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Abstract. In Internet of Things applications, data generated from de-
vices with different characteristics and located at different positions are
embedded into different contexts. This poses major challenges for decen-
tralized machine learning as the data distribution across these devices
and locations requires consideration for the invariants that characterize
them, e.g., in activity recognition applications, the acceleration recorded
by hand device must be corrected by the invariant related to the move-
ment of the hand relative to the body. In this article, we propose a new
approach that abstracts the exact context surrounding data generators
and improves the reconciliation process for decentralized machine learn-
ing. Local learners are trained to decompose the learned representations
into (i) universal components shared among devices and locations and
(ii) local components that capture the specific context of device and loca-
tion dependencies. The explicit representation of the relative geometry of
devices through the special Euclidean Group SE(3) imposes additional
constraints that improve the decomposition process. Comprehensive ex-
perimental evaluations are carried out on sensor-based activity recogni-
tion datasets featuring multi-location and multi-device data collected in
a structured sensing environment. Obtained results show the superiority
of the proposed method compared with the advanced solutions.

Keywords: Meta-learning · Federated learning · Internet of things.

1 Introduction

In Internet of Things (IoT) applications, data generated from different devices
(or sensors) and locations are embodied with varying contexts. The devices offer
specific perspectives on the problem of interest depending on their location. The
movements of the area on which the devices are positioned generate data of two
different but complementary natures. For instance, in Fig. 1, the data of the
movement collected from the hand sensors combines data of the whole body
intertwined with data related to the movement of the hand in relation to the
body. In the case of human activity recognition (HAR), we notice, for example,
that the kinetics of the hand movements during a race can be decomposed into



2 M. Hamidi and A. Osmani

Torso
Sensors

Hand
Sensors

Fig. 1: Example of phenomena surrounded by a structured sensing environment. The
hand sensor undergoes two types of movements. One is of the same nature as the
torso and linked to the translational movement of the body. The other is linked to the
movement of the hand locally relative to the body.

a circular movement (CM) of the hand relative to the shoulder and a translation
movement (TM) associated with the whole body [23].

These characteristics pose significant challenges for decentralized machine
learning as the data distribution across these devices and locations is skewed.
Federated learning [22,16] is an appropriate framework that handles decentral-
ized and distributed settings. In particular, the locally learned weights are aggre-
gated into a central model during the conciliation phase. Decentralized machine
learning suffers from objective inconsistency caused by the heterogeneity in lo-
cal updates and by the interpretation of the locally collected data. Additional
phenomena like the evolution of the local variables over time (concept drift) [15]
or relativity of viewpoints (see Fig. 1) must also be considered.

Recent advances in machine learning literature, e.g., [31], seek the notions of
invariance and symmetries within the phenomena of interest. Symmetry is one
of the invariants that is leveraged for its powerful properties and its promising
ability to drastically reduce the problem size [4,6,27] by requiring fewer training
examples than standard approaches for achieving the same performance. Group
theory provides a useful tool for reasoning about invariance and equivariance. For
instance, in HAR [26,25], the acceleration recorded by the device held in hand
must be corrected by the invariant related to the movement of the hand relative
to the body so that the acceleration data related to the whole body is accurate.
More generally, when the sensors are placed in a structured environment that
exhibits regular dependencies between the locations of the sensors, it is possible
to devise models of data transformations to reduce biases such as position biases.
These models correspond to automatic changes in data representation to project
them onto the same space while minimizing the impact of structure and location
on the final data.

In this paper, we propose a novel approach that abstracts the exact con-
text surrounding the data generators and hence improves decentralized machine
learning. Local learners are trained to decompose the learned representations
into (i) universal components shared across devices and locations and (ii) local
components which capture the specific device- and location-dependent context.
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We introduce the notion of relativity between data generators and model it via
the special Euclidean group, denoted by SE(3), which encompasses arbitrary
combinations of translations and rotations. The relative contribution of a data
generator in the description of the phenomena of interest is expressed using ele-
ments of this group and used to constrain the separation process. In particular,
building on the symmetry-based disentanglement learning [12], the symmetry
structure induced by the relative data generators is reflected in the latent space.
This allows us to further leverage the notion of sharing which is reflected into
the conciliation process of the decentralized learning setting by promising im-
provements. Comprehensive experimental evaluations are conducted to assess
the effectiveness of the proposed approach. Obtained results demonstrate the
superiority of the proposed method over more advanced solutions.

The main contributions of the paper are: (i) a novel approach that leverages
additional knowledge in the terms of symmetries and invariants that emerge
in these kinds of environments. These symmetries and invariants are explicitly
represented in the form of group actions and incorporated into the learning
process; (ii) a proposition of separation process of the data into universal and
position-specific components improves collaboration across the decentralized de-
vices materialized by the conciliation (or aggregation) process; (iii) extensive
experiments on two large-scale real-world wearable benchmark datasets featur-
ing structured sensing environments. Obtained results are promising noticeably
in terms of the quality of the conciliation which open-up perspectives for the
development of more efficient collaboration schemes in structured environments.

2 Background and Motivation

Here we provide a background on decentralized machine learning approaches
and highlight their key principles. Then we review the impact of the various
contexts surrounding the distributed data generators on the learning process in
real-world IoT applications and a priori knowledge can be leveraged to deal with
this challenge.

2.1 IoT Deployments

We consider settings where a collection S of M sensors (also called data sources),
denoted {s1, . . . , sM}, are positioned respectively at positions {p1, . . . , pM} on
the object of interest, e.g., human body. Each sensor si generates a stream
xi = (xi1, x

i
2, . . . ) of observations of a certain modality like acceleration, gravity,

or video, distributed according to an unknown generative process. Furthermore,
each observation can be composed of channels, e.g. three axes of an accelerome-
ter. The goal is to continuously recognize a set of human activity target concepts
Y like running or biking. In the case of the SHL dataset, the data are gener-
ated from 4 smartphones, carried simultaneously at (hand, torso, hips, and bag
body locations. Sensors distributed in various positions of the space provide rich
perspectives and contribute in different ways to the learning process, and the
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decentralization of the sensors has the potential to offer better guarantees of the
quality of the generalization.

2.2 Decentralized Machine Learning

In the decentralized machine learning setting, a set of M clients, each corre-
sponding to a sensor of the above IoT deployment, aim to collectively solve the
following optimization problem:

min
w∈Rd

{
F (w) :=

M∑
p=1

αp · fp(wp)
}
, (1)

where fp(w) = 1
np

∑
ζ∈Dp `p(x; ζ) is the local objective function at the p-th

client, with `p the loss function and ζ a random data sample of size np drawn
from local dataset Dp according to the distribution of position p. At each commu-
nication round r, each client runs independently τp iterations of the local solver,
e.g., stochastic gradient descent, starting from the current global model (set of

weights) w
(r,0)
p until the step w

(r,τp)
p to optimize its own local objective. Then

the updates of a subset of clients are sent to the central server where they are
aggregated into a global model. Only parameter vectors are exchanged between
the clients and the server during communication rounds while raw data are kept
locally which complies with privacy-preserving constraints. Various algorithms
were proposed for aggregating the locally learned parameter vectors into a global
model, including [22] which updates the shared global model as follows:

w(r+1,0) − w(r,0) = −
M∑
p=1

αp · η
τp−1∑
k=0

gp(w
(r,k)
p ) (2)

where w
(r,k)
p denotes the model of client p after the k-th local update in the r-th

communication round. Also, η is the client learning rate and gp represents the
stochastic gradient computed over a mini-batch of samples.

2.3 IoT Deployments and Impact of the Context

Long lines of research studied the impact of the varying contexts on machine
learning algorithms and showed their fragility to viewpoint variations [14]. For
example, basic convolutional networks are found to fail when presented with
out-of-distribution category-viewpoint combinations, i.e., combinations not seen
during training. Similarly, in activity recognition, the diversity of users, their spe-
cific ways of performing activities, and the varying characteristics of the sensing
devices have a substantial impact on performances [29,10]. In these cases, the
conditional distributions may vary across clients even if the label distribution is
shared [15]. In decentralized approaches, several theoretical analyses bound this
drift by assuming bounded gradients [36], viewing it as additional noise [17],
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or assuming that the client optima are ε-close [19]. As a practical example,
SCAFFOLD [16] tries to correct for this client-drift by estimating the update
direction for the server model (c) and the update direction for each client cp.
Then, the difference (c− cp) is used as the estimator of the client-drift which is
used to correct the local update steps. The local models are, then, updated as

w
(r+1,0)
p − w(r,0)

p = −η · (gp(wp) + c− cp).

The impact of varying contexts is not limited to a skewed distribution of
labels but is rather predominantly related to the aspects of the phenomenon
being captured by the sensing devices depending on their intrinsic characteris-
tics and locations. Depending on their disposition w.r.t. to the phenomena of
interest, the sensing devices generate different views of the same problem. The
heterogeneity brought by these configurations in terms of views is beneficial but
must be explicitly handled. Reconciling the various perspectives offered by these
deployments using decentralized learning approaches requires several relaxations
limiting their potential capabilities when the impact of the context on the data
generation process is essential. Indeed, how to reconcile these different points
of view which can potentially be redundant or even seemingly contradictory to
each other? When additional knowledge is available about the structure of the
sensing environment, these challenges can be handled efficiently.

2.4 Relativity of Viewpoints in Structured Sensing Environments

Very often, knowledge about the relative geometry of the sensing devices and do-
main models describing the dynamics of the phenomena is available and can be
leveraged and incorporated into the learning process. For example, the spatial
structure of the sensors deployment and the induced views, sensors capabili-
ties and the perspectives (views) through which the data is collected (sensing
model, range, coverage, position in space, position on the body, and type of
captured modality) [1,33,11]. A long line of research work around activity recog-
nition reviewed in, e.g. [34,9], has focused on the problem of optimal placement
and combination of sensors on the body in order to improve a priori models’
performance. Additionally, domain models derived from biomechanical studies
like [23,3] are often used to describe body movements and the relative interac-
tions between various body parts in a structured manner. Alternatively, consid-
ering the structure of the sensing devices explicitly during the learning process
is more promising but challenging. An approach close to ours for the relativity of
perspectives is that of [5] which describes the different perspectives by discrete
subgroup of the rotation group.

Integrating these additional models into the learning process has promis-
ing implications noticeably on the conciliation process of decentralized machine
learning algorithms: one can exhibit the relative contribution of the individual
views to the bigger picture. The primary goal of this paper is to develop a robust
approach that integrates knowledge about the structure of sensing devices in a
principled way to achieve better collaboration.
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Fig. 2: Framework of the proposed approach. Explicitly representing the relative ge-
ometry of the decentralized devices and their symmetries using elements of the special
Euclidean group SE(3) and leveraging them to constrain the learning process with the
goal of reducing the problem size and improving data efficiency.

3 FedAbstract Algorithm

We propose an original approach based on local abstraction of the position-
specific artifacts and aggregation of universal components in the data. We lever-
age knowledge about the structure of the sensing deployment by representing
the relative geometry of the sensing devices with group transformations. At a
given decentralized location, there are three different elements that are learned:
(1) the universal (or group-invariant) and (2) position-specific representations
(§3.1), and (3) the group of relative geometry representation (§3.2). The general-
ization capabilities of the universal representation are improved collaboratively
across the decentralized sensing devices via the conciliation (or aggregation)
process (§3.3). Fig. 2 summarizes the proposed approach.

3.1 Learning Group-Invariant and Position-Specific Representations

The idea is to express the data generated from a decentralized device (e.g., hand
sensors in the case of on-body sensor deployments) relative to the coordinate
system of a referential (e.g., torso.) This way, the exact relative contribution
of the sensing device is captured without the contextual artifacts. To do this,
we have to capture the variations due to the relative location of the decentral-
ized device w.r.t. a global coordinate system and capture invariant aspects that
are shared across the devices. The latter aspects are universal components that
are shared with the central model while the former ones are considered as spe-
cific components which add noise to the learning process, thus requiring to be
discarded from it.

Invariance. A mapping h(·) is invariant to a set of transformations G if when
we apply any transformation induced by g to the input of h, the output remains
unchanged. A common example of invariance in deep learning is the transla-
tion invariance of convolutional layers. In the structured sensing environments
considered here, the elements g of SE(3) act on the spatial disposition of the
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data generators and ultimately the data they generate: if we translate the data
representation learned at sensor position pi to position pj , the representation
remains unchanged. Formally, if h : A −→ A, and G is a set of transformations
acting on A, h is said to be invariant to G if ∀a ∈ A, ∀g ∈ G, h(ga) = h(a).

We construct at the level of each client i a representation that maps the
observation space X to a latent space V with hA : X −→ V (universal) and
hpi : X −→ V (position-specific). The universal representation has to remain in-
variant to the relative location of the decentralized nodes. We also ensure during
the learning process that the universal and location-specific transformations are
orthogonal to each other (hA ⊥ hpi). In other words, we want these two trans-
formations to capture completely different factors of variations in the data. To
do that, we enforce hpi to be insensitive to the factors of variations linked to the
representation hA using representation disentanglement techniques. We use in
our approach, a family of models based on variational autoencoders (VAEs) [18]
for their ability to deal with entangled representations.

Learning hA and hpi locally The data xi captured at a given location i are
generated from two underlying factors: one reflecting the position-specific com-
ponents and the other the position-invariant (or universal) components. The task
here is to learn these factors of variation, commonly referred to as learning a dis-
entangled representation. In other words, we want these two transformations to
capture completely different factors of variations in the data. To do that, we en-
force hpi to be insensitive to the factors of variations linked to the representation
hA using representation disentanglement techniques. It corresponds to finding
a representation where each of its dimensions is sensitive to the variations of
exactly one precise underlying factor and not the others. Note that the inputs
to hA in the local learners are the raw sensory data xi generated locally.

At this point, we are left with two alternatives for jointly learning the univer-
sal transformation hA and the position-specific transformation hpi at the local
learner level: (1) using a separate VAE for each transformation and training
each one of them jointly using the raw sensory data as inputs; (2) using a sin-
gle VAE and train it to automatically factorize the learned representation so
that each axis captures specific components. Recent advances in unsupervised
disentangling based on VAEs demonstrated noticeable successes in many fields
using the β-VAE, which leads to improved disentanglement [13]. It uses a unique
representation vector and assigns an additional parameter (β > 1) to the VAE
objective, precisely, on the Kullback-Leibler (KL) divergence between the vari-
ational posterior and the prior, which is intended to put implicit independence
pressure on the learned posterior. The improved objective becomes:

L(x; θ, ϕ) =Eqϕ(z|x)[log pθ(x|z)] (autoencoder reconstruction term)

− βDKL(qϕ(z|x)||p(z))− αDKL(qϕ(z)||p(z)),

where the term controlled by α allows to specify a much richer class of properties
and more complex constraints on the dimensions of the learned representation
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other than independence. Indeed, the proposed conciliation step is challenging
due to the dissimilarity of the data distributions across the local learners, leading
to discrepancies between their respective learned representations.

One way to deal with this issue is by imposing sparsity on the latent represen-
tation in a way that only a few dimensions get activated depending on the learner
and activities. We ensure the emergence of such sparse representations using the
appropriate structure in the prior p(z) such that the targeted underlying factors
are captured by precise and homogeneous dimensions of the latent representa-
tion. We set the sparse prior as p(z) =

∏
d(1−γ)N (zd; 0, 1)+γN (zd; 0, σ2

0) with
N is the Gaussian distribution. This distribution can be interpreted as a mixture
of samples being either activated or not, whose proportion is controlled by the
weight parameter γ [21].

Now, we have to represent the notion of data generators relativity and its
induced symmetries in the form of group elements whose action on the data
leaves the universal component of the learned representation invariant.

3.2 Relative Geometry for Data Generators

We model the relative geometry of sensors and the perspectives they provide via
the special Euclidean group SE(3). Let xi and xj be the stream of observations
generated by the data sources si and sj . At each time step t, the observations xi
and xj generated by these data sources are related together via an element gij ∈
SE(3) of the group of symmetries, i.e., the observation xi is obtained by applying
gij on xj . Here, we want to learn a mapping hgi for each decentralized device, so
that the biases that stem from the context (exact position) are corrected before
its contribution is communicated to the global model.

Special Euclidean group SE(3). The special Euclidean group, denoted by SE(3),
encompasses arbitrary combinations of translations and rotations. The elements
of this group are called rigid motions or Euclidean motions and correspond to

the set of all 4 by 4 matrices of the form P (R,
−→
d ) =

(
R
−→
d

0 1

)
, with

−→
d ∈ R3 a

translation vector, and R ∈ R3×3 a rotation matrix. Members of SE(3) act on
points z ∈ R3 by rotating and translating them:

(
R
−→
d

0 1

) (
z
1

)
=
(
Rz +

−→
d

1

)
.

Relative geometry representation. Given a pair of sensing devices si and sj lo-
cated at positions pi and pj , each having its own local coordinate system attached
to it. We represent the relative geometry of this pair by expressing each of the
devices in the local coordinate system of the other (see Fig. 3). Similarly to [32],

the local coordinate system attached to pi is the result of a translation
−→
d j,i and

a rotation Rj,i, where the subscript j, i denotes the sense of the transformation
being from pj to pi. While the translation corresponds to the alignment of the
origins of the two coordinate systems, the rotation is obtained by rotating the
global coordinate system such that the x-axis of the two coordinate systems

coincide:

(
gij1(t) gij2(t)

1 1

)
=

(
Rj,i(t)

−→
d j,i(t)

0 1

)0 lij
0 0
0 0
1 1

 .
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The relative geometry of the data generators is considered to be elements of
SE(3) and supposed to capture the transformations acting on the data genera-
tors. Without explicit information about the exact locations of the data gener-
ators, these transformations have to be learned. For this, we parameterize the
transformation matrices used to represent the relative geometry of the data gen-
erators, with learnable weights. In particular, we parameterize as in [27] the

n-dimensional representation of a rotation R as the product of n(n−1)2 rotations,
denoted Rv,w, each of which corresponds to the rotation in the v, w plane embed-
ded in the n-dimensional representation. For example, a 3-dimensional represen-
tation has three learnable parameters, g = g(θ1,2, θ1,3, θ2,3), each parameterizing

a single rotation, such as R1,3(θ1,3) =

(
cos θ1,3 0 sin θ1,3

0 1 0

− sin θ1,3 0 cos θ1,3

)
.

Learning hA and hg in the central server The referential learner (or central
server) happens also to be a learner similar to the local learners. The main
difference is that the referential learner is located in a particular position of the
sensors deployment, i.e., the referential coordinate system, which imposes it to
perform additional processing. Let’s denote the referential learner with subscript
ref (the orange data source in Fig. 3). The referential learner maintains the
specific hg’s corresponding to each individual position of the sensors deployment
and ensures that:

hA(hgi(xref)) = hA(xi),∀i (3)

where hgi is the learned representation corresponding to the group action acting
on the data xi generated by the sensor located at position i and xref is the data
generated by the sensor located at the referential point. The hgi transformation
is learned by the referential learner using the raw data generated at the cen-
tral server level. The constraint imposing the invariance, i.e., hA(hgi(xref)) =
hA(xi),∀i, is the pivotal element that makes it possible to effectively learn this
transformation.

By drawing a parallel with the construction of manifolds in latent spaces, this
transformation can be interpreted as an operator projecting the data, generated
by the data source positioned on ref, towards a latent space shifted by the action
of the group elements so that the universal components learned by the trans-
formation hA (at the referential) coincide with those transformations (hiA,∀i)
learned by the local learners attached to the other positions. hg must there-
fore act on different subgroups of the latent space. We ensure that the learned
universal transformation hA is invariant to the action of the group SE(3), i.e.,
hA(gx) = hA(x), g ∈ SE(3). For this we map the group SE(3) to a linear repre-
sentation GL on V , i.e., ρ : SE(3) −→ GL(V ). Our goal is to map observations to
a vector space V and interactions to elements of GL(V ) to obtain a disentangled
representation of the relative geometry.

As there are many different group representations (one for each position
of the deployment of the sensors) at the referential learner’s level, we have to
ensure that the learned representation hg acts on specific subspaces of the latent
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Fig. 3: Network architecture of FedAbstract. The local learners (red and blue) perform
a set of updates on their proper version of the universal representation. The referential
learner at position pref (in orange) maintains the specific hg’s corresponding to each in-
dividual position of the sensors deployment and ensures that: hA(hgi(xref)) = hA(xi),∀i
where hgi is the learned representation corresponding to the group elements acting on
the data xi generated at position i and xref the data generated at the referential point.
Notice that only gradient updates are shared to the central server and the data gener-
ated at a given location are processed exclusively by the local learner.

space. At the central server, each client is considered to generate a subgroup of
relative geometry. During the learning process, each subgroup of the symmetry
group is made to act on a specific subspace of the latent space. Formally, let
· : G × X −→ X be a group action such that the group G decomposes as a
direct product G = G1×G2. According to [12], the action is disentangled (w.r.t.
the decomposition of G) if there is a decomposition X = X1 ×X2, and actions
·i : Gi×Xi −→ Xi, i ∈ {1, 2} such that: (g1, g2)·(v1, v2) = (g1 ·1v1, g2 ·2v2), where ·
denotes the action of the full group, and the actions of each subgroup as ·i. An G1

element is said to act on X1 but leaves X2 fixed, and vice versa. We end up here
in the same situation as in the disentanglement of universal and position-specific
components, i.e., either we use a separate VAE for each group transformation or a
single one for all the groups with the additional constraint stating that the action
of each subgroup act on specific regions of the latent space manifold and leave
the other regions fixed. This can be achieved via clustering of the latent space
using a Gaussian mixture prior [21] p(z) =

∑C
c=1 π

c
∏
dN (zd|µcd, σdd), with C the

number of desired clusters and πc the prior probability of the c-th Gaussian.

3.3 Conciliation Process

At the local learner’s level, the proposed model is trained in an end-to-end
fashion. The generalization capabilities of the representation hA are improved
via the conciliation process performed across the nodes of the deployment.
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Algorithm 1: Multi-level abstraction of sensor position

Input : {xp}Mp=1 streams of annotated observations

1 w ← initWeights() ; % Initialize global learner’s weights
2 distributeWeights(w, S) ; % Weights distribution
3 while not converged do
4 foreach position p do
5 for t ∈ τp steps do
6 Sample mini-batch {xpi }

np
i=1

7 Evaluate ∇wp`(wp) w.r.t. the mini-batch

8 Subject to J(zpA, z
ref
A ) (e.g., correlation-based

alignment [2])

9 w
(t)
p ← w

(t−1)
p − η∇wp`(wp)

10 Ensure hA ⊥ hpi (see §3.1)

11 end
12 Communicate wA (with wp = [wA, wpi ])

13 end

14 wA ← wA +
∑M
p=1 αp ·∆w

p
A ; % Central updates

15 Enforce group action disentanglement

16 end
Result: Globally shared universal representation hA

Each local learner pursues its own version of the universal representation but
has not to diverge from the referential universal representation hrefA , which con-
stitutes a consensus among all local learners. After a predefined number of local
update steps, we conduct a conciliation step (see the dotted arrows in Fig. 3).

Each conciliation step t produces a new version of the referential learner w
(t)
ref

and, a new version of the referential universal representation zrefA . The conciliation
step has to be performed on the learned representations zpA via regularization, for
example. In our approach, the conciliation step is performed via representation
alignment, e.g., correlation-based alignment [2]. More formally, we instrument
the objective function of the local learners with an additional term derived from
the representation alignment [30]. The optimization problem (1) becomes:

min
w∈Rd

{
F (w) =

1

M

M∑
p=1

αp(fp(wp) + λJ(zpA, z
ref
A ))

}
, (4)

where J is a regularization term responsible for aligning the locally learned
universal components with the ones learned by the referential learner and λ ∈
[0, 1] is a regularization parameter that balances between the local objective and
the regularization term. Algorithm 1 summarizes the process of the proposed
approach and Fig. 3 illustrates its bigger picture.
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4 Experiments and Results

We perform an empirical evaluation of the proposed approach, consisting of
two major stages: (1) we verify the effectiveness of the proposed approach in
the HAR task via a comparative analysis which includes representative related
baselines (§4.1); (2) we also conduct extensive experiments and ablation analy-
sis to demonstrate the effectiveness of the various components of our proposed
approach (§4.2).

Experimental setup. We evaluate our proposed approach on two large-scale real-
world wearable benchmark datasets featuring structured sensing environments:
SHL [8] and Fusion [28] datasets. We compare our approach with the following
closely related baselines.

– DeepConvLSTM [24]: a model encompassing 4 convolutional layers re-
sponsible for extracting features from the sensory inputs and 2 long short-
term memory (LSTM) cells used to capture their temporal dependence.

– DeepSense [35]: a variant of the DeepConvLSTM model combining convo-
lutional and Gated Recurrent Units (GRU) in place of the LSTM cells.

– AttnSense [20]: features an additional attention mechanism on top of the
DeepSense model forcing it to capture the most prominent sensory inputs
both in the space and time domains to make the final predictions.

– GILE [26]: proposes to explicitly disentangle domain (or position)-specific
and domain-agnostic features using two encoders. To constrain the disentan-
glement process, their proposed additional classifier is trained in a supervised
manner with labels corresponding to the actual domain to which the learn-
ing examples belong. Here, we use the exact location of the data sources as
domain labels.

To make these baselines comparable with our models, we make sure to get the
same complexity, i.e., a comparable number of parameters. We use the f1-score
in order to assess performances of the architectures. We compute this metric
following the method recommended in [7] to alleviate bias that could stem from
unbalanced class distribution. In addition, to alleviate the performance over-
estimation problem due to neighborhood bias, we rely in our experiments on
meta-segmented partitioning.

4.1 Performance Comparison

We conduct extensive experiments to evaluate the performance of the proposed
algorithm in the following two settings: activity recognition (or classification)
task and representation disentanglement. For the activity recognition setting,
Table 1 summarizes the performance comparison of the baselines in terms of the
f1-score obtained on the SHL and Fusion datasets. Here we assess the usefulness
of the separated components per se by leveraging them in a traditional discrim-
inative setting. In other words, we take the learned representation and add a
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Table 1: Recognition performances (f1-score) of the baseline models on different
representative related datasets. Evaluation based on the meta-segmented cross-
validation.

Model Fusion SHL (Acc.) SHL

DeepConvLSTM 68.5 ±.002 64.4 ±.0078 65.3 ±.0206
DeepSense 69.1 ±.0017 64.8 ±.0033 66.5 ±.006
AttnSense 70.3 ±.0027 69.6 ±.0072 68.4 ±.03

GILE 71.7 ±.014 71.1 ±.035 69.0 ±.001

FedAbstract 75.7 ±.047 75.7 ±.047 77.3 ±.017

simple dense layer on top of it. This additional layer is trained to minimize clas-
sification loss while the rest of the circuit is kept frozen. Experimental results
show that the proposed approach exhibits superior performance compared to
the baselines. The proposed method achieves promising improvements in terms
of f1-score over the baseline methods. In particular, our proposed approach im-
proves recognition performances by approximately 7-9% on Fusion and SHL,
while the improvement of attention-based methods is only about 1-2%. Com-
pared to GILE, our approach shows consistent improvement on the considered
configurations. This demonstrates that leveraging knowledge about the struc-
ture of the deployment, instead of simply using domain labels corresponding to
the exact location of the data sources, improves disentanglement and ultimately
activity recognition.

In the representation disentanglement setting, we assess the separation qual-
ity between the universal and position-specific components as well as those re-
lated to the actions of each subgroup. For this, the average latent magnitude
computed for each dimension of the learned representations constitutes an ap-
propriate measure. Fig. 4 illustrates the average latent magnitude computed for
the group of relative geometry representation. It shows the activated latent di-
mensions depending on the subgroup of transformations (among Bag, Hand, and
Hips) acting on the data sources. We can see in particular that specific dimen-
sions are activated depending on the subgroup of transformations that are used
to stimulate the learned representation. These dimensions are also independent
of each other. Furthermore, in complementary experiments, one can observe the
evolution of the dimensions of the central learner’s latent representation where
some of them are getting more activated than others, which is a sign of the
emergence of the desired universal components shared across the learners.

4.2 Ablation Study

To demonstrate the generalization and effectiveness of each component of our
proposed approach, we further design and perform ablation experiments on the
SHL and Fusion datasets. We compare FedAbstract to FedAvg [22] and advanced
solutions which try to correct for client-drift including SCAFFOLD [16]. FedAvg
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Fig. 4: Average latent encoding magnitude in the SHL dataset. It shows the repartition
of the latent dimensions being activated between the different subgroups of transfor-
mations acting on the data sources (Bag, Hand, and Hips positions).
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Fig. 5: Evolution of the loss during decentralized learning. (top) FedAbstract with
both the relativity and decomposition constraints. (bottom) FedAbstract without the
relativity representation constraints (FedAbstract, no SE(3)).

and SCAFFOLD do not perform explicit separation of the local data and thus
constitute suitable baselines to assess the impact of each of FedAbstract’s com-
ponents. The experimental results illustrated in Fig. 5 (top) are obtained using
FedAbstract with both the relativity and decomposition constraints. These re-
sults suggest that the evolution of the loss in the case of FedAvg gets slower as we
increase the number of local steps, which corresponds to the common observation
that client-drift increases proportionally to the number of local steps, hindering
progress. At the same time, we observe that FedAbstract has excellent perfor-
mance, slightly better than SCAFFOLD, suggesting a close connection between
the estimate of the client-drift ci and the position-specific components obtained
via our proposed separation process.

Furthermore, we evaluate the effectiveness of explicitly representing the data
generators’ relativity via group actions while learning the universal and position-
specific transformations. For this, we evaluate the performance of our proposed
approach against a setting that does not specifically consider the relative geom-
etry of the data generators. Basically, in this setting, the constraint imposing
the relative geometry is not enforced during the learning process. Fig. 5 (bot-
tom) illustrates the obtained results in terms of the loss evolution on both SHL
and Fusion datasets. We notice that compared to the basic setting, enforcement
of the relative geometry consistently improves the convergence by 5% on SHL
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and 3% on Fusion. We see that these differences correspond to the gap between
SCAFFOLD and our proposed approach. This demonstrates that the separation
process constrained by the explicit representation of relativity ultimately leads
to improving collaboration across the decentralized devices.

5 Conclusion and Future Work

In this work, we address the problem of decentralized learning in structured
sensing environments. We propose a novel approach that leverages additional
knowledge in terms of symmetries and invariants that emerge in these kinds
of environments. These symmetries and invariants are explicitly represented in
the form of group actions and incorporated into the learning process. Further,
the proposed separation process of the data into universal and position-specific
components improves collaboration across the decentralized devices material-
ized by the conciliation (or aggregation) process. Obtained results on activity
recognition, an example of real-world structured sensing applications, are en-
couraging and open-up perspectives for studying more symmetries, invariants,
and also equivariants that emerge in these environments. Future work also in-
cludes leveraging these symmetries and invariants from a theoretical perspective
like Lie group and corresponding algebra, a special and large class of continuous
groups that includes many valuable transformations like translations, rotations,
and scalings and which also proposes a principled way for handling operations
on the transformations such as composition, inversion, differentiation, and inter-
polation. The broader idea is that universal data is not directly accessible. On
the other hand, it can be attained through various decentralized points of view.
Collaboration is not a confrontation but rather the addition of relevant symme-
tries and complementary information from each viewpoint whose contribution
can be determined precisely. The model we propose achieves this.
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