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Abstract. Near out-of-distribution detection (OODD) aims at discrim-
inating semantically similar data points without the supervision required
for classification. This paper puts forward an OODD use case for radar
targets detection extensible to other kinds of sensors and detection sce-
narios. We emphasize the relevance of OODD and its specific supervi-
sion requirements for the detection of a multimodal, diverse targets class
among other similar radar targets and clutter in real-life critical systems.
We propose a comparison of deep and non-deep OODD methods on sim-
ulated low-resolution pulse radar micro-Doppler signatures, considering
both a spectral and a covariance matrix input representation. The co-
variance representation aims at estimating whether dedicated second-
order processing is appropriate to discriminate signatures. The potential
contributions of labeled anomalies in training, self-supervised learning,
contrastive learning insights and innovative training losses are discussed,
and the impact of training set contamination caused by mislabelling is
investigated.

Keywords: Anomaly detection · Out-of-distribution detection · Micro-
Doppler · Radar target discrimination · Deep learning · Self-supervised
learning.

1 Introduction

Near out-of-distribution detection (OODD) aims at distinguishing one or sev-
eral data classes from semantically similar data points. For instance, identifying
samples from one class of CIFAR10 among samples of the other classes of the
same dataset solves a near OODD task. On the other hand, separating CIFAR10
samples from MNIST samples is a far OODD task: there is no strong semantic
proximity between the data points being separated. OODD defines a kind of
anomaly detection (AD) since OODD can be seen as separating a normal class
from infinitely diverse anomalies, with a training set only or mostly composed
of normal samples, and anomalies being possibly semantically close to normal
samples [24]. This training paradigm relies on lower supervision requirements
compared to supervised classification, for which each class calls for a represen-
tative set of samples in the training data.
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This work considers both unsupervised and semi-supervised AD (SAD). Un-
supervised AD trains the model with a representative set of normal data sam-
ples, while semi-supervised AD also benefits from labeled anomalies [15, 26] that
can not be representative, since anomalies are by definition infinitely diverse.
A distinction can however be observed between benefiting from far and near
anomalies, in analogy with far and near OODD, to refine the discrimination
training. The contribution of self-supervision will be taken into account through
the supply of far artificial anomalies for additional supervision during training.

Near OODD constitutes an ideal mean to achieve radar targets discrimina-
tion, where an operator wants an alarm to be raised everytime specific targets
of interest are detected. This implies discriminating between different kinds of
planes, or ships, sometimes being quite similar from a radar perspective. For
example, two ships can have close hull and superstructure sizes, implying close
radar cross-sections, even though their purpose and equipment on deck are com-
pletely different. Analogous observations could be made for helicopters, planes
and drones. In an aerial radar context, whereas separating aerial vehicles would
constitute a near OODD task, spotting weather-related clutter would define a
far OODD. Such an OODD-based detection setup is directly applicable to other
sensors.

The motivation behind the application of OODD methods to low-resolution
pulse Doppler radar (PDR) signatures stems from the constraints of some air
surveillance radars. Air surveillance PDRs with rotating antennas are required to
produce very regular updates of the operational situation and to detect targets
located at substantial ranges. The regular updates dictate the rotation rate and
limit the number of pulses, and thus the number of Doppler spectrum bins, over
which to integrate and refine a target characterization. The minimum effective
range restricts the pulse repetition frequency (PRF), which in turns diminishes
the range of velocities covered by the Doppler bins combined. The operating
frequencies of air surveillance radars are such that they can not make up for this
Doppler resolution loss [18]. This work aims at exploring the potential of machine
learning to discriminate targets within these air surveillance radars limitations,
using the targets Doppler spectrums. Refining radar targets discrimination with
limited supervision is critical to enable the effective detection of targets usually
hidden in cluttered domains, such as small and slow targets.

The AD methods examined will take a series of target Doppler spectrums
as an input sample. This series is converted into a second-order representa-
tion through the computation of a covariance matrix to include an AD method
adapted to process symmetric positive definite (SPD) inputs in our compari-
son. Radar Doppler signatures with sufficient resolution to reveal micro-Doppler
spectrum modulations is a common way to achieve targets classification in the
radar literature, notably when it comes to detecting drones hidden in clutter [9,
3, 13]. The processing of second-order representations is inspired by their recent
use in the machine learning literature [16, 31], including in radar processing [6],
and is part of the much larger and very active research on machine learning on
Riemannian manifolds [7, 5].
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This paper first details the simulation setup which generates the micro-
Doppler dataset, then describes the OODD methods compared. Finally, an ex-
perimental section compares quantitatively various supervision scenarios involv-
ing SAD and self-supervision. The code for both the data generation and the
OODD experiments is available3. The code made available does not restrict itself
to the experiments put forward in the current document, pieces of less success-
ful experiments being kept for openness and in case they help the community
experiment on the data with similar approaches.

2 Micro-Doppler dataset

A PDR is a radar system that transmits bursts of modulated pulses, and after
each pulse transmission waits for the pulse returns. The pulse returns are sam-
pled and separated into range bins depending on the amount of time observed
between transmission and reception. The spectral content of the sampled pulses
is evaluated individually in each range bin, as depicted on Fig. 1. This content
translates into the Doppler information which amounts to a velocity descrip-
tor: the mean Doppler shift reveals the target bulk speed, and the spectrum
modulation its rotating blades. These Doppler features are available for each
burst, under the assumption that the velocities detected in a given range bin
change negligibly during a burst. The number of pulses in a burst, equating the
number of samples available to compute a spectrum, determines the resolution
of the Fourier bins or Doppler bins. The PRF sampling frequency defines the
range of speeds covered by the spectrum. PDR signatures are generated by a
MATLAB [20] simulation. The Doppler signatures are a series of periodograms,
i.e. the evolution of spectral density over several bursts, one periodogram being
computed per burst. The samples on which the discrete Fourier transform is
computed are sampled at the PRF frequency, i.e. one sample is available per
pulse return for each range bin.

The main parameters of the simulation are close to realistic radar and target
characteristics. A carrier frequency of 5 GHz was selected, with a PRF of 50
KHz. An input sample is a Doppler signature extracted from 64 bursts of 64
pulses, i.e. 64 spectrums of 64 samples, ensuring the full rank of the covariance
matrix computed over non-normalized Doppler, i.e. Fourier, bins. The only sim-
ulation parameter changing across the classes of helicopter-like targets is the
number of rotating blades: Doppler signatures are associated with either one,
two, four or six rotating blades, as can be found on drones and radio-controlled
helicopters. The quality of the dataset is visually verified: a non-expert human
is easily able to distinguish the four target classes, confirming the discrimina-
tion task is feasible. The classes intrinsic diversity is ensured by receiver noise,
blade size and revolutions-per-minute (RPM) respectively uniformly sampled in
[4.5, 7] and [450, 650], and a bulk speed uniformly sampled so that the signature
central frequency changes while staying approximately centered. The possible
3 https://github.com/Blupblupblup/Doppler-Signatures-Generation
https://github.com/Blupblupblup/Near-OOD-Doppler-Signatures
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Fig. 1: Each pulse leads to one complex-valued I/Q sample per range bin, while
each burst is composed of several pulses. Each range bin is thus associated with
a complex-valued discrete signal with as many samples as there are pulses. Air
surveillance radars with rotating antennas are required to provide regular situ-
ation updates in every direction, severely constraining the number of pulses per
burst acceptable.

Fig. 2: One sample of each target class: the varying number of rotating blades
defines the classes, the modulation pattern being easily singled out. The first line
of images shows Doppler signatures, i.e. the time-varying periodogram of targets
over 64 bursts of 64 pulses. On those images, each row is the periodogram com-
puted over one burst, and each column a Fourier i.e. a Doppler bin. The second
line contains the covariance SPD representation of the first line samples. The
width of the Doppler modulations around the bulk speed on the periodograms
varies within each class, as well as the bulk speed, the latter being portrayed by
the central vertical illumination of the signature.

bulk speeds and rotor speeds are chosen in order for the main Doppler shift and
the associated modulations to remain in the unambiguous speeds covered by the
Doppler signatures [18]. Example signatures and their covariance representations
are depicted for each class on Fig. 2. For each class, 3000 samples are simulated,
thus creating a 12000-samples dataset. While small for the deep learning com-
munity, possessing thousands of relevant and labeled real radar detections would
not be trivial in the radar industry, making larger simulated datasets less realistic
for this use case.



Near OODD for low-resolution radar micro-Doppler signatures 5

3 OODD methods

This work compares deep and non-deep OODD methods, called shallow, in-
cluding second-order methods harnessing the SPD representations provided by
the covariance matrix of the signatures. The extension of the deep learning ar-
chitectures discussed to SAD and self-supervised learning (SSL) is part of the
comparison. The use of SSL here consists in the exploitation of a rotated ver-
sion of every training signature belonging to the normal class in addition to its
non-rotated version, whereas SAD amounts to the use of a small minority of
actual anomalies taken in one of the other classes of the dataset. In the first case
one creates artificial anomalous samples from the already available samples of
a single normal class, whereas in the second case labeled anomalies stemming
from real target classes are made available. No SSL or SAD experiments were
conducted on the SPD representations, since the SSL and SAD extensions of the
deep methods are achieved through training loss modifications, and the SPD
representations were confined to shallow baselines.

3.1 Non-deep methods

Common non-deep anomaly detection methods constitute our baselines: one-
class support vector machines (OC-SVM) [28], isolation forests (IF) [19], local
outlier factor (LOF) [4] and random projections outlyingness (RPO) [12]. The
three first methods are selected for their widespread use [10, 27, 1], and the di-
versity of the underlying algorithms. OC-SVM projects data points in a feature
space where a hyperplane separates data points from the origin, thus creating
a halfspace containing most samples. Samples whose representation lies outside
of this halfspace are then considered to be anomalies. IF evaluates how easy
it is to isolate data points in the feature space by recursively partitioning the
representation space. The more partitions are required to isolate a data point,
the more difficult it is to separate this point from other samples, and the less
anomalous this point is. LOF uses the comparison of local densities in the feature
space to determine whether a point is anomalous or not. Points that have local
densities similar to the densities of their nearest neighbors are likely to be inliers,
whereas an outlier will have a much different local density than its neighbors.
RPO combines numerous normalized outlyingness measures over 1D projections
with a max estimator in order to produce a unique and robust multivariate
outlyingness measure, which translates into the following quantity:

O(x; p,X) = max
u∈U

|uTx−MED(uTX)|
MAD(uTX)

(1)

where x is the data point we want to compute the outlyingness for, p the number
of random projections (RP) u of unit norm gathered in U, and X the training
data matrix.MED stands for median andMAD for median absolute deviation.
This outlyingness actually leads to the definition of a statistical depth approxi-
mation [12, 17].
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3.2 Deep methods

The deep AD methods experimented on in this work are inspired by the deep sup-
port vector data description (SVDD) original paper [27]. Deep SVDD achieves
one-class classification by concentrating latent space representations around a
normality centroid with a neural network trained to minimize the distance of
projected data samples to the centroid. The centroid is defined by the average of
the initial forward pass of the training data, composed of normal samples. The
intuition behind the use of Deep SVDD for AD is similar to the way one detects
anomalies with generative models: whereas generative models detect outliers be-
cause they are not as well reconstructed as normal samples, deep SVDD projects
outliers further away from the normality centroid in the latent space. One can
note that Deep SVDD is a deep learning adaptation of SVDD [29], which can
be equivalent to the OC-SVM method in our comparison if one uses a Gaussian
kernel. The training loss of Deep SVDD for a sample of size n with a neural
network Φ with weights W distributed over L layers is as follows:

min
W

[
1

n

n∑
i=1

||Φ(xi;W )− c||2 + λ

2

L∑
l=1

||W l||2
]

(2)

where c is the fixed normality centroid. The second term is a weights reg-
ularization adjusted with λ. Deep SVDD naturally calls for a latent multi-
sphere extension. An example of such an extension is Deep multi-sphere SVDD
(MSVDD) [14], which is part of our comparison. Deep MSVDD initializes nu-
merous latent normality hyperspheres using k-means and progressively discards
the irrelevant centroids during training. The relevance of latent hyperspheres is
determined thanks to the cardinality of the latent cluster they encompass. The
deep MSVDD training loss is:

min
W,r1...rK

[
1

K

K∑
k=1

r2k+
1

νn

n∑
i=1

max(0, ||Φ(xi;W )− cj ||2− r2j )+
λ

2

L∑
l=1

||W l||2
]

(3)

The first term minimizes the volume of hyperspheres of radius rk, while the
second is controlled by ν ∈ [0, 1] and penalizes points lying outside of their as-
signed hypersphere, training samples being assigned to the nearest hypersphere
of center cj . A second Deep SVDD variant considered here is Deep RPO [2],
which replaces the latent Euclidean distance to the normality centroid with a
RPs-based outlyingness measure in the latent space. This outlyingness measure
ensures normality is described by a latent ellipsoid instead of a latent hyper-
sphere, and leads to the following loss:

min
W

[
1

n

n∑
i=1

(
mean
u∈U

|uTΦ(xi;W )−MED(uTΦ(X;W ))|
MAD(uTΦ(X;W ))

)
+
λ

2

L∑
l=1

||W l||2
]

(4)
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This training loss uses the outlyingness defined in Eq. 1, with amax estimator
transformed into a mean as suggested in [2] for better integration with the deep
learning setup.

SAD is achieved through outlier exposure [15, 26], which adds supervision to
the training of the model thanks to the availability of few and non represen-
tative labeled anomalies. To take into account anomalies during training, Deep
SAD [26] repels the outliers from the normality centroid by replacing the min-
imization of the distance to the centroid with the minimization of its inverse
in the training loss. Outliers could not globally be gathered around a reference
point since they are not concentrated. This adaptation can be repeated for both
Deep RPO and Deep MSVDD, although in Deep MSVDD the multiplicity of
normality centers calls for an additional consideration on how to choose from
which centroid the labeled anomalies should be repelled. The experiments imple-
menting Deep MSVDD adapted to SAD with an additional loss term for labeled
anomalies were inconclusive, such an adaptation will therefore not be part of the
presented results. The reunion of normal latent representations achieved through
the deep one-class classification methods mentioned is analogous to the align-
ment principle put forward in [30], which also argued for a latent uniformity.
The extension of the Deep SVDD loss to encourage such latent uniformity using
the pairwise distance between normal samples during training was investigated
without ever improving the baselines.

3.3 Riemannian methods for covariance matrices

Two SPD-specific AD approaches were considered. The first approach consists
in replacing the principal component analysis (PCA) dimensionality reduction
preceding shallow AD with an SPD manifold-aware tangent PCA (tPCA). The
tPCA projects SPD points on the tangent space of the Fréchet mean, a Rie-
mannian mean which allows to compute an SPD mean, keeping the computed
centroid on the Riemannian manifold naturally occupied by the data. Using
tPCA offers the advantage of being sensible to the manifold on which the in-
put samples lie, but implies that input data is centered around the Riemannian
mean. This makes tPCA a questionable choice when the objective set is AD
with multimodal normality [23], something that is part of the experiments put
forward in this work. Nonetheless, the Euclidean PCA being a common tool in
the shallow AD literature, tPCA remains a relevant candidate for this study
since it enables us to take a step back with respect to non-deep dimensionality
reduction.

The second SPD-specific approach defines a Riemannian equivalent to Deep
SVDD: inspired by recent work on SPD neural networks, which learn repre-
sentations while keeping them on the SPD matrices manifold, a Deep SVDD
SPD would transform input covariance matrices and project the latter into a
latent space comprised within the SPD manifold. Taking into account SAD and
SSL labeled anomalies during training was expected to be done as for the semi
and self-supervised adaptations of Deep SVDD described earlier, where labeled
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anomalies are pushed away from the latent normality centroid thanks to an in-
verse distance term in the loss. Despite diverse attempts to make such a Deep
SVDD SPD model work, with and without geometry-aware non-linearities in the
neural network architecture, no effective learning was achieved on our dataset.
This second approach will therefore be missing from the reported experimental
results. Since this approach defined the ReEig [16] non-linearity rectifying small
eigenvalues of SPD representations, the related shallow AD approach using the
norm of the last PCA components as an anomaly score was also considered.
This negated PCA is motivated by the possibility that, in one-class classifica-
tion where fitting occurs on normal data only, the first principal components
responsible for most of the variance in normal data are not the most discrimi-
nating ones when it comes to distinguishing normal samples from anomalies [21,
25]. This approach was applied to both spectral and covariance representations,
with the PCA and tPCA last components respectively, but was discarded as
well due to poor performances. The latter indicate that anomalous samples are
close enough to the normal ones for their information to be carried in similar
components, emphasizing the near OODD nature of the discrimination pursued.

4 Experiments

AD experiments are conducted for two setups: a first setup where normality is
made of one target class, and a second setup where normality is made of two
target classes. When a bimodal normality is experimented on, the normal classes
are balanced. Moreover, the number of normal modes is not given in any way to
the AD methods, making the experiments closer to the arbitrary and, to a certain
extent, unspecified one-class classification useful to a radar operator. Within the
simulated dataset, 90% of the samples are used to create the training set, while
the rest is equally divided to create the validation and test sets. All non-deep
AD methods include a preliminary PCA or tPCA dimensionality reduction.

Preprocessing This work is inspired by [26], which experimented on Fashion-
MNIST, a dataset in which samples are images of objects without background
or irrelevant patterns. In order to guarantee a relevant neural architecture choice,
this kind of input format is deliberately reproduced. The series of periodograms,
i.e. non-SPD representations are therefore preprocessed such that only the columns
with top 15% values in them are kept, this operation being done after a switch
to logarithmic scale. This results in periodograms where only the active Doppler
bins, portraying target bulk speed and micro-Doppler modulations, have non-
zero value. Only a grayscale region of interest (ROI) remains in the input matrix
with various Doppler shifts and modulation widths, examples of which are shown
on Figure 3. This preprocessing leads to the "(SP)" input format as indicated
in the results tables, and is complementary to the covariance representation.
Covariance matrices are computed without such preprocessing, except for the
switch to logarithmic scale which precedes the covariance computation. Compar-
ing covariance-based OODD to OODD on spectral representations is fair since
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both representations stem from the same inputs, the covariance only implying
an additional transformation of the input before training the AD. All input data
is min-max normalized except for the covariance matrices used by tPCA.

Deep learning experiments The test AUC score of the best validation epoch in
terms of AUC is retained, in line with [11]. All experiments were conducted with
large 1000 samples batches, which stabilizes the evolution of the train, validation
and test AUCs during training. The training is conducted during 300 epochs,
the last 100 epochs being fine-tuning epochs with a reduced learning rate, a
setup close to the one in [27]. A relatively small learning rate of 10−4 is chosen
to help avoid the latent normality hypersphere collapse, i.e. the convergence to
a constant projection point in the latent space, in the non-SAD and non-SSL
cases, with λ = 10−6. Hyperparameters are kept constant across all experiments
conducted, in order to ensure fair comparisons. In the results tables, the second
and third columns indicate whether SAD and SSL samples were used for addi-
tional supervision during training, and describe how such samples affected the
training loss if present. When the SAD or SSL loss term is defined by a cen-
troid, it means that the distance to the mentioned centroid is minimized during
training, whereas "away" implies the projection of the SAD or SSL samples are
repelled from the normality centroid thanks to an inverse distance as described
previously. For example, the first line of the second part of Table 2 describes an
experiment where SAD samples are concentrated around the SAD samples latent
centroid, and SSL samples concentrated around the SSL samples latent centroid.
Centroids are computed, as for the normal training samples, with the averaging
of an initial forward pass, therefore yielding the average latent representation.

Non-deep learning experiments Shallow AD conducted on the covariance repre-
sentation after a common PCA uses the upper triangular part of the min-max
normalized input as a starting point, avoiding redundant values. This contrasts
with the Riemannian approach replacing PCA with the tPCA, the latter re-
quiring the raw SPD representation. Furthermore, shallow approaches were also
tried on the periodograms individually, where each row of an input signature,
i.e. one vector of Doppler bins described for one burst, was given a score, the
complete signature being then given the mean score of all its periodograms. This
ensemble method did not yield relevant results and is therefore missing from our
comparison. Such an approach ignores the order of periodograms in signatures.

Neural network architecture While the Fashion-MNIST input format is thus
replicated, the 2D features remain specific to radar signal processing and may
therefore benefit from a different neural network architecture. Several neural
networks architectures were considered, including architectures beginning with
wider square and rectangular convolutions extended along the (vertical) bursts
input axis, with none of the investigated architectures scoring systematically
higher than the Fashion-MNIST architecture from the original Deep SAD work [26],
which was only modified in order to handle the larger input size. The latter was
consequently selected to produce the presented results. This architecture projects
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Fig. 3: Random samples of the fourth class after the preprocessing erasing the
irrelevant background. One can notice the varying modulation width and cen-
tral shift. The fourth class has the highest number of rotating blades on the
helicopter-like target, hence the higher complexity of the pattern.

data with two convolutional layers followed by two dense layers, each layer be-
ing separated from the next one by a batch normalization and a leaky ReLU
activation. The outputs of the two convolutional layers are additionally passed
through a 2D max-pooling layer.

Riemannian AD The tPCA was computed thanks to the dedicated Geom-
stats [22] function, while experiments implementing a Riemannian equivalent
of Deep SVDD were conducted using the SPD neural networks library torch-
spdnet [8]. The AD experiments based on a SPD neural network ending up
inconclusive, they are not part of the results tables.

4.1 Unsupervised OODD with shallow and deep learning

Unsupervised AD results, for which the training is only supervised by normal
training samples, are presented in Table 1. These results indicate the superiority
of deep learning for the OODD task considered, while demonstrating the sub-
stantial contribution of geometry-aware dimensionality reduction through the
use of tPCA for non-deep AD. RPO is kept in Table 1 even though it does not
achieve useful discrimination because it is the shallow equivalent of Deep RPO,
one of the highlighted deep AD methods, deprived of the neural network encoder
and with a max estimator instead of a mean, as was previously justified. Deep
MSVDD does not lead to the best performances, and is as effective as Deep
SVDD and Deep RPO, which could seem surprising at least when normality is
made of two target classes.

4.2 Potential contribution of SAD and SSL

The contribution of additional supervision during training through the introduc-
tion of SAD samples and SSL samples is examined in Table 2. Regarding SAD
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Table 1: Unsupervised AD experiments results (average test AUCs in % ± Std-
Devs over ten seeds). These machine learning methods are trained on fully nor-
mal training sets, without labeled anomalies for SAD or self-supervision transfor-
mations. The four last methods are our deep AD baselines, trained on normalized
spectral representations only. Deep MSVDD "mean best" indicates the neural
network was trained using a simpler loss, analogous to the Deep SVDD loss,
where only the distance to the best latent normality centroid is minimized, thus
discarding the radius loss term. One should note that whereas Deep SVDD uses
the Euclidean distance to the latent normality centroid as a test score, Deep
MSVDD replaces this score with the distance to the nearest latent centroid re-
maining after training, from which the associated radius is subtracted. Very often
in our experiments, even with multimodal normality during training, only one
latent sphere remains at the end of Deep MSVDD training. Deep RPO replaces
the Euclidean distance score with an RPO computed in the encoding neural net-
work output space. PCA and tPCA indicate that the AD model is trained after
an initial dimensionality reduction, which is either PCA or tangent PCA. RPO,
with or without prior neural network encoding, is always implemented with 1000
random projections.
AD method (input format) SAD loss SSL loss Mean test AUC (1 mode) Mean test AUC (2 modes)
OC-SVM (SP-PCA) / / 49.16 ± 26.69 45.48 ± 27.53
OC-SVM (SPD-PCA) / / 64.68 ± 9.10 58.23 ± 15.12
OC-SVM (SPD-tPCA) / / 57.59 ± 3.91 55.33 ± 9.48
IF (SP-PCA) / / 50.96 ± 17.37 48.50 ± 18.76
IF (SPD-PCA) / / 52.36 ± 22.47 47.50 ± 20.32
IF (SPD-tPCA) / / 66.91 ± 9.65 61.23 ± 12.65
LOF (SP-PCA) / / 56.80 ± 2.38 61.55 ± 10.29
LOF (SPD-PCA) / / 66.44 ± 21.37 65.83 ± 19.52
LOF (SPD-tPCA) / / 78.38 ± 8.86 73.56 ± 10.09
RPO (SP-PCA) / / 49.61 ± 6.89 50.43 ± 7.13
RPO (SPD-PCA) / / 51.08 ± 19.66 54.95 ± 17.58
RPO (SPD-tPCA) / / 33.97 ± 7.36 38.08 ± 14.58
Deep SVDD (SP) no SAD no SSL 83.03 ± 6.83 78.29 ± 6.68
Deep MSVDD (SP) no SAD no SSL 82.27 ± 9.67 78.30 ± 8.28
Deep MSVDD "mean best" (SP) no SAD no SSL 82.29 ± 7.20 78.02 ± 6.80
Deep RPO (SP) no SAD no SSL 83.60 ± 5.35 78.13 ± 6.02

experiments, labeled anomalies will be taken from a single anomalous class for
simplicity, and because only four classes are being separated, this avoids unreal-
istic experiments where labeled anomalies from every anomalous class are seen
during training. When SAD samples are used during training, labeled anomalies
represent one percent of the original training set size. This respects the spirit of
SAD, for which labeled anomalies can only be a minority of training samples,
which is not representative of anomalies. This is especially realistic in the radar
processing setup initially described where labeled detections would rarely be
available. SSL samples are generated thanks to a rotation of the spectral input
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format, rendering the latter absurd but encouraging better features extraction
since the network is asked to separate similar patterns with different orienta-
tions. SSL samples are as numerous as normal training samples, implying they
don’t define a minority of labeled anomalies for training as SAD samples do,
when they are taken into account.

Individually, SAD samples lead to better performances than SSL ones, but
the best results are obtained when combining the two sets of samples for max-
imal training supervision. Deep SVDD appears to be substantially better at
taking advantage of the additional supervision provided by SAD and SSL sam-
ples. Quite surprisingly for a radar operator, the best test AUC is obtained when
SSL samples are concentrated around a specialized centroid while SAD samples
are repelled from the normality centroid. Indeed, SSL samples being the only
absurd samples considered in our experiments radarwise, it could seem more in-
tuitive to project SAD samples, which remain valid targets, next to a dedicated
centroid while repelling SSL samples. Likewise, on an ideal outlyingness scale,
SSL samples should be further away from normality than SAD samples. This
counter-intuitive performance could stem from the test set which only evaluates
the separation of targets in a near OODD context. No invalid target representa-
tion, like the SSL samples are, is present in the test set, only valid representation
from the four targets classes make up the latter. This is consistent with the ap-
plication put forward in this study: use OODD to discriminate between various
kinds of radar detections.

4.3 Training with a contaminated training set

Unsupervised AD refers to the experiments of Table 1 where only training sam-
ples assumed to be normal supervise the training of the neural network. Real-life
datasets, labeled by algorithms or experts, are unlikely to respect that assump-
tion and will suffer from contamination of normal samples with unlabeled anoma-
lies. The results in Table 3 depict how sensible the deep AD methods previously
introduced are to training set contamination. The contamination is carried out
using the one percent SAD samples already used for SAD experiments. While in
the SAD experiments SAD samples were repelled from the normality centroid
or concentrated next to their dedicated latent reference point, here they will be
processed as normal samples. SSL samples again appear to better contribute to
improving AD when concentrated next to a specialized centroid, while the per-
formance drop due to contamination does not seem to be particularly stronger
for one of the approaches considered.

5 Conclusion

The near OODD performances of various deep and non-deep AD methods were
compared on a radar Doppler signatures simulated dataset. Deep AD approaches
were evaluated in various supervision setups, which revealed the relevance of
combining a minority of labeled anomalies with transformed normal training



Near OODD for low-resolution radar micro-Doppler signatures 13

Table 2: Experiments with additional supervision provided by SAD and/or SSL
labeled samples during training (average test AUCs in % ± StdDevs over ten
seeds). When available, SAD samples are the equivalent of one percent of the
normal training samples in quantity. The first half of the Table reports perfor-
mances where only one of the two kinds of additional supervision is leveraged,
while the second half describes the performances for setups where both SAD
and SSL labeled samples contribute to the model training. Each couple of lines
compares Deep SVDD and Deep RPO in a shared AD supervision setup, thus
allowing a direct comparison. c. stands for centroid.
AD method (input format) SAD loss SSL loss Mean test AUC (1 mode) Mean test AUC (2 modes)
Deep SVDD (SP) no SAD SSL c. 86.79 ± 6.54 83.91 ± 7.92
Deep RPO (SP) no SAD SSL c. 88.70 ± 5.10 84.59 ± 8.54
Deep SVDD (SP) no SAD away 81.43 ± 8.62 77.01 ± 8.20
Deep RPO (SP) no SAD away 80.21 ± 9.06 78.93 ± 9.39
Deep SVDD (SP) SAD c. no SSL 86.79 ± 8.94 87.65 ± 6.44
Deep RPO (SP) SAD c. no SSL 81.38 ± 6.09 76.45 ± 6.30
Deep SVDD (SP) away no SSL 93.93 ± 4.82 93.50 ± 7.61
Deep RPO (SP) away no SSL 84.19 ± 5.32 80.37 ± 7.22
Deep SVDD (SP) SAD c. SSL c. 91.00 ± 6.45 90.51 ± 7.38
Deep RPO (SP) SAD c. SSL c. 87.79 ± 5.81 82.69 ± 8.51
Deep SVDD (SP) SAD c. away 89.98 ± 7.79 91.03 ± 6.71
Deep RPO (SP) SAD c. away 78.86 ± 9.10 79.11 ± 9.64
Deep SVDD (SP) away SSL c. 95.06 ± 4.20 93.91 ± 7.31
Deep RPO (SP) away SSL c. 89.82 ± 5.21 87.17 ± 8.17
Deep SVDD (SP) away away 94.63 ± 4.31 94.02 ± 7.30
Deep RPO (SP) away away 90.91 ± 5.94 92.69 ± 7.98

Table 3: Contamination experiments results (average test AUCs in % ± StdDevs
over ten seeds): the SAD labeled anomalies are integrated within the training
samples and taken into account as normal samples during training, thus no SAD
loss term is used for SAD samples. The contamination rate is one percent, i.e.
the equivalent of one percent of the normal training samples in labeled anomalies
is added to confuse the AD.
AD method (input format) SAD loss SSL loss Mean test AUC (1 mode) Mean test AUC (2 modes)
Deep SVDD (SP) no SAD no SSL 80.76 ± 7.11 76.02 ± 6.66
Deep MSVDD (SP) no SAD no SSL 78.31 ± 11.18 74.49 ± 9.13
Deep MSVDD "mean best" (SP) no SAD no SSL 79.84 ± 7.82 74.89 ± 7.01
Deep RPO (SP) no SAD no SSL 81.29 ± 5.92 74.82 ± 5.89
Deep SVDD (SP) no SAD SSL c. 85.34 ± 6.85 81.36 ± 7.47
Deep RPO (SP) no SAD SSL c. 86.66 ± 6.41 82.78 ± 8.25
Deep SVDD (SP) no SAD away 79.62 ± 9.02 75.38 ± 8.28
Deep RPO (SP) no SAD away 76.16 ± 9.87 76.56 ± 8.69

samples to improve near OODD performances, and avoid latent normality hy-
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Fig. 4: Left - Training metrics of a successful run where normal samples are con-
centrated around their average initial projection, and SAD and SSL samples are
pushed away thanks to a loss term using the inverse of the distance with respect
to the normality latent centroid. This is one of the most successful setups in
Table 2, and one of the easiest AD experiments since the two classes defining
normality here are class 3 (four blades are responsible for the modulation pat-
tern around the central Doppler shift) and class 4 (six blades are responsible for
the modulation pattern around the central Doppler shift), meaning the separa-
tion with the other classes deemed anomalous is actually a binary modulation
complexity threshold. One of the contributions of the SAD and SSL supervisions
can be observed on the evolution of AUCs during training: no AUC collapse can
be seen during training. Experiments showed that large training batches con-
tributed to stable AUCs growth. Spikes in the training loss match the drops in
AUCs. Right - Latent distribution of the training samples visualized in 2D using
t-SNE after projection by the untrained (top) and the trained neural network
(bottom). One can notice that normal training samples from both normal classes
are completely mixed up with the minority of SAD labeled anomalies from class 1
in red (one blade), semantically similar, whereas SSL samples which are rotated
normal training samples are already gathered in their own latent subclusters.
SAD labeled anomalies end up well separated after training.

persphere collapse. Among the limitations of our study, one can note the lack
of OODD experiments on a multimodal normal training set with unbalanced
normal classes, which would make the OODD task more realistic. The benefits
of deep learning clearly showed, and while not leading to the best overall per-
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formances, geometry-aware processing proved to be the source of a substantial
improvement for non-deep AD.
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