, is a rationally stretched birth-lifetime, or spike point transform 7, :
Rx[0,00] = Rx (RU{—00}), n > 0, and O is a parameter space. Representation
of s as a composite function allows us to study PD parametrization over R? and,
hence, enables a more tractable mathematical formalism and application of a
broader range of weighting functions to distinguish topological features in terms
of their contribution to the learning task.

Based on the PH framework, we can obtain a set of different represen-
tation of topological signatures for the same input graph G by (i) consider-
ing different choices of simplicial complexes, (ii) using different filtering func-
tions, and (iii) defining G on different domains. Our idea is to harness com-
plementary information from multiple PDs and their learnable representations,
hence, capitalizing on the concepts of meta-analysis. In particular, here we fo-
cus on representation learning of persistence diagrams with respect to two do-
mains. Armed with the set of learnable representations s = {s1,82,...,80}
and a collection of PDs D = {D;,Ds,...,Dg}, we propose an aggregated,
i.e., a metarrepresentation, of multiple PDs. We first assign each dimension

i € {1,---,Q} a 2-dimensional base representation s;(x,y) (where (z,y) be-
longs to D;) and construct an aggregated representation with n-th order as:
Saggn (T,Y) = s [wil,m,in X PS5y - .,sin)}, where Q is the dimen-

1<i<ig<--<in<Q
sion of the input space; Z [ : ] refers to the aggregation scheme such as sum and
average; function ¢(-) takes multiple base representations as input and outputs
to a new representation — meta-representation; w is a weight controlling the effect
of corresponding meta-representation. For the sake of notation, we omit indices
of the base representation as s;(-). In particular, when n = Q, the Q-th order
meta-representation can be written of the form: s.g¢, (z,y) = ¢(s1,...,59).

To extract topological signatures from a graph G, we can compute persistent
homology directly from the observed graph G and from spectral descriptors of G.
The resulting persistence-based summaries contain complementary information
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and can be plugged into compatible learning representations via different kernel
types.

Option 1. Spectral domain: Following [6,32], we compute D for graph by
replacing original filtration with HKS for fixed diffusion parameter ¢ as the fea-
ture function. Given a real-valued function h(+;-) : R2 — R, set h(t; \g) = e~ .
The HKS p(+;-) : R? — R is defined as py(z,y) = > ooy e *ifp;(2)pi(y), where
A; and ¢; are the i-th eigenvalue and the i-th eigenfunction of the Laplace-
Beltrami operator, respectively. HKS on a graph G can be represented as p :
v — Yo e M2 (v), where v is a node of G, \; and ¢; are eigenvalues and
eigenvectors of the normalized graph Laplacian. Since the heat kernel can be
viewed as a low-pass filter, HKS contains information mainly from low frequen-
cies (and hence higher frequencies are suppressed by increasing t). To capture
all the low and high frequencies in G, we use a meta-representation to include
multiple PDs extracted from HKS with various diffusion parameters.

Option 2. Topological domain: To make the model invariant to changes
in position and orientation, rotation has been shown to significantly increase
classification and segmentation performance [13,23]. The key operation in the
topological domain is to produce transformed training samples of PDs and feed
them to the DL model. For a persistence diagram D, rotation augmentations
are done by rotating the points on the z- and y-coordinates by # degrees. In
machine learning terminology, these coordinates can be referred to as features.
This allows us to characterize the D generated by each data point as a compact
feature vector. The application of rotation augmentation to D allows us to encode
importance of different topological summaries in a vector representation.

Learnable PD Representation in the Topological Domain Let Ry :
R? — R? be a rotational operator for rotation by an angle §. Applying Ry to D re-
sults in Ry(D) = Dy = {(cos(6)z +sin(#)y, cos(d)y —sin(f)z) € R?|(x,y) € D}.
A PD can be rotated by multiple angles 8 = {61, ...,0x}, X > 2, where either 6;
is sampled from the uniform distribution U (0, 7) or 6 is a deterministic sequence
of angles. Number of rotated angles N is user-specified to meet computational
constraints. This rotational procedure provides a set of candidate latent features
for meta-learning [7,20].

What Are Advantages of the PD Random Rotation? Random ro-
tation of a PD achieves two interlinked goals: (i) improves the extraction of
prominent topological information from PDs and (ii) enhances learning the ring
of algebraic functions on PDs. On (i), topological features near the diagonal
A exhibit a higher level of uncertainty but may still contain useful informa-
tion for classification tasks [27]. Indeed, since we cannot explicitly define how
close a feature ought to be to A in order to be viewed as topological noise, we
aim to extract the signal out of such features under uncertainty. Note that since
0 ~ U(0, ), the range of topological feature lifespan in the rotation image Ry (D)
is (y — x,—y + z). As a result, features with a shorter lifespan in the original
unrotated space are stretched in the rotated space and may have a longer lifes-
pan. That is, intuitively, while we still give a higher weight to more persistent
features in the original space, upon rotation with a random angle 6, we attempt
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to assign topological features whose original lifespan may be shorter due, e.g., to
various uncertainties, a chance to contribute to the topological learning. Since
E[f] = ©/2 and, hence, the expected rotated lifespan of each topological fea-
ture translates to its mean point in the unrotated space, and vice versa, we still
incorporate the conventional lifespan characterization of PD. As a result, we
extract more signal out of all available topological features than the standard
TDA tools (i.e., in (i)), while the attention mechanism mitigates the impact of
including the potential topological noise. On (ii), random sampling of 6 in the
rotation operator Ry allows us to enrich the set of elements of the affine coor-
dinate ring (i.e., functions on the coordinatized PD space), thereby improving
learning of the associated algebraic variety under uncertainties. Such random
rotation may be also viewed as a semi-parametric bootstrap of lifespans of each
topological feature. To infer potential long-range and periodic relations in the
rotational transformation of PDs, we propose the generalized locally periodic
(GLP) kernel for rotated PDs.

Definition 1. Letp;,l;, pu;, a; € R, i =1,2. Then the generalized locally periodic
(GLP) kernel is nonnegative function R? — R, is defined as:

karp(z,y) = 0'26{72 s (S5 - (z;fflﬂ J

e{*QSing(%),%}.

(1)

X

The advantages of the generalized locally periodic (GLP) kernel are as fol-
lows: (i) compared to the Gaussian kernel, it is more appropriate to adopt a
periodic kernel that can reflect the similarities between different PDs and (ii)
strict periodicity is too rigid (i.e., the purely periodic kernel) since variance ex-
ists.

Lemma 1. The GLP kernel kgrp(w,y) is (a) Lipschitz continuous on R?, and
(b) positive semidefinite.

Proof. See Appendix A.1.
Furthermore, here we extend the rationally stretched birth-lifetime transform
of [18] and consider a generalized spike transform:

(@,y), y € [n,00),
T;n(xﬁy) = ($7 %77 - ﬁyzﬁ% Yy e (Oan)a (2)
(Z‘,—OO), = 07

where m € Z, m > 2.

Lemma 2. Let m € Z and m > 2, then T, is continuous on R x R and belongs
to a class C* of continuously differentiable functions on R x R .

Proof. See Appendix A.2.
Armed with Lemmas 1 and 2, we now show the key result needed to derive
stability of spor = kgrp © " o p.
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Lemma 3. ;I_I>I%)|(]€GLPOTn)y‘ < C for Rx [0,¢), C > 0.

Proof. See Appendix A.3.
Lemma 3 implies that kgrp o 7, is Lipschitz continuous and, hence, we can
derive stability of rotationally transformed PD representations.

Corollary 1 (Stability of Rotationally Transformed PD Representa-
tions). Following the rotational operator procedure, let Dy, and Dy, be two ro-
tated persistence diagrams by two angles (i.e., 01, 02) and let spor = karLp ©
7o p where 7" is defined by (2) and p: QUA — RxRxq. Then |sror (Do) —
sror(Do,)| < CW{(Dy,, Dy,), where C > 0 and

Wi(Do,, Do) = inf (3 = (@)ll)
:EGDgl

is 1-Wasserstein distance with ¢ € ZT, v ranging over all bijections between
Dy, UA and Dy, U A, and ||z||cc = max; |z;].

Proof. See Appendix A 4.

Learnable PD Representation in the Spectral Domain Based on the
multi-scale property of the heat kernel, for small values of ¢, the function p;(t)
is mainly determined by small neighborhoods of node ¢, and heat diffuses to
larger and larger neighborhoods as ¢ increases. This means p;(t) can capture
both local and global information from the view point of node ¢ when varying
t. Let D; be a PD obtained from graph G by using the multiscale heat kernel
p(t) with diffusion parameter ¢. Similar to [17,24,32], we consider the Gaussian-
based kernel as a representation for PD, but we utilize a higher-order Gaussian
kernel which can be beneficial for better distinguishing topological signals from
topological noise [36].

Definition 2. Let g = (p1,12) € R2, 0 = (01,02) € R2, and p = (py1,p2) €
Ri. We define the higher-order Gaussian (HOG) kernel through the following

equation:
P 2\ P1 _ 2\ P2
kHOG(xuy) e e<_<( ”%1) ) _((y 022) ) ) (3)

Note that kroc(x,y) belongs to class C*°(R?) and is Lipschitz continuous on
R2.

Similar to sgor, we derive the following theoretical properties on the learn-
able PD representation in the spectral domain, i.e., Lipschitz continuity in
Lemma 4 and stability of the PD representation using the HOG kernel.
Lemma 4. gl,ig%)‘(kHOG o Tn)y’ < C for R x [0,¢e), C > 0.

Proof. See Appendix A.5.
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Corollary 2 (Stability of PD Representations in the Spectral Domain).
Let Dy, and Dy, be two persistence diagrams over two diffusion parameters
(e.g., t1, t2) and let s;op = knog o 7, © p, where 7" is defined by (2) and
p:2UA—RxRsg. Then |s7op(Dy,) — stop(Dr,)| < CW{(Dy,, Dy,).

Proof. See Appendix A.6.

Persistence-Based Weight Mechanism Recall that points d = (z,y) €
D with a longer persistence (y — x) are likelier to contain intrinsic structural
information on the graph G, while points with shorter persistence tend to be
topological noise [?]. As such, assigning a higher weight to more persistent points

in D tends to improve classification performance. Here we consider a weighting
function F(z,y) = arctan(C((y — x))¢), where C' > 0 and ¢ € Z™.

Theorem 1 (Stability of the Weighted Kernel Embedding). Let D; and
Dy be two persistence diagrams. Let h(z,y) = F(x,y)s(x,y), where F(x,y) =
arctan(C((y — x))¢), C > 0 and ( € Z*, and s : 2|JA — R where s is either
sror (1) or srop (2). Then, for ¢ =1,

1Y by - S k)l < CWHDL, D).

(z,y)€D1 (z',y")€D2

Proof. See Appendix A.7.

4.2 Aggregated Attention Layer

We now proceed to construction of TopoAttn-Nets. First, note that HKS at lower
and higher values of t capture high- and low-frequency information, respectively.
Since higher frequencies are more sensitive to changes of ¢t than lower frequencies,
in a bid to capture the global and local information of input graph G, we propose
a new model, TopoAttn-Nets, that can learn relationships between spectral and
geometric information, including mixing feature representations of different fre-
quencies and transformations. As discussed earlier, aggregated representations
in machine learning constitute a powerful architecture allowing for automatic
combination of multi-source information. Contrary to [18,24,32], all key con-
stituents in the proposed TopoAttn-Nets framework — kernel locations, kernel
lengths, kernel scales, and the stretched parameter (i.e., parameters defined for
a meta-representation) are learnable during training. For any domain, we use
Dy, = {D119i’ e ,Dfx}, where ¢ = {1,2,--- ,I} and N is the number of PDs,
to represent a set of PDs over HKS diffusion scale ¢; (i.e., ¥; < t;) or rotation
angle 6; (i.e., ¥; < 6;). Finally, the TopoAttn-Nets can be formulated as:

®;o(a;8(Dy,) - @(l)) 1st-order

(+1) _ Cr
H - @i#jo'(otij[S(Dﬁi);S(Dﬁj)]@g-))7 2nd-order (4)
i<y
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where @ denotes concatenation of vectors, H(!*1) is the first-order feature vec-
tor, 91@ and Qg) are trainable weights in the layer, and o(-) is the activa-
tion function, e.g., ReLU(-) = max(0,-). Notice that function s(-) is either
sror(:) or srop(-), which depends on the type of Dy,. To make learnable
weights comparable across different components, we normalize them by a soft-
max operation. That is, (i) 1st-order: a; = exp (w;) />, exp (w;), where w; =
diag(&(D%i), _ ’S(Dé\i))? (ii) 2nd-order: c; = exp (w;j) /ZJ exp (wi; ), where
wiy = diag( X0 §(Df,), -+, X0y 8(D5,)) and §(Df,) = (Fla1,m)5,,

F(wo,y2)5 .+ s F(@ms ym),) (where F(Dj,) is the arctangent function for k-th
PD Dj and F(z,y) = arctan(C((y — x))¢) (every point (z,y) € Dj,, C > 0,
¢ € Z%)). Here m is the number of points in Djj . The relative architectures
of the feature vectors based on HKS at various diffusion parameters with the
A-th order and rotation by different angles with the B-th order can be written
as Hélkti) and H5™ | respectively (where A, B € {1,2}). We can now rewrite

rotp

the output Z!*1 = {H(Hl) H(Hl)} of the TopoAttn-Nets using column-wise

hksy » ““rotp
concatenation as Z(+1) = ®jH;l+1)7 where j € {hksa,rotp}.

|

¢ [ \t3 =P Attention Mechanism

Bl . ] -ty l
1 =t =
§ & S — -— —
3 - al 4]
E_ Set of PDs with diffusion parameters ¢ L L] g
2 2
& [ 5 = Attention Mechanism - =

)

§ o | o]

Togological Dom:
\

[

'
¥

‘ !
R

4

Set of Rotated PDs with angles 6 —

Fig. 1. Architecture of TopoAttn-Nets. A detailed description is given in Appendix C.

5 Experiments

For graph classification, we validate our method on the following standard graph
benchmarks: (i) biological frameworks MUTAG and PTC, where nodes represent
mutable and carcinogenic molecules, (ii) internet movie collaborations IMDB-
B and IMDB-M, where nodes are actors/actresses and edges are common movie
occurrences, and (iii) Reddit (an online aggregation and discussion website) dis-
cussion threads REDDIT-5K and REDDIT-12K, where nodes are Reddit users
and edges are direct replies in the discussion threads. Each dataset includes mul-
tiple graphs of each class, and we aim to classify graph classes. For all graphs,
we use the split setting of [18], that is, a 90/10 random training/test split. Fur-
thermore, we perform a one-sided two-sample ¢-test between the best result and
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Table 1. Performance summary (accuracy with standard deviation) on the graph
classification tasks.

Method MUTAG PTC IMDB-B IMDB-M REDDIT-5K REDDIT-12K
GK [35] 835 (0.6) 59.2 (0.5) 659 (0.3) 43.9 (0.4)  41.0 (0.2) 31.8 (0.1)
RetGK [44] 90.3 (1.1) 62,5 (1.6) 719 (1.0) 47.7 (0.3)  56.1 (0.5) 48.7 (0.2)
DGK [42] 87.4 (27)  60.1 (2.5) 67.0 (0.6) 44.6 (0.4)  41.3 (0.2) 32.2 (0.1)
RF [17] 89.0 (3.8) 61.5 (2.7) 71.5(0.8) 50.7 (0.7)  50.9 (0.3) 42.7 (0.3)
WL [34] 84.4 (1.5) 55.4 (1.5) 70.8 (0.5) 49.8 (0.5)  51.2 (0.3) 32.6 (0.3)
Deep-WL [42] 82.9 (2.7)  60.1 (2.5) ; - : ;
WWL [37] 87.3 (1.5) 66.3 (1.2) - - - -
P-WL [33] 86.3 (1.4)  63.1 (1.7) 72.8 (0.5) - ; .
P-WL-C [33] 90.5 (1.3)  64.0 (0.8) 73.2 (0.8) - - -
P-WL-UC [33] 85.2 (0.3)  63.5 (1.6) 73.0 (1.0) - : ;

PF [25] 85.6 (1.7)  62.4 (1.8) 712 (1.0) 48.6 (0.7)  56.2 (L.1) 47.6 (0.5)
WKPI [45] 88.3 (2.6) 68.1(2.4) 75.1 (1.1) 49.5 (0.4)  59.5 (0.6) 48.4 (0.5)
TopoGNN [19] - - 72.0 (2.3) - - -
TopoGNN stat) [19] - - 72.8 (5.4) - - -
sPBoW [47] _ : - 45.6 (5.4) 31.6 (2.8)
Pl [18] §9.8 (25) 635 (2.6) 712 (25) 488 (28)  46.7 (0.5) 35.1 (0.5)
Essential wy, [18] 90.0 (1.7)  63.0 (2.3) 73.5 (2.0) 52.0 (1.8)  54.5 (0.6) 44.5 (0.4)
DGCNN [43] 85.8 (5.5) 58.6 (T.1) 70.0 (0.8) 47.8 (3.4)  48.7 (4.5) -
GAT [38] 87.4 (5.3) 63.7 (8.2) 72.3 (5.1) 50.1 (3.6)  57.2 (2.2) ;
GraphSAGE [16] 85.7 (4.7)  63.9 (7.7) 72.3 (5.3) 50.9 (2.2) - -
CapsGNN [40] 86.7 (6.9) 66.0 (5.9) TL.7 (3.4) 485 (4.1) 529 (2.2) -
PSCN [30] 89.0 (4.4) 62.3 (5.7) 71.0(2.3) 452 (2.8)  49.1 (0.7) 41.3 (0.4)
GIN [41] 90.0 (8.8) 66.6 (6.9) 75.1 (5.1) 52.3(2.8)  57.5 (L5) .
GON [22] 85.6 (5.8) 64.2 (4.3) 74.0 (3.4) 519 (3.8)  56.7 (1.7) -
PersLay [6] 89.8 (1.5) . 71.2 (2.5) 48.8 (1.0)  55.6 (L1) 47.7 (0.9)
FC [31] 87.3 (0.7) 65.1 (3.9) 73.8 (0.4) 46.8 (0.4)  52.4 (0.4) ;
TopoAttn-Nets (ours) *~92.4 (1.5) 68.3 (5.1) 75.2 (2.1) *54.2 (0.6) 59.5 (0.5) 45.0 (0.5)

the best performance achieved by the runner-up, where *, ** *** denote signifi-
cant, statistically significant, highly statistically significant results, respectively.
The statistics of data we used in the Experiments section are summarized in
Appendix B, Table 1.

Baselines For graph classification, we perform an expansive evaluation the
performance of TopoAttn-Nets with respect to the 26 most recent state-of-
the-art (SOA) approaches: (i) graph kernel-based approaches: graphlet kernel
(GK) [35], deep graphlet kernel (DGK) [42], Weisfeiler-Lehman kernel (WL) [34],
deep variant of subtree features (Deep-WL) [42], graph-feature + random forest
approach (RF) [17], Wasserstein Weisfeiler-Lehman (WWL) [37], probability-
based graph kernel (RetGK) [44], persistent Weisfeiler-Lehman kernels (P-WL,
P-WL-C, P-WL-UC) [33], and Persistence Fisher kernel (PF) [25]; (ii) topolog-
ical information in kernel-based methods: Stable Persistence Bag of Words (sP-
BoW) [47], weighted-kernel for persistence images (WKPI) [45], and Filtration
Curves (FC) [31]; (iil) graph neural networks: PATCHYSAN (PSCN) [30], Graph
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Convolutional Network (GCN) [22], Graph attention networks (GAT) [38], Graph-
SAGE [16], Deep Graph CNN (DGCNN) [43], Graph Isomorphism Network
(GIN) [41], and Capsule Graph Neural Network (CapsGNN) [40]; (iv) topological-
based deep neural networks: persistence images (PI) combined with a convolu-
tional neural network [17, 18], essential features (Essential) combined with a
convolutional neural network [18], GNN augmented with global graph persis-
tence yielded from multiple filtrations (TopoGNN) [19], and the generic neural
network layer for persistence diagrams (PersLay) [6].

Parameters Setting In our experiments, We adopt the Adam optimizer for
our TopoAttn-Nets model training with an initial learning rate ir = 1 x 1073,

We fix the number of training epoch Table 2. Analysis of kernel hyperparame-

to 500 for all datasets. We train
the model using early stopping with
a window size of 200. To pre-

ters, attention mechanism, numbers of PDs
as input, and rotation angles. Classification
accuracy (st. dev.) on IMDB-B.

vent over-fitting, we use 1 x 107* kroc

Lo regularization on the weights, Kernel p=1.0 p=20
and dropout input and hidden lay- 72.0 (3.4) 75.2 (2.1)
ers. To analyze behavior of HKS, Attention mechanism
e, pt,x) = YZge Mpi(x)? W /o Attn With Attn
(where A; and @;(x) are the i- 740 (3.7) 176.2 (2.1)
th eigenvalue and the ¢-th eigen- Framework

function of the Laplace-Beltrami op- The number of PDs
erator, respectively) under differ- 1 PD 3 PDs
ent time values t and to cap- 71.0 (2.2) 75.2 (2.1)
ture all of the information contained Rotation angles

in the heat kernel, we set ¢ = Rotation 0 = 45° 6 = 90°
{0.1,1,5, 10,50, 100, 150, 200, 1000}. We 71.1 (1.1) 71.2 (4.6)

then conduct a random combination

method to determine the best combination of local and global information.
For topological signature rotation, the rotation could be implemented by
infinite angles among the range [0°,180°]. To avoid repetition and redun-
dancy, we rotate topological signatures at the set of angles 0, ie., 8 =
[0°,30°,45°,60°,90°,120°,135°,150°,180°] and find an optimal combination of
topological information through random combination method. Since points near
the diagonal in the persistence diagram D have shorter lifetimes (i.e., y — x)
and are considered “topological noise”, we determine the number of persis-

tent pairs for model training through argsort(f(D))[—num_pairs :], where
f(D) = (y1—x1,92— 22, , Ym — L) and num_pairs is the minimum number
of persistent pairs in PDs {Dy,--- ,Dx} for each graph in the dataset.

Graph Classification Table 1 reports results of mean accuracy and stan-
dard deviation across all models tested. The proposed model outperforms 26
SOAs on 5 benchmark datasets, except for REDDIT-12K. Compared to baseline
methods, which extract PDs from only one domain, TopoAttn-Nets combines
multi-frequencies and topological information across different domains in a sin-
gle framework. RetGK outperforms our proposed model on the REDDIT-12K
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dataset may be due to REDDIT-12K has the weakest structural information, i.e.,
with very few links per node on average (its average density ~ 2 x 1075 which is
too sparse to deliver sufficient information on higher-order topological properties.
In addition, for attributed graphs (i.e., MUTAG and PTC), TopoAttn-Nets still
outperforms GCN-based approaches which use additional node features/labels,
because kernel-based meta-representation equipped with neural network archi-
tecture can extract aggregated information from different scales that greatly
benefits graph classification tasks.

Ablation Study To better evaluate the performance of TopoAttn-Nets,
we conduct a comprehensive ablation study on IMDB-B (see Table 2) by test-
ing (i) kernel hyperparameters, (ii) attention mechanism (Attn), (iii) the num-
ber of PDs as input to our TopoAttn-Nets model, and (iv) rotation angle.
The pe_rforrnances of TopoAttn-Nets Table 3. Learned attention weights amnks
with different (kernel) hyperparam- .4 vy of TopoAttn-Nets for multi-
eters indicate that kernel hyperpa-  frequency and topological features.

rameters enable control the effect of PDataset Learned value
persistence, i.e., extracting meaning- "Attention weights|anes  Qrot
ful information via a good approxi- TMDB-B 0.53 0.47
mation of the kernel. The comparison  \VDB-M 0.60 0.40
between with and without attention REDDIT-5K 0.4 0.58
mechanism shows that adding atten- REDDIT-12K 0.32 0.68

tion mechanism can help capture im-
portance of different PDs. Examining the results of different PDs as input, we can
observe that a large improvement brought by applying multiple PDs to the in-
put of TopoAttn-Nets. Comparison among different rotation angles underscores
contribution of rotations to variability.

Sensitivity and Robustness We evaluate robustness of TopoAttn-Nets
w.r.t. adversarial attacks on REDDIT-5K. Here we consider graph structural
perturbations of [48]) and present a comparison against two runner-ups which
are the closest competitors of TopoAttn-Nets, namely, WKPI [45] and GIN [41].
Table 4 indicates that TopoAttn-Nets outperforms SOAs both in terms of ac-
curacy and standard deviation under all attacks. Hence, TopoAttn-Nets may be
viewed as the most reliable and accurate alternative under perturbations.

Table 4. Classification accuracy (st. dev.) under adversarial attack on REDDIT-5K.

Method Perturbation Rate

0% 5% 10% 15%
WKPI [45] 59.5 (0.6) 51.3 (3.3) 50.5(2.2) 50.0 (2.0)
GIN [41] 57.5 (1.5) 51.2 (3.5) 49.0 (1.5) 47.7 (1.6)

TopoAttn-Nets 59.5 (0.5) 51.9 (2.9) 51.2 (2.3) 50.1 (1.4)

Relative Importance of Features Table 3 reports the TopoAttn-Nets
learned attention weights. Interestingly, we notice the attention weight of the
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multi-frequency feature is larger than that of topological feature for smaller
graphs (i.e., biological and internet movie collaboration graphs). That is, the at-
tention component reveals the relative importance of intrinsic finer- or coarser-
grain variability in the data shape. For example, in learning tasks for sparser
graphs, local variability often tends to be the key factor. Table 3 shows that in-
deed topological features addressing finer-grain shape properties of very sparse
REDDIT-5K and REDDIT-12K, with average diameters of 11.96 and 10.91 and
densities of 0.90 and 1.79, respectively, tend to be more valuable for classification.
This also implies that importance of multi-frequency or topological information
might depend more on the graph size rather than the specific type of data.

Computational Costs Complexity of computing distances among PDs is
O(m?), where m is the number of points. All experiments are compiled and
tested on a Tesla V100-SXM2-16GB GPU. Table 5 reports average running time
to generate PDs and mean training time per epoch of TopoAttn-Nets on IMDB-B
and REDDIT-5K, respectively.

Table 5. Complexity of TopoAttn-Nets: average time (in sec). to generate PD and
training time per epoch.

Avg. Time Taken

Dataset Avg. points in PD PD generation Train per epoch

IMDB-B 84.51 6x1073 1.15
REDDIT-5K 521.35 5x1071 0.53

6 Conclusion

We have developed a new flexible framework for meta-representation of per-
sistence information in graphs, which may be viewed as the first step toward
topological meta-learning on graphs. We have derived stability guarantees of
the proposed approach and assessed its robustness to perturbations. The ex-
haustive experimental validation has indicated high competitiveness of the pro-
posed meta-representation ideas in respect to the benchmarks. Future research
include multiple directions. First, we will explore few shot concepts for topo-
logical meta-learning on graphs. Second, we will investigate utility of topologi-
cal meta-representation for link prediction. Third, we will explore the proposed
meta-representation and attention ideas in conjunction with multiparameter per-
sistence [11] and local topological algorithms [10,46].
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