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Abstract. Collections of time series can be grouped over time both
globally, over their whole time span, as well as locally, over several com-
mon time ranges, depending on the similarity patterns they share. In
addition, local groupings can be persistent over time, defining associa-
tions of local groupings. In this paper, we introduce Z-Grouping, a novel
framework for finding local groupings and their associations. Our solu-
tion converts time series to a set of event label channels by applying a
temporal abstraction function and finds local groupings of maximized
time span and time series instance members. A grouping-instance ma-
trix structure is also exploited to detect associations of contiguous local
groupings sharing common member instances. Finally, the validity of
each local grouping is assessed against predefined global groupings. We
demonstrate the ability of Z-Grouping to find local groupings without
size constraints on time ranges on a synthetic dataset, three real-world
datasets, and 128 UCR datasets, against four competitors.
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1 Introduction

Groupings of time series can be found in several application domains where mul-
tiple time series instances are collected and monitored. These groupings comprise
sets of time series of high similarity over a time period (e.g., in terms of con-
currently similar values or trends). Such groupings can span the whole time
series length, defining global groupings, or shorter time periods, defining local
groupings. Furthermore, some instances may persist being grouped together in
consecutive local groupings over a longer time period, possibly separated by
short time gaps, hence forming associations of local groupings. For example,
Fig. 1-left shows two time series with four consecutive local groupings (red-blue-
red-blue), forming an association (green box). Moreover, Fig. 1-right shows six
associations of local groupings each depicted by a different color, and each con-
taining several local groupings (bold color) separated by short time gaps (light
color). Note that all local groupings and associations have different lengths and
member instances. Such local groupings and associations can be of high utility
in various application domains, including retail monitoring [11] or stock price
prediction [10]. More concretely:
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Fig. 1: An example of locally similar time series with four local groupings (left)
and six associations (right) each containing several local groupings separated by
short time gaps indicated by a lighter color.

– Retail monitoring: Product sales may follow different patterns over time,
while a particular set of products can show a common local trend, e.g., high
sales over the Christmas week, forming a “high sales” local grouping. After
Christmas some sales in this grouping may drop, while some may still be
maintained. This results in the “high sales” grouping to continue expanding
over time and a new “low sales” grouping to be formed. If multiple local sales
trends are shared by the same set of products, e.g., high sales over Christmas
(1st local trend), followed by low sales in Feb-March (2nd local trend) and
high sales over Easter (3rd local trend), they form an association.

– Investing portfolio management: Sets of stocks exhibit similar fluctua-
tions from time to time. Local groupings represent stocks with similar fluc-
tuation trends over fixed time periods. Moreover, at some time point some
stocks from a local grouping may start showing different fluctuations and
are, hence, placed into another grouping. Finally, associations are formed by
growth stocks or sectors following consistently common fluctuation patterns,
e.g., rising and dropping concurrently over the same time periods, and can
be used for improving the portfolio over time or suggesting new portfolios.

In this paper, we study two problems: given a set of time series instances,
we want to identify (1) local groupings of high similarity with maximized time
span and number of member instances, (2) associations of maximum number
of common local groupings and number of member instances. One solution is
clustering (e.g., kmeans under the Euclidean distance) over a fixed-length sliding
window. Nonetheless, such approach has two limitations: (1) noise or outliers can
distort distance values, (2) as local groupings continuously evolve based on the
similarity in each grouping, some instances in one grouping may become more
similar to instances in another grouping, hence swapping groupings. As a result,
detecting local groupings becomes even harder since groupings change over time
both in length (i.e., time duration) and size (i.e., number of member instances).

One way to mitigate the first limitation is to resort to temporal abstractions,
widely used to for time series summarization [19, 14]. A temporal abstraction
compresses a time series by converting its original values into a set of event labels
that are no longer sensitive to noise or outliers, and are no longer distorted by
minor fluctuations, thus they tend to favor the formation of patterns over time.
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For the second limitation, longest common prefix mining [18] can be applied
for finding local groupings of varying length. However, it ignores the occurrences
of smaller ones and may eventually miss many local groupings. Furthermore, it
considers only the ordering of events, hence failing to localize these patterns in
time. An alternative way is semigeometric tiling [9], a technique for finding local
patterns in binary matrices spanning different ranges without constraining the
number of neighbors or a time range. However, it only handles binary matrices
and does not include any principled strategy to handle real (original time series)
or categorical (abstraction) values. One way to apply semigeometric tiling is to
binarize the original time series values by converting them to 1 if the original
value is greater than, e.g., the mean of the time series values. Nonetheless, such
solution is unable to capture all granularity levels in the data and the formed
groupings will be sparse. In addition, this solution cannot identify associations.

1.1 Related work

There have been several attempts to cluster time series by employing differ-
ent distance functions [13, 6], exploiting temporal features of high utility (e.g.,
shapelets [15], temporal abstractions [20]), or hybrid solutions [3]. However, they
focus only on finding global groupings [2]. Subsequence clustering finds clusters
of subsequences within a single time series, but not across different time se-
ries [22]. The problem of finding patterns from subsets of a dataset has been
addressed in diverse ways including segmentation [8], bi-clustering [5]. However,
all previous attempts have focused on finding common patterns between data ex-
amples without placing any constraints to the ordering of the features (i.e., both
data rows and columns can be re-ordered), making it infeasible to be applied
to time series. Column-coherent bi-clustering [12] clusters time series keeping
their column order, but the problem formulation and its solutions are still not
free from placing specific constraints on the column order. Although semigeo-
metric tiling [9] imposes column order to the problem, it assumes a binary data
representation and suffers from generating small tiles that are not practically
useful for identifying local groupings of maximum time span. Longest common
prefix mining [18] can be applied to extracting temporal patterns of time series;
nonetheless, it is not directly applicable to our problem setup as it fails to de-
tect concurrent patterns, since it only focuses on the longest patterns per time
series, hence missing many local patterns shared by time series instances. Max-
imum correlation algorithms [16, 17] find the local segment with the maximum
correlation between pairs of time series under a minimum subsequence length
threshold. This setup is orthogonal to ours since we are interested in finding
all local groupings with the maximum number of instances and time span un-
der a similarity measure. In contrast to maximum correlation algorithms, local
maximum correlation algorithms [21] identify the longest gapped time interval
between two time series with the maximum correlation. This outputs the pair
of regions with the highest correlation across the two time series. This problem
differs from the problem studied in this paper, since we aim to find groupings of
time series subsequences with high similarity over the same time period. Time
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series motif discovery [4] aims to find motifs, i.e., repetitive patterns in one time
series. However, this paper focuses on detecting different time ranges where high
similarity of time series instances can be detected, thus creating a grouping that
is not repetitive throughout time, unlike motifs. Applying motif discovery across
time series instances over a fixed-length sliding window would identify some local
groupings, but it would fail to find local groupings of variable time ranges.

1.2 Contributions

To the best of our knowledge, none of the existing formulations and solutions
is directly applicable and comparable to our problem, since we aim to find all
maximized time spans of groupings of locally similar time series without a specific
time range as a constraint. Our main contributions include:

– Novelty. We propose Z-Grouping, an effective algorithm for finding local
groupings of time series with high similarity and their associations in four
steps by: (a) exploiting the notion of temporal abstraction, (b) generating
local groupings based on the abstraction labels, (c) generating associations
using a grouping-instance matrix, (d) validating the local groupings and as-
sociations against predefined global groupings.

– Effectiveness. We benchmark the effectiveness of Z-Grouping against four
competitors on one synthetic and three real-world datasets. Effectiveness
is measured in terms of the ability of extracted local groupings to identify
highly similar local regions in unseen instances. Z-Grouping achieves lower
mean squared error (MSE) up to 59.2% compared to the four competitors
on our synthetic dataset, and up to 44.3% on three real-world datasets.

– Generalizability. We additionally benchmark Z-Grouping on 128 UCR
time series datasets to demonstrate its ability to find valid local groupings
with lower errors than the four competitors.

2 Problem Definition

Let t = {t1, . . . , tm} be a time series instance of length |t| = m. A time series
collection T = {t1, . . . , tn} is a collection of |T | = n time series instances.

Definition 1. (Event sequence) An event sequence e = {e1, . . . , el} of length
|e| = l is a collection of event labels, with ∀i ≤ n, ei ∈ Σ, where Σ is a set of
discrete event labels of size λ.

Definition 2. (Temporal abstraction) A temporal abstraction of a time se-
ries instance t is an event sequence e obtained by applying a mapping function
f to t, such that e = f(t), with e ∈ Σ|e| and |t| = |e|.

Function f can be any time series summarization technique, such as discrete
Fourier transform (DFT) [20] or symbolic aggregate approximation (SAX) [14].
For example, given t = {1, 3, 3, 4, 5}, f converts t to an event sequence e =
{a, b, b, c, c} with λ = 3. Applying temporal abstraction to a time series collection
T results in an n×m event sequence matrix M = {e1, . . . , en} where ei = f(ti).
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TS1 c a a a c c b a a a
TS2 b b b a c c b a b b
TS3 b b a a c b b a a c
TS4 b b b a c b a a a c
TS5 c b b a a b b a a c
TS6 b b b c c b b c c c

Fig. 2: An example of a time series collection T of size 6 (left) and its event
sequence matrix M (right) with λ = 3 with six candidates for local groupings.

Definition 3. (Local grouping) A local grouping ρ = {rρ, Tρ} is defined by a
time range rρ = [rs, re] and a subset of time series instances Tρ ∈ T that are
similar over time range rρ.

The time series instances in Tρ are called member instances of ρ, where
|ρ| = (rρ.re− rρ.rs+ 1)×|Tρ| is the size of ρ. A set of local groupings is denoted
as R = {ρ1, . . . , ρ|R|}.

Example. Fig. 2 depicts a time series collection T with |T | = 6, and an
event sequence matrix M abstracting T . In M we define six local groupings
(colored areas) of sizes |5× 3|, |4× 2|, |4× 2|, |4× 2|, |5× 2|, and |4× 1|.

Definition 4. (Association) An association γ = {rγ , Tγ ,Rγ} is a merger of
local groupings Rγ with a time range spanning all ρ ∈ Rγ , while containing the
intersection of the member instances, i.e.:

rγ = {min(rρ.rs : ρ ∈ Rγ),max(rρ.re : ρ ∈ Rγ)}, Tγ = {Tρ1
∩ Tρ2

∩ · · · ∩ Tρk}}.

The cardinality of an association |γ| is the number of comprised local groupings.
The purpose of an association is to identify time series instances with maximum
commonalities over time, by sharing many adjacent local groupings not easily
detected globally, due to their negligible time spans or noise and outliers.

Based on the above definitions, we formulate our two problems.
Problem 1. (Detecting local groupings maximizing the time span and

the number of member instances) Given T and a threshold θ ∈ R, find R
with maximum instance size, maintaining the internal pairwise distance between
the raw times series members below θ. That is, for each ρ = {rρ, Tρ} ∈ R:

max |ρ|, s.t. ∀ti, tj ∈ Tρ : dist(ti[rρ.rs : rρ.re], tj [rρ.rs : rρ.re]) ≤ θ.

Problem 2. (Detecting associations maximizing the number of com-
mon local groupings and member instances) Given T and a threshold
θ′ ∈ R, find the set of associations Γ = {γ1, . . . , γ|Γ |} of maximum cardinality
and number of instance members, keeping the internal pairwise distance between
the raw instance members below θ′. That is, for each γ = {rγ , Tγ ,Rγ} ∈ Γ :

max |γ| × |Tγ |, s.t. ∀ti, tj ∈ Tγ : dist(ti[rγ .rs : rγ .re], tj [rγ .rs : rγ .re]) ≤ θ′.

Constraining time to a specific range makes it difficult to spot local groupings
that can be wider or narrower than the specified range. An exhaustive search with
any distance function to optimize Problems 1, 2 is computationally prohibitive.
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t1 c a a a c c b a a a
t2 b b b a c c b a b b
t3 b b a a c b b a a c
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t6 b b b c c b b c c c
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Fig. 3: An example of the four steps of Z-Grouping.

Algorithm 1: Z-Grouping

Input : T , λ, G: global groupings, α: purity, η: global grouping density
Result: R: local groupings, Γ : associations, Z: validity matrix

1 R ← {}, M ← SAX(T , λ)

2 for Mk ∈ generateChannels(M,λ) do
3 for ρ ∈ generateLocalGroupingCandidates(Mk) do

4 if

∑
t∈Tρ (Mk[t,rρ.rs:rρ.re])∑
t∈Tρ |Mk[t,rρ.rs:rρ.re]| ≥ α then R ← R ∪ ρ

5 Γ ← createAssociations(T ,R, α)
6 Z ← validateGroupings(R,G, Γ, η)
7 return R, Γ , Z

3 The Z-Grouping Algorithm

Z-Grouping is a four-step algorithm for solving Problems 1, 2. The first step
converts a time series collection into an event sequence matrix by applying a
temporal abstraction function. The second step generates local groupings on
the abstractions (Problem 1 ), while the third step identifies associations of local
groupings using a grouping-instance matrix (Problem 2). Finally, local groupings
and associations are validated against predefined global groupings. These steps,
also outlined in Fig. 3 and Alg. 1, are described below.

3.1 Event sequence matrix generation

This step converts a collection T of n time series of length m into an event
sequence matrix M by applying a temporal abstraction function f . Without
loss of generality, we employ SAX as our abstraction function, but different
abstraction techniques can also be applied. SAX is applied to each time series
instance ti ∈ T resulting in an n×m event sequence matrix M , such that

M = {ei | ∀i ≤ n, ei = SAX(ti, λ)} ,

and λ corresponds to the event label size parameter of SAX (Alg. 1, line 1).
Next, we split M into λ subsets, which we refer to as event label channels,
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where each channel Mk corresponds to the kth event label in Σ and records its
occurrence in the form of binary values, indicating whether an event is assigned
with the abstraction label of that channel (line 2); i.e., ∀i ∈ {1, . . . , n} ∀j ∈
{1, . . . ,m}(Mij = k →Mk

ij = 1)∧ (Mij 6= k →Mk
ij = 0). Note that the channels

do not contain duplicate values, hence always satisfying Mk
ij 6= Mk′

ij if k 6= k′.
Example. An example of this transformation is depicted in Fig. 3 (Step 1),

where we obtain matrix M with event labels {a, b, c}, i.e., λ = 3. Next, we divide
M into three event label channels {M1,M2,M3}, one per event label.

3.2 Local grouping generation

The second step reduces Problem 1 to finding λ separate sets of local groupings,
one set per channel Mk. Since by definition the active events in each channel
(indicated by 1s) share the same temporal abstraction label, they also fall in
the same value range in their original representation. This implies that each
channel can be used to extract local groupings, creating subsets of the channel
by selecting time series instances and a time range. We apply semigeometric
tiling [9] to each channel to generate candidates for local groupings (Alg. 1, line
3). The algorithm employs a priority queue to store the counts of active labels
for every combination of time ranges r = {rs, re} in each channel Mk. It then
iteratively selects the time range with the maximum count from the priority
queue and adds rows from the one with the highest number of active labels until
a given threshold α is satisfied. α controls label purity of each subset, which we
define as the proportion of active events in the subset of the channel (see Eq. 1).

More concretely, we create optimal subsets by optimizing the trade-off be-
tween two scores: recall (i.e., the number of active labels in the subset divided
by the total number of active labels in Mk) and α. The algorithm keeps ex-
panding the size of each subset by maximizing the recall while satisfying a given
constraint of the subset. Since for each Mk we have a binary problem setup,
recall is submodular [9], thus the generated subsets are at least 1− 1

e times the
optimal recall. A local grouping ρ is defined by a candidate channel subset with
a time range rρ and a subset of time series instances Tρ. Each ρ can be added
to R when the following condition on α is satisfied:

accept(ρ,Mk) =

∑
t∈Tρ(M

k[t, rρ.rs : rρ.re])∑
t∈Tρ |M

k[t, rρ.rs : rρ.re]|
≥ α (1)

where Mk[t, rρ.rs : rρ.re] corresponds to the subset of Mk that matches time
series t within rρ, and accept is a function that computes the proportion of active
labels in ρ on its corresponding channel Mk. We keep the continuous order of
time, but we can include any time series instances to Tρ regardless of their order.

Next, we proceed by extracting a set of local groupings from each channel
and store all local groupings in a list R, which is used in the next steps (line 4).

Example. Fig. 3 (Step 2) shows six local grouping candidates with α = 0.75
allowing 25% of impurity in each candidate. Using Eq. 1, ρ1, ρ2, and ρ3 return
0.75 ≥ α, so they are added to R, while ρ6 returns 1 and is also added.



8 Z. Lee et al.

Algorithm 2: createAssociations

Input : T , R, α
1 Γ = {}, V ← 00000000000000000||T | × |R||, R ← sort(R, by={rρ.rs : ∀ρ ∈ R})
2 ∀j ≤ |R| ∀i ≤ |Tρj | (ti ∈ Tρj → Vij = 1) ∧ (ti /∈ Tρj → Vij = 0)
3 for γ̄ = {rγ̄ , Tγ̄} ∈ generateAssociationCandidates(V ) do

4 if

∑
t∈Tγ̄

(V [t,rγ̄ .rs:rγ̄ .re])∑
t∈Tγ̄

|V [t,rγ̄ .rs:rγ̄ .re]| ≥ α then

5 rmins ← min({rρj .rs : ∀j ∈ rγ̄})
6 rmaxe ← max({rρj .re : ∀j ∈ rγ̄})
7 Γ ← Γ ∪ {(rmins , rmaxe ), Tγ̄ , {ρj : ∀j ∈ rγ̄})
8 return Γ

3.3 Association generation

This step solves Problem 2 by reducing it to the problem of associating adjacent
local groupings represented by time-ordered local groupings. An association of
local groupings is generated following Def. 4 requiring minimized internal pair-
wise distances between the time series instances, while expanding cardinality,
i.e., the number of local groupings included in the association. Computing all
pairwise distances of all possible instances over time would be computationally
prohibitive. We solve this problem by defining a grouping-instance matrix V ,
i.e., a binary matrix of size |T | × |R| recording the memberships of time series
instances to each local grouping, where the columns are sorted by start time of
each local grouping to keep their temporal order (Alg. 2, lines 1-2).

Matrix V allows us to easily find consecutive local groupings even if they are
not continuous (i.e., gaps between them are allowed) in time. We first generate
local groupings of V as candidate associations, each denoted by γ̄ = {rγ̄ , Tγ̄} (line
3). Using Eq. 1 with each candidate γ̄, we accept the candidate if accept(γ̄, V ) ≥
α, by checking which instances belong to which local groupings, with α being
the degree of proximity between local groupings in γ̄ (line 4). Then we create an
association γ by extracting the minimum start and maximum end time from the
involved local groupings in the candidate γ̄, alongside the time series instances
sharing those groupings (lines 5-7). In this way, local groupings are merged into
the association, if they are consecutive in V . Depending on α, non-consecutive
but close local groupings in V can also be added. Since associations maintain
the longest time span (Def. 4), time gaps are also covered by the associations.
As the main goal of associations is to find contiguous groupings of locally similar
time series instances, we only store the intersecting instances; thus an association
contains fewer instances than merged local groupings.

Example. In Fig. 3 (Step 3), six local groupings are generated in Step 2.
Using these groupings and their member instances, we create V , marking if the
grouping contains the corresponding members. We find two associations γ1 with
range [1, 10] and γ2 with [6, 10]. Each association only contains the intersect-
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ing instances, so γ1 contains {t2, t3, t4}, excluding t5 and t6. Associations can
contain non-consecutive groupings based on α, e.g., ρ3, ρ5 in γ1, and ρ4, ρ6 in γ2.

3.4 Validation of local groupings

In this last step, we validate the obtained local groupings by assuming a set of
global groupings on the same time series collection T , obtained either by time
series clustering or provided by a domain expert. Hence, each time series t ∈ T
can belong to a global grouping as well as to multiple local groupings. Our goal
is to assess how related the global groupings are to local groupings and how can
local groupings help us assess the similarity of these global groupings.

Let G = {g1, . . . , gx} be a list of global groupings and consider a local group-
ing ρ, with its member instances Tρ. For each t ∈ Tρ, we can extract the corre-
sponding global grouping g and its member instances Tg, hence t ∈ Tρ ∩ Tg. If
the majority of Tρ also belong to Tg, we can assume such global grouping follows
a similarity pattern of ρ over the time span rρ of the grouping. However, some
instances in Tρ may belong to different global groupings, and all these group-
ings may not always follow the similarity pattern of ρ, as small number of global
grouping instances can be included by chance. Therefore, it is important to check
the validity of a local grouping for each global grouping having its members in
Tρ. This is achieved by a validity score δ for g and ρ calculated as:

δg,ηρ = dsρ · sg · ηe, where sρ =
|Tρ|
|T |

, sg = |Tg|.

A global grouping density parameter η controls the required proportion of the
member instances of g in Tρ for ρ to be valid for g. If η = 1, ρ is valid when the
proportion of Tg ∩ Tρ in Tρ is equal to the proportion of Tg in T . For example,
if |T | = 100, |Tρ| = 10, and |Tg| = 90, we need at least 9 members satisfying
t ∈ Tρ∩Tg to accept ρ for g. If η = 0, we accept all {ρ : ∀t ∈ Tρ,∃t ∈ Tg} since δ
becomes 0. If η = 2, the same calculation of δ would require at least 18 members.
Using δ, we create a validity matrix Z of size |G| × |R| to record the validity
between local and global groupings, where ∀i ≤ |G| ∀j ≤ |R| (

∑
t∈Tρj

Jt ∈ TgiK ≥
δgi,ηρj → Zij = 1) ∧ (

∑
t∈Tρj

Jt ∈ TgiK < δgi,ηρj → Zij = 0).

Example. Fig. 3 (Step 4) shows the valid groupings with η = 1. We first
calculate δ for each ρi ∈ R and gj ∈ G. For groupings of size 4 ({ρ2.ρ3, ρ4, ρ6}),
we need at least d 4

6 · 2 · 1e = 2 instances of g1 and d 4
6 · 4 · 1e = 3 of g2 to be valid.

Since ρ2, ρ3, ρ4 contain two instances of g1 and two of g2, they are only valid for
g1 On the other hand, ρ6 has three of g2 and one of g1 so it is only valid for g2.

3.5 Complexity of Z-Grouping

Given an n×m time series collection T and λ, the time complexity for creating
the groupings for one event label follows the complexity of semigeometric tiling
O(m2nlogn) [9], leading to O(λm2nlogn) as the total complexity of Steps 1-2.
For creating associations (Step 3), since, in the extreme case, the number of local
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Table 1: Summary of the datasets used in this paper.

Dataset |T | |t| |G| avg(|Tg|) max(|Tg|) min(|Tg|)
SYNTHETIC 1,000 365 20 50 50 50
GARMENT 3,963 365 50 79.26 282 29
STOCK 505 503 11 45.91 84 3
COVID 191 618 6 31.83 53 11

groupings can be the same as the count of all data points (|R| = mn), the worst
case complexity becomes O(m2n3logn). The validation (Step 4) takes O(n2m)
since Z-Grouping checks every grouping and all time series instances for each
grouping in the worst case. However, in practice, we can relax the complexity of
Steps 1-3 by limiting the number of local groupings and associations Z-Grouping
finds. For example, the complexity can be reduced to O(knlogn) by picking
top k local groupings and associations, as they are chosen in descending order.
Extremely small local groupings which have either few time points or few member
instances may have no meaningful information and can be ignored. It may also
be possible to give other constraints such as minimum length or size.

4 Experiments

4.1 Setup

Datasets We use three real-world datasets from (1) retail industry (GARMENT),
(2) stock market (STOCK), and (3) COVID-19 epidemics (COVID). A summary of
the properties of these datasets is provided in Table 1, while a detailed descrip-
tion and sources can be found in our repository [1]. We also generated a synthetic
dataset (SYNTHETIC) for extensive parameter investigation. It contains 1,000 in-
stances and 20 global groupings that resemble the presence of local similarity.
Each global grouping comprises a sinusoidal pattern with a different frequency
and amplitude. The number of inserted patterns is smaller than the number of
global groupings, hence some of them can share the same pattern, which can be
detected as local groupings. To simulate a realistic scenario, noise and outliers
are imputed. We also tested on 128 UCR datasets [7], excluding the cases where
at least one algorithm cannot find any valid groupings (17 cases) and where the
dataset length is shorter than the smallest window size parameter (6 cases). Our
datasets and code including synthetic data generator are available online [1].

Competitors While, to the best of our knowledge, there exists no direct com-
petitor for the problem solved by Z-Grouping, we benchmark on the closest
approach, i.e., semigeometric tiling and three additional baselines.

– Semigeometric: We employ a simple modification of semigeometric tiling [9].
First, we generate a binary matrix with its values set to 1 for the standardized
time series values above the boundary found by SAX with λ = 2. Second, to
make it directly comparable to Z-Grouping, we apply α (Eq. 1).
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– kmeans: We divide each instance t into r partitions of time range w, such
that w · r = |t|. For each partition, we apply kmeans; the resulting k clusters
per partition correspond to the local groupings.

– kmeans-FLEX: We define a flexible version of kmeans with a sliding window of
width w and slide step w

2 as a brute-force solution to finding local groupings
of multiple fixed window lengths. We repeat for different values of w and
k, and for each window, clusters with an average silhouette above a cutoff
threshold s are accepted as groupings.

– kNN: Using the same partitioning approach as kmeans, and given a global
grouping (see Experiment protocol), for each partition, we identify k in-
stances belonging to that global grouping. For each instance, we apply kNN,
retrieving the k nearest instances under the Euclidean distance resulting in
k2 samples, which correspond to a local grouping.

Note that kNN, kmeans, and kmeans-FLEX are also tested on the SAX abstracted
space with λ = 5 to directly compare to Z-Grouping running on the abstracted
space to detect maximized time spans. The results on the raw time series are in
favor of the competitors since they can find more accurate neighbors but still
only find fixed-length groupings. Also, as we are after local similarity synced in
time, we do not explore elastic measures such as dynamic time warping.

Experiment protocol Assuming a set of predefined global groupings G on a
given time series collection T , we divide T into a training set T train and a test set
T test, and create local groupings on T train. Our goal is to investigate if the local
groupings detected by each algorithm can identify potential local similarity on
unseen instances. More concretely, for each unseen sample ti ∈ T test, we retrieve
its global grouping ḡ. Our assumption is that the values of ti are unseen, so the
only information available for choosing valid local groupings is ḡ. For example,
this simulates the scenario where we have a new product ready for market and
we would like to identify potential local similarity patterns of its upcoming sales
with existing products. In this case, ḡ corresponds to a predefined product type
and its features (e.g., color, size, material type).

Hence, for each unseen sample ti ∈ T test and its corresponding global group-
ing ḡ, our evaluation is as follows. For kmeans, we choose the cluster with the
highest number of instances of ḡ for each time window. For kNN we employ the
k2 chosen samples. For Z-Grouping and Semigeometric, we choose the group-
ings based on δ (see Sec. 3.4). Next, for each ρ, we extract all global groupings
{g : ∀tj ∈ Tρ,∃tj ∈ Tg} except for the target global grouping ḡ. Then we cal-
culate the errors (MSE and mean absolute error (MAE)) over the active time
range rρ between the test time series ti[rρ.rs : rρ.re] and {tj [rρ.rs : rρ.re] | ∀tj ∈
T train ∧ tj /∈ Tḡ}, i.e., all the instances in the local grouping that belong to the
chosen global groupings. This way we explore if these global groupings show local
similarity and benchmark the robustness of each algorithm to randomness and
noise. For Z-Grouping, Semigeometric, and kmeans-FLEX, we report coverage,
i.e., the fraction of time series covered by the groupings. kmeans and kNN have
100% coverage since they always find similar instances based on the distance
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Table 2: Average test errors of the algorithms on SYNTHETIC (CV: Coverage (%)).

α
Semigeometric Z-Grouping (λ = 3)

η =1 η = 1.5 η = 2 η =1 η = 1.5 η = 2
MSE MAE CV MSE MAE CV MSE MAE CV MSE MAE CV MSE MAE CV MSE MAE CV

0.8 1.30 0.79 72 1.28 0.78 41 1.24 0.74 15 1.22 0.75 88 1.08 0.68 55 1.09 0.68 29
0.9 1.18 0.73 61 1.16 0.72 44 1.14 0.72 21 1.08 0.69 68 1.09 0.69 43 0.97 0.63 30
1.0 1.11 0.71 40 1.16 0.72 22 1.09 0.68 7 0.97 0.73 40 0.95 0.62 24 0.89 0.61 15

α Z-Grouping (λ = 5) Z-Grouping (λ = 10)

0.8 1.00 0.65 45 0.93 0.62 27 0.85 0.57 15 0.88 0.56 20 0.88 0.56 12 0.78 0.52 10
0.9 0.95 0.60 30 0.94 0.59 20 0.87 0.55 10 0.84 0.56 14 0.86 0.55 10 0.81 0.52 5
1.0 0.87 0.57 21 0.87 0.56 15 0.77 0.52 8 0.73 0.51 8 0.89 0.56 5 0.97 0.61 2

w
kNN-SAX kNN

k = 3 k = 5 k = 10 k = 3 k = 5 k = 10

30 1.30 0.77 - 1.41 0.83 - 1.59 0.92 - 1.31 0.77 - 1.40 0.83 - 1.58 0.91 -
60 1.23 0.74 - 1.34 0.80 - 1.54 0.90 - 1.22 0.73 - 1.33 0.80 - 1.53 0.90 -
180 1.12 0.68 - 1.22 0.72 - 1.40 0.82 - 1.10 0.67 - 1.20 0.72 - 1.40 0.83 -

w kmeans-SAX kmeans

30 1.49 0.88 - 1.51 0.89 - 1.51 0.88 - 1.51 0.89 - 1.53 0.90 - 1.53 0.90 -
60 1.59 0.93 - 1.59 0.93 - 1.58 0.92 - 1.60 0.93 - 1.60 0.93 - 1.59 0.93 -
180 1.57 0.91 - 1.56 0.91 - 1.55 0.90 - 1.58 0.92 - 1.58 0.91 - 1.57 0.91 -

kmeans-FLEX-SAX

s = 0.1 1.44 0.84 100

kmeans-FLEX

s = 0.1 1.45 0.85 100
s = 0.2 1.48 0.85 100 s = 0.2 1.47 0.85 100
s = 0.3 1.56 0.93 100 s = 0.3 1.53 0.89 100
s = 0.4 1.79 1.01 36 s = 0.4 1.79 1.01 36

function. The ability of Z-Grouping can be shown by lower errors than the com-
petitors since this confirms Z-Grouping can find groupings of different lengths
showing better local similarity than fixed-size clusters.

4.2 Results

Results on the synthetic dataset For Z-Grouping, we test α = {0.8, 0.9, 1},
λ = {3, 5, 10}, and η = {1, 1.5, 2}. For Semigeometric, we apply the same α and
η. For kmeans and kNN, we test different time ranges of w = {30, 60, 180} and
k = {3, 5, 10}. For kmeans-FLEX, we apply a silhouette cutoff from 0.1 until it
fails to detect any valid groupings. All results are 10-fold cross-validated.

Table 2 shows the average test errors of Z-Grouping and its four competi-
tors. Z-Grouping always succeeds in finding valid local groupings of low errors.
Z-Grouping’s lowest MSE is at least 33.0% lower than the competitors’ low-
est MSE (23.9% in MAE), and up to 59.2% lower (49.5% in MAE) than the
worst score of the competitors. Semigeometric shows lower errors in general
than kmeans and kNN, but it still has higher errors than Z-Grouping while
covering smaller areas in the same parameter setting, as it suffers from its
lack of representation power with a strong binary assumption, outperformed by
Z-Grouping to a great extent up to 33.0% (25.0% in MAE). Except for two cases
(α = {0.8, 0.9}, η = 1}, Semigeometric even fails to cover more than 50% of the
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Fig. 4: Relation between α and the average pairwise distance of time series in-
stances in local groupings (left) and associations (right) on SYNTHETIC.

dataset. This confirms the effectiveness of Z-Grouping in finding local groupings
compared to its binary competitor; Z-Grouping with only one more abstraction
label (λ = 3) achieves substantially better results than Semigeometric achieving
from 6.0% to 18.3% lower MSEs while covering larger areas.

Since our synthetic data is designed to have clear local groupings, distance-
based methods do not show noticeable differences in errors on both abstracted
and original spaces. kNN achieves its best score with {w : 180, k : 3} in both
spaces, but its MSE is still 50.7% higher than Z-Grouping’s best error (31.4% in
MAE). It achieves lower errors with smaller window sizes, as it is easier to iden-
tify local groupings within the window. kmeans does not show remarkable differ-
ences with various parameter settings; it is generally worse than its competitors.
Kmeans-FLEX has its lowest MSE being only 3.4% lower than the lowest error of
kmeans (4.6% in MAE) but 97.3% higher than the lowest error of Z-Grouping

(64.7% in MAE). This means giving a few options for the length of local group-
ings can be worse than fixed-size search, as well as far worse than Z-Grouping’s
ability to detect a maximized time range for local groupings. None of the com-
petitors detect groupings of similar quality to Z-Grouping, which means an
exhaustive search is required to find meaningful groupings, while Z-Grouping

can find more flexible groupings with more valid local similarity.

Effect of the parameters. All three parameters (λ, α, and η) of Z-Grouping

control the trade-off between coverage and error. Since the abstraction label size
is directly related to the sparsity of the channels, higher λ can lead to lower
coverage, making Z-Grouping difficult to find the same event labels adjacent to
each other, while detecting better local groupings with lower errors. Highe3 α
leads to purer groupings allowing a smaller number of different event labels. If
we increase flexibility with small α, the error increases due to the formation of
many impure groupings. Higher η requires more samples in the local grouping
for validity, leading to smaller number of groupings. This results in lower error
scores but reduces coverage too. Associations of the groupings help increase
coverage by filling the gaps created by high values of the parameters. However,
under the highest parameter values, the algorithm loses its ability to grow over
a substantial area, only showing less than 10% coverage and the error also gets
higher since there is no meaningful amount of data points to compare to.
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Table 3: Best average test errors of the algorithms on three real-world datasets.

Datasets
Z-Grouping Semigeometric kNN-SAX kNN

MSE MAE CV MSE MAE CV MSE MAE CV MSE MAE CV

GARMENT 0.83 0.65 88 1.76 0.96 67 1.64 0.92 100 1.64 0.92 100
STOCK 0.99 0.74 77 1.49 0.84 70 1.21 0.83 100 1.20 0.83 100
COVID 0.84 0.49 40 2.17 0.92 74 1.37 0.70 100 1.37 0.71 100

Datasets kmeans-SAX kmeans kmeans-FLEX kmeans-FLEX-SAX

GARMENT 1.65 0.90 100 1.67 0.92 100 1.49 0.87 100 1.51 0.92 100
STOCK 1.37 0.89 100 1.37 0.89 100 1.49 0.92 100 1.50 0.92 100
COVID 1.49 0.73 100 1.49 0.73 100 0.99 0.55 38 0.99 0.55 37

Relationship between θ, θ′ and α. Z-Grouping solves Problems 1, 2 by trans-
forming θ, θ′ to the purity parameter α while maximizing the same space, as-
suming that θ, θ′ are dependent on our choice of α. Hence, it is important to
validate the relation between θ and α. Fig. 4 shows the relation between α and
the average pairwise distance of time series instances in the estimated groupings
(left) and the associations (right) on SYNTHETIC. This confirms higher α leads
to smaller θ, hence Z-Grouping approximately solves Problems 1, 2, while the
actual thresholds (θ, θ′) are dependent on α, and we maximize |ρl| and |γl|×|Tγl |
keeping α. The same analysis on the real-world datasets is in the supplement
(Sec. A).

Results on three real-world datasets Table 3 shows the average test errors
of Z-Grouping and the competitors on three real-world datasets. We explore the
same parameter settings as for the synthetic experiment. We report the best case
in MSE covering more than 30% of the datasets, while Z-Grouping also gets lower
errors with lower coverage. Overall, Z-Grouping achieves the best score on every
dataset. On GARMENT and STOCK, Z-Grouping is a clear winner by having 44.3%
lower MSE (25.2% in MAE) on GARMENT and 17.5% lower MSE (10.9% in MAE)
on STOCK than the MSE under the best competitor, with at least 70% coverage.
On COVID, Z-Grouping shows 15.2% lower MSE (11.0% in MAE) compared to
the best of four competitors (kmeans-FLEX), but only covers 40% of the dataset
as the COVID-19 patterns in one continent have not always been similar. It
appears that the goal of finding consistent local similarity across continents has
not been well met compared to the other two cases. Semigeometric performs
the worst on every dataset, even outperformed by the baselines. Full results for
each parameter setting are available in our repository [1].

Results on the UCR datasets We test Z-Grouping and its competitors on
128 UCR datasets using the parameter settings yielding average performance in
our synthetic experiments. Since the UCR datasets contain general cases and
do not always have clear local similarity, the experiment shows a different per-
spective from our synthetic and three real-world data experiments as described
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Fig. 5: Nemenyi post hoc test on the
128 UCR datasets.

Table 4: Average MSE rankings and
wins/loses on the 128 UCR datasets.

Algorithms Avg.rank Win Lose

Z-Grouping 3.34 48 9
Semigeometric 5.45 9 45
kNN 4.13 8 0
kNN-SAX 5.07 0 8
kmeans 3.32 20 1
kmeans-SAX 4.98 6 22
kmeans-FLEX 4.21 8 5
kmeans-FLEX-SAX 4.44 9 4

in Fig. 5 and Table 4. First, the solutions on the abstracted space show signifi-
cantly worse results than the ones on the original space, while Z-Grouping still
outperforms them. Second, kmeans performs well on the UCR datasets showing
the lowest average rank in terms of MSE and MAE while it shows the worst
performance in our synthetic experiment, due to some datasets entirely missing
valid local groupings; this can be confirmed by kmeans-FLEX underperforming
even though it is also the same distance-based solution.

Z-Grouping in itself requires temporal abstraction to maximize the time span
of the local groupings and the associations given α, thus losing some of the origi-
nal information. This might make the detection process harder when local group-
ings are not distinct in the dataset as some cases in the UCR datasets. However,
Z-Grouping still succeeds in finding valid local groupings of variable time span
from these cases. This can be confirmed by noticing that Z-Grouping wins in 48
cases and only loses in nine cases, while two competitors capable of searching for
local groupings of varying lengths (Semigeometric and kmeans-FLEX) show sig-
nificantly worse results. Our main state-of-the-art competitor (Semigeometric)
loses in 45 cases, even underperforming the baselines and Z-Grouping .

While losing information due to SAX, Z-Grouping achieves statistically equiv-
alent average rank to its competitors running on the original space, despite the
fact that it is harder to identify local groupings in some of the UCR datasets.
Moreover, this also means we show our effectiveness over the baselines, since
the competitors are still limited to only finding the fixed area (i.e., window size)
while Z-Grouping finds maximized length areas for the groupings with similar
or lower errors. Z-Grouping loses (1) when there are completely no valid lo-
cal groupings in the dataset, (2) when there are more than two different local
similarities in the same period with enough support in one class, and (3) when
the original values have only slight fluctuations, so the SAX space loses all this
information and as a result distance-based clustering outperforms. Examples of
losing cases can be found in the supplementary material (Sec. B).
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5 Conclusion

We proposed Z-Grouping, a novel framework for detecting local groupings of
locally similar time series and their associations. We benchmarked Z-Grouping

on three real-world datasets and a synthetic dataset as well as 128 UCR datasets
against four competitor methods. Our experiments showed that Z-Grouping

could achieve lower error rates than its competitors while successfully retrieving
local groupings without size constraints on time ranges, which is infeasible by
using traditional methods. Future work includes exploring alternative temporal
abstractions, applying global optimization to create the local groupings, studying
multivariate time series, i.e., creating multidimensional groupings.
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