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Abstract. Training parameterized quantum circuits (PQCs) is a growing
research area that has received a boost from the emergence of new hybrid
quantum classical algorithms and Quantum Machine Learning (QML) to
leverage the power of today’s quantum computers. However, a universal
pipeline that guarantees good learning behavior has not yet been found,
due to several challenges. These include in particular the low number of
qubits and their susceptibility to noise but also the vanishing of gradients
during training. In this work, we apply and evaluate Triplet Loss in a QML
training pipeline utilizing a PQC for the first time. We perform extensive
experiments for the Triplet Loss based setup and training on two common
datasets, the MNIST and moon dataset. Without significant fine-tuning
of training parameters and circuit layout, our proposed approach achieves
competitive results to a regular training. Additionally, the variance and
the absolute values of gradients are significantly better compared to
training a PQC without Triplet Loss. The usage of metric learning proves
to be suitable for QML and its high dimensional space as it is not as
restrictive as learning on hard labels. Our results indicate that metric
learning provides benefits to mitigate the so-called barren plateaus.

Keywords: Metric learning · Quantum Machine Learning · Parameter-
ized Quantum Circuits.

1 Introduction

In recent years, Quantum Machine Learning (QML) has become a highly active
and promising field of research starting to leverage the enormous potential
of Quantum Computers (QC) [7]. Current devices of the noisy intermediate-
scale quantum (NISQ) era are still error-prone and unable to process large-
scale datasets due to the coupling between algorithm complexity and noise [22].
However, through tremendous efforts, multiple advances have been made in both
theory and practice to use QCs in and for machine learning [26,28].

Parameterized quantum circuits (PQCs), also referred to as Quantum Neural
Networks (QNNs), are one of the most studied aspects of QML as their structure
and trainable parameters are reminiscent of neural networks [18]. Hoping to
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Fig. 1: Overview of our proposed Triplet Loss approach and the two pipelines
for training and evaluation. A parameterized quantum circuit is used to create
an embedding of the inputs for anchor, positive, and negative that are required
for Triplet Loss. During training, these embeddings are taken to minimize the
Triplet Loss. In the evaluation, the embeddings of the training set are used for
training a linear SVM classifier. The accuracy of the trained quantum model is
evaluated based on the embeddings of a dedicated test set.

achieve similar leaps in machine learning tasks as their classical counterparts,
particular attention has been focused on training PQCs. So-called barren plateaus,
where the gradients vanish towards zero with an increasing number of qubits,
often hinder successful training [17]. Although advances have been made towards
mitigating these effects [5,9,26], there is still no universal answer to guarantee
good learning behavior. Despite many proposed methods, effectively using classical
data on QCs remains a challenge as well. Since PQCs are part of a hybrid quantum-
classical training loop, the embedding of features into the quantum model and the
interpretation of measurements for the loss function have to be studied further.

In this work, we propose to approach training PQCs from a new angle by
applying a ranking loss function from the task of metric learning. These loss
functions do not aim to get a model output that corresponds to a label for
classification but optimize the relative distances between different inputs in the
embedding space of the model [13]. Intuitively, we expect this to be a viable
application of quantum computers for two reasons: On the one hand, entanglement
of qubits allows to represent a huge embedding space internally, quadratic in the
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number of qubits. On the other hand, the measurement used to transition from
quantum to classical state corresponds to a scalar product between quantum
states, suitable as a native metric computation.

In particular, we propose to apply the so-called Triplet Loss which has been
used to great effect for the training of classical neural networks [23]. This choice
is somewhat arbitrary with respect to similar loss functions from metric learning
such as contrastive loss. While we expect triplet loss to better populate the
embedding space, a thorough evaluation of different metric loss functions is out
of scope for this paper.

For triplet loss, as for any ranking loss function, similar inputs, i.e. inputs
with the same class, should generate model outputs in proximity to each other.
Analogously, non-matching inputs should be further apart in the embedding space.
In this way, the model does not need to create a specific output for each input
but can make use of the entire embedding space. By transferring this kind of loss
function and training scheme onto quantum devices, training of PQCs is more
unrestricted and can make use of the full range of the underlying computational
space, the so-called expressibility.

To demonstrate the applicability of Triplet Loss for training of PQCs, we
run several experiments on the moon [1] and MNIST [15] datasets. For this
purpose, we implement two pipelines for training and evaluating our approach,
which can be seen in Fig. 1. During training, the Triplet Loss is used to optimize
the embeddings calculated by using a PQC by maximizing distances between
dissimilar samples and minimizing distances for similar samples. With our work,
we aim to show that Triplet Loss can achieve comparable results to training
as it is currently common in the literature. In addition, higher gradient values
indicate that the approach could achieve better learning behavior with larger
circuits on NISQ devices. While metric learning is not new in the area of quantum
computing [16,27], it has neither been used in the regime of PQCs nor has it
been evaluated with respect to variances of gradients during training.

The paper is organized as follows. In Section 2 we give a brief overview on
QNN and QML as well as the training of PQCs and discuss related work. This is
followed by the basics on metric learning and Triplet Loss in Section 3, which are
necessary to understand our approach in Section 4. Our experiments, datasets,
and results are presented in detail in Section 5 We conclude in Section 6.

2 Quantum Neural Networks and Quantum Machine
Learning

Quantum Neural Networks (QNNs) can be thought of as a generalization of
Deep Neural Networks (DNNs). While in both cases a classical optimizer updates
the models parameters θ to minimize a predefined loss function L, the main
difference lies in the model to be trained, as illustrated in Fig. 2. In the case
of QML, the model is based on the principles of quantum mechanics such as
superposition, entanglement and interference. In practice, there are numerous
realizations of QNN models but most architectures share the same structure:
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Fig. 2: Common quantum machine learning pipeline to train a parameterized
quantum circuit. The parameterized quantum circuit is composed of three parts:
the data encoding Uφ(x), variational circuit Uθ and measurement. The variational
circuit has up to l layers. The training runs on n qubits. Measurement results
are fed into a classical loss function that is used by a classical optimizer for
minimization and update of θ. The QML pipeline is denoted as hybrid as a
quantum and classical part are jointly used to harness the power of quantum
computers.

Parameterized Quantum Circuits [2,4]. The hope is that with QNNs the power
of quantum computers can be harnessed to outperform DNNs for specific use
cases or quantum data.

A circuit contains any number of gates that are assigned to one or more
qubits. Gates can transform the quantum state of each qubit they are assigned
to corresponding to computational steps on a classical computer. In the visual
representation of a circuit, the individual qubits are shown as a horizontal line.
The structure of the circuit and thus the arrangement and composition of the
gates is often referred to as an ansatz.

A PQC constitutes three parts: an encoder circuit Uφ(x) parameterized by
the vector φ(x), a variational circuit Uθ parameterized by a vector θ, and the
measurement part M . In this case φ(·) relates to a preprocessing scheme that
maps the input data to a vector that can be applied on the circuit. For each
of these parts different gates can be chosen to describe transformations of the
quantum state. While the selection, composition, and evaluation of a proper
ansatz is not part of this paper, this is still a highly relevant field of research [3,4]
impacting the trainability and practical usefulness of PQCs.

Purpose of the encoding part is loading classical data by encoding it into
the quantum state of the qubits. In literature, there are many data encoding
methods [14,19] and research is still ongoing as the data encoding itself is relevant
to enable high expressibility of PQCs [24]. Some well-known approaches are for
example (i) basis encoding, (ii) angle encoding, or (iii) amplitude encoding. For
further details regarding data encoding as well as theoretical aspects of quantum
computing we refer the interested reader to the work by Nielsen and Chuang [19].
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Once the classical data sample is prepared, the variational circuit Uθ is applied
to this state. This trainable part Uθ consists of trainable single-qubit quantum
gates and fixed two-qubit quantum gates. Here, the weights known from classical
NNs are in the form of rotational parameters. As with the encoding part, the
variational circuit can be composed in different ways where using more gates
enables higher expressibility but also challenged trainability [11]. One important
concept that has established in literature is the hardware-efficient ansatz that
introduces a layered structure where the placement of gates is equal in each layer
l but parameterized by an own set of trainable parameters θl. The variational
circuit Uθ is the sum of all its layers, that is Uθ =

∏L
l=1 Uθl where L is the number

of layers.
This processing step is followed by the quantum measurement to extract

quantum information into its classical form. During measurement of a single
qubit, its quantum state collapses to one classical single value, 0 or 1. Therefore,
most QML approaches require a number of shots for measurements to estimate the
expectation value with high probability, e.g. 1, 000. The extracted information can
either be used directly as a predicted label e.g. in case of quantum classifiers [14,27]
or a hidden feature depending on the appropriate QML pipeline.

The whole QNN pipeline is commonly trained and executed in a hybrid
fashion to accommodate for current NISQ devices while still being able to explore
the potential advantages such as speed-ups in training and processing. While the
PQC is purely based on principles of quantum mechanics, other parts including
optimization are primarily done in a classical fashion. Much development in
combining quantum and classical models has already been done by the community,
but systematic research on the trade-offs and potential advantages is still ongoing.
Furthermore, especially the generalization error of QML is of interest that directly
depends on the training error. Thus, our approach complements these studies by
evaluating the use of Triplet Loss in the QNN training pipeline.

2.1 Related Work on Training Parameterized Quantum Circuits

The trainability of PQCs is paramount to advance the field of QML. However, as
mentioned before the expressibility of a quantum circuit challenges its trainability
and comes along with the effect of exponentially vanishing gradients in the
number of qubits, as a function of the number of layers, the so-called barren
plateaus [17].

Different strategies have been proposed to mitigate barren plateaus, e.g. by
initializing the parameters of variational circuits in form of identity blocks [9], or
by pre-training a variational circuit based on layerwise learning strategies [26]
as has been shown to provide good results in classical machine learning [10].
However, most of these strategies do not strictly guarantee to prevent barren
plateaus during training.

The authors in [8,21] show that there are specific hierarchical architectures of
hybrid quantum-classical models that are immune to barren plateaus. However,
this massively restricts the available ansätze in a way that has not been explored
yet.
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But not only barren plateaus have an influence on the trainability of PQCs
but also the composition of ansatz and handling of local minima. However, we do
not want to focus on those criteria but want to evaluate the loss function. Here,
we focus on a well-functioning method from metric learning, the Triplet Loss.
Further we also care about noise robustness, that is the functioning with lower
number of layers and small number of qubits as deep circuits are not useful in
the NISQ era.

3 Metric Learning and Triplet Loss in Classical Machine
Learning

The task of metric learning is closely related to ranking loss functions. In contrast
to most loss functions where the output of a model is compared to a corresponding
label or specific value, they predict relative distances between inputs, x ∈ X.
The model is a function fθ(x) : RD 7→ RC that maps the D-dimensional input
into a C-dimensional embedding space. During training, its parameters θ are
updated according to the current loss value. The objective of the loss function is
to ensure that semantically close inputs are also metrically close in the embedding
space [13]. To do so, a similarity score between the points of the dataset has
to be known. This can be realized for example based on class labels. The class
labels can be interpreted as a binary score, i.e. the points belong to the same
class or a different one, which is sufficient for many ranking loss functions [12].

This binary score is also utilized for Triplet Loss which was introduced by
Schroff et al. [23]. In their work, the authors introduce Triplet Loss as a metric
learning approach in the context of face recognition with a Deep Neural Network.
In each training step i, a triplet of face images is drawn from the training set X.
The triplets consist of a so-called anchor xai , a positive xpi , and a negative xni .
Aim of the approach is that the image of the anchor xai representing a specific
person is closer to all images xp of the same person than to images of another
person xn. Following the idea of metric learning, the loss function is:

LTL(x
a
i , x

p
i , x

n
i ) = max(‖fθ(xai )− fθ(x

p
i )‖

2 − ‖fθ(xai )− fθ(xni )‖2 + α, 0). (1)

The relative distance between the embedding of the anchor and the positive
should be close and the distance between the anchor and the negative should
be large. The parameter α enforces a margin between the two pairs. When the
distance between the two pairs is greater than α, the loss becomes zero in this
step.

Schroff et al. [23] cut the error rate in comparison to the best published result
by 30% on two datasets achieving new state-of-the-art results. The comparison
is especially impressive since their approach has a much better representational
efficiency using an embedding dimension of only 128.

Deep Metric Learning has become a highly active field of research achieving
state-of-the-art results on many datasets [12].
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4 Training a Parameterized Quantum Circuit with Triplet
Loss

Our approach aims to combine the idea of Triplet Loss with the training of a
parameterized quantum circuit. In regular training with a Cross-Entropy Loss,
PQCs operate in high-dimensional space that is reduced to a single value by
the measurement and then compared to the corresponding label. By applying
Triplet Loss, our circuit is less restricted and more easily able to leverage the
high-dimensionality of Quantum Computing.

As shown in Fig. 1, we split our approach into two parts: i) the training of a
model based on a PQC with Triplet Loss; and ii) the evaluation of the model
with a classical linear support vector machine (SVM) [6]. In each training step,
we run the PQC with the same parameters θ and encode three different inputs
given a specific labeled input dataset: an anchor, a positive of the same class,
and a negative of a different class. The PQC is used to create an embedding of
each of the inputs. The dimensionality C of these embeddings is defined by the
number of measurement operators, i.e. the number of measured qubits, of the
circuit. The calculation of the Triplet Loss based on the three embeddings is
unchanged in comparison to the classical approach, see eq. 1. The computation
of gradients and update of circuit parameters are done with the parameter-shift
rule [25]. Roughly speaking, this means the gradient of parameters ∇θfθ(x) can
be calculated from a finite parameter shift s as ‖fθ−s(x)− fθ+s(x)‖. In effect,
this allows us to derive the gradients of parameters of a parameterized quantum
circuit using the same circuit.

To evaluate the model and perform classification on unknown data, we train
a linear SVM with the embedded training data which we obtain by running each
data point through the trained PQC. For evaluation of the test data, we use the
same circuit pipeline to obtain the respective embeddings which are subsequently
classified by the trained SVM.

Since current NISQ devices only have a limited amount of qubits, training on
high-dimensional data is not possible. Therefore, one either has to use datasets
with low dimensionality or perform a dimensionality reduction for the circuit’s
input. For the latter, we include a preprocessing step into our training and
evaluation pipelines. This preprocessing step reduces the inputs to D-dimensional
features to not exceed the number of available qubits and thus enables encoding
them onto the circuit.

The model represented by the PQC can be expressed as follows:

fθ(q
D) = 〈0⊗n|U†(qD, θ)M⊗CU(qD, θ)|0⊗n〉 , (2)

Here, 〈0⊗n| and |0⊗n〉 are the initial state of n qubits in the quantum computer.
The operations to transform this initial state, according to our input vector qD
and the parameters θ to optimize, are expressed by the unitary operator U(qD, θ)
equivalent to the gates of our circuit. Finally, M⊗C is a measurement M applied
to C output qubits of interest. Notably, C ≤ n since some qubits are used for
computations only.
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5 Experiments

In the following, we present the setup of our experiments and the corresponding
results. For a better understanding and reproducibility of our work, we first discuss
the two datasets and the chosen constraints. We then analyze the accuracy of
the trained models in light of our proposed approach. Finally, we examine the
behavior of the gradients in the circuit. All our used datasets as well as the source
code is publicly available for better reproducibility [29].

5.1 Datasets

For our work, we perform experiments on the moon dataset [1] provided by
scikit-learn [20] and the well-known MNIST dataset [15] from classical ML. The
moon dataset is a toy dataset of two interleaving half-circles on a two-dimensional
plane. Each of the half-circles represents a different class and consists of 1250
data points in our experiments. Depending on a settable variable, noise can be
added when the dataset is created to make the learning task more difficult. As
the number of features of this dataset is two, no dimensionality reduction is
required to encode the data onto the circuit. The only preprocessing step required
is scaling the values to the range [0, π].

The MNIST dataset consists of grayscaled images of handwritten digits with
respective labels zero to nine. Each image has a size of 28×28 pixels and therefore
is too large to be directly encoded on current QCs. Still, we chose to perform
our experiments with this dataset as it is commonly used for various quantum
classifiers and QML experiments. To reduce the number dimensionality of the
dataset, we train a classical autoencoder. We prefer this preprocessing pipeline
over using a principal component analysis (PCA) for dimensionality reduction as
commonly done [26] as an autoencoder evenly distributes the sample information
in the features. Our tests show that data generated by PCA is unbalanced leading
to an easy classification task as the model can concentrate on a few or even one
feature for good classification. After reducing the images, we scale the feature
values to the range [0, 2π] allowing better encoding.

Both datasets are divided into a training set and a test set. The training set
consists of 2500 and the test set consists of 500 samples for both datasets. In
both cases, the class labels are evenly distributed.

5.2 Parameter and Ansatz Selection

During the training phase (see Fig. 1), the triplets are chosen randomly from
the training set. To make our experiments comparable, we run each experiment
with n = 12 qubits. This is sufficient for up to 8 output qubits plus auxiliary
qubits for complex computations. We chose to limit the number of features of
the MNIST dataset to eight for every ansatz. We keep the Triplet Loss specific
parameter α (see Eq. 1) at 1.0 since our experiments showed that different values
appear to have no positive effect on our selected setup.
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|0〉 RX(q0) RX(θ0,0) RY (θ0,4)

|0〉 RX(q1) RX(θ0,1) RY (θ0,5)

|0〉 RX(q2) RX(θ0,2) RY (θ0,6)

|0〉 RX(q3) RX(θ0,3) RY (θ0,7)

Encoding Layer 0 Measurement

Fig. 3: Our chosen ansatz exemplarily visualized for four qubits and an embedding
dimension of two. All qubits are initialized to the zero-state. The ansatz consists
of the encoding part and one variational circuit layer with parameterized RX and
RY gates as well as entangling CZ gates. The variational layer can be repeated
several times before measurements take place. Whithout any changes, this circuit
can equally be used with Cross-Entropy Loss as well as Triplet Loss for a dataset
with two classes.

As shown in Fig. 3, our ansatz is composed of a data encoding, a variational
circuit as well as a measurement. For data encoding, we use angle encoding
with RX gates to encode the classical data. Following the data encoding, we
employ a variational circuit with parameterized gates RX and RY as well as
non-parameterized entangling CZ gates. We use ten layers of the variational
circuit during experiments and the analytical mode to get the exact expectation
values of the measurements. Although our experiments show a better results
for ZZ observables for measurements, we use a simple Z measurement as this
allows for direct comparison with the associated ansatz for Cross-Entropy Loss.
Furthermore, a simple Z measurement requires only one qubit while a ZZ
measurement needs two qubits. This allows to perform extensive experiments
with varying numbers of embedding dimensions. We conduct experiments for
embedding dimensions from two to eight for up to three classes.

To evaluate the proposed Triplet Loss (TL) approach, we set up a second
pipeline training a circuit commonly done in the literature and described in Sec. 2.
So for each class, we measure one corresponding qubit and calculate a regular
Cross-Entropy (CE) Loss in each training step:

LCE(x, y) = −
∑

y ∗ log(fθ(x)), (3)

where x is the input, y the corresponding label and fθ the model represented
by the PQC. Therefore, this pipeline does not need a subsequent SVM to perform
classification and evaluate the model as the highest expectation value is interpreted
as the model’s prediction. In contrast to our Triplet Loss approach, the output
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Table 1: Average accuracy for varying embedding dimensions on the Moon and
MNIST datasets for ten runs. For better comparibility, accuracies of TL are
evaluated after 2000 training steps while 6000 training steps are considered for
CE runs.

TL - Embedding Dimension

Classes 2 3 4 5 6 7 8 CE

Moon Dataset
2 0.873 0.874 0.875 0.875 0.875 0.875 0.874 0.844

MMNIST Dataset
2 0.775 0.788 0.803 0.817 0.843 0.843 0.853 0.800
3 0.786 0.801 0.834 0.853 0.866 0.873 0.884 0.767
4 0.578 0.612 0.651 0.695 0.735 0.755 0.754 0.620

dimension of the circuit is fixed by the number of classes. For the moon dataset,
the number of classes is 2. For the MNIST dataset we conduct experiments for
2, 3, and 4 classes. To ensure comparability, the number of qubits, layers, and
the ansatz is identical for TL and CE runs. Although the number of gradient
updates is the same with 2000 training steps respectively, it is in the essence
of Triplet Loss that the circuit has to be called three times as much. Therefore,
we ensure that each CE run uses three times as many steps to make the results
better comparable.

5.3 Results

Tab. 1 shows the accuracy for up to eight embedding dimensions averaged
over ten runs for each experiment for the Moon and MNIST dataset. The
Triplet Loss approach can always outperform the regular Cross-Entropy training
given an appropriate number of embedding dimensions. In all cases, even for
small embedding dimensions of no more than four, the Triplet Loss rivals the
Cross-Entropy approach within a few percentage points. Additional embedding
dimensions improve the performance of Triplet Loss consistently beyond Cross-
Entropy.

For both datasets, a higher number of embedding dimensions for the Triplet
Loss leads to better separation and thus better accuracy. However, this effect
seems to stagnate in case of limited expressibility of the model. This can be seen
for the MNIST dataset with four classes at seven or more embedding dimensions
and the Moon dataset. The accuracy seems to converge, suggesting no further
improvements with increasing number of embedding dimensions. However, a
much larger number of experiments would be necessary to identify dependencies
and regularities. But since a higher number of measurement operators would
also lead to a higher number of qubits and thus larger circuits, trainings on
current hardware and simulators would be computationally expensive and hard
to compare.
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(a)

(b)

Fig. 4: Test set output after 50 (left) and 2000 (right) training steps for the moon
dataset (a), and digits 3 and 6 of the MNIST dataset (b). The top and bottom
as well as left and right figures share the same x- and y-axes. The bigger symbols
represent the respective center of the clusters. The black line is the linear decision
boundary determined by the SVM.

A drop in accuracies can be noted for the MNIST dataset when comparing
the different classes grouped by their respective embedding dimensions. While
the accuracies slightly improve from two and three classes, there is a decrease of
the accuracy for four classes. This suggests that the expressibility of the model is
not sufficient to learn an efficient embedding. Future experiments should consider
increasing the number of layers.

As shown in Fig 4 for two classes on both datasets, the learning behavior
corresponds to the intended one: In the course of the training, the two centers
of the clusters are pushed further and further apart and the separation of the
two classes becomes clearer. The two different runs also underline that Triplet
Loss does not specify the location of the clusters and the mapping. While for the
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(a)

(b)

Fig. 5: Test set output after 50 (left) and 2000 (right) training steps for the
MNIST dataset for the three digits 3, 6, and 9 (a) and the four digits 3, 4, 6, and
9 (b). The top and bottom as well as left and right figures share the same x- and
y-axes. The bigger symbols represent the respective center of the clusters. The
black line is the linear decision boundary determined by the SVM.

moon dataset shown in Fig 4a the whole test dataset is mapped on a straight line,
the two digits of the MNIST dataset shown in Fig 4b form two separate round
clusters. This behavior can also vary for comparable runs of the same dataset
with a different parameter initialization.

Fig. 5 shows the SVM output after 50 and 2000 training steps. Fig. 5a and 5b
confirm the numerical results for three and four classes respectively. While the
separation of three classes is fairly distinct with good numerical accuracy, Triplet
Loss cannot clearly separate four digits of the MNIST dataset. For four classes,
three classes are separated well but the fourth one is spread across all regions. A
modification of the original Triplet Loss equation to encourage a broader mapping
might be a possible solution.



Training Parameterized Quantum Circuits with Triplet Loss 13

(a) Accuracy (b) Loss (c) Gradients

Fig. 6: Comparison of Triplet Loss (red) with a Cross-Entropy (blue) training
regarding the accuracy, the loss curve and the average absolute gradient during
2000 steps.

During the training of classical models, the triplet selection has a direct
influence on the performance and progression of the training and is one of the
most studied questions in the field of metric learning [30,31]. Although this was
not the focus of our work, we notice that a random selection seems to work best.
Selecting hard triplets, where the negative is close to the anchor and the positive
is further away, does not lead to any learning. But to further improve scores and
derive conclusions, more experiments are needed.

Fig. 6 shows a comparison of various metrics during a training with Triplet
Loss and with a Cross-Entropy Loss. In both experiments, the accuracy (see
Fig. 6a) quickly reaches a very high value, which can hardly be improved in the
course of the training. This similar behavior also becomes apparent in the two
loss curves in 6b although both curves differ significantly in their absolute values
which is due to the different calculation of the two losses. However, it can be
seen that the Triplet Loss continues to show large fluctuations during training,
whereas the Cross-Entropy Loss remains much more steady. An explanation for
this is provided by looking at the average absolute gradients in the entire circuit,
shown in Fig. 6c. Gradients for Triplet Loss are much higher and allow further
adjustments of the weights during the entire training.

5.4 Gradients

To further investigate the behavior of the gradients, we undertake similar ex-
periments to McClean et al. [17] in their work on barren plateaus. We therefore
analyze the variance of the first parameter in the first layer across different runs
for the two experiment setups. The resulting variances of gradients are shown
in Fig. 7. The blue lines show the behavior of the Cross-Entropy based training
while the red lines show the behavior for the Triplet Loss based training. As can
be clearly seen from the blue lines, we can reproduce the behavior of exponentially
vanishing gradients towards zero as a function of the number of qubits as reported
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Fig. 7: Variance of the gradient for the first parameter over 100 runs. For the
Triplet Loss approach (red) and the regular Cross-Entropy approach (blue). The
different lines correspond to all even numbers of qubits between 4 and 16, starting
from 4 quits at the top of the respective color panel.

by McClean et al. [17]. This implies that random initializations can cause the
gradient-based optimization to fail.

For the Triplet Loss based training, a different behavior can be observed:
While the gradient continues to decrease with an increasing number of qubits,
it increases again with a higher number of layers. First, for qubit counts up to
eight, the Triplet Loss based approach shows significantly higher variances of
gradients. For ten qubits, the variances are comparable but improve significantly
for layer counts bigger than 50. This can also be observed for bigger qubit counts.
Thus, training with a higher number of layers may work with Triplet Loss, while
a regular pipeline may not be able to learn because of effects of a barren plateau.
This is also true for training circuits of arbitrary size on NISQ devices, where a
small gradient is hardly distinguishable from noise. To investigate this further
and to get insights on the scalability, a large number of computationally intensive
simulations and extensive training on NISQ devices are required.

6 Conclusion

In this work, we have demonstrated the applicability of Triplet Loss for training a
parameterized quantum circuit in a Quantum Machine Learning pipeline. For this
purpose, we compared our pipeline in extensive experiments with a Cross-Entropy
approach that is currently prominently used in literature. On two datasets, we
were able to demonstrate competitive accuracies for both loss functions. As
intended, using metric learning our models were able to consistently separate the
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given classes. As our evaluation used a fixed circuit layout and thus computational
power, for higher numbers of classes modifications of the Triplet Loss function
and ansatz are conceivable to further improve the scores.

The observed high gradient values during training are particularly promising:
These are significantly higher than those observed in conventional training on
a QC. Still, owing to the current limitations of hardware and simulations our
experiments were limited to a small number of layers. It remains a task for future
work to explore scalability and generalizability on larger circuits. In the best case,
Triplet Loss reduces the impact of barren plateaus and thus improves training in
the area of QML. Especially in the NISQ era, a stronger gradient would improve
the robustness against noise and thus increase the applicability of QML.
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