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Abstract. The value of an agent for a team can vary significantly de-
pending on the heterogeneity of the team and the kind of game: coop-
erative, competitive, or both. Several evaluation approaches have been
introduced in some of these scenarios, from homogeneous competitive
multi-agent systems, using a simple average or sophisticated ranking
protocols, to completely heterogeneous cooperative scenarios, using the
Shapley value. However, we lack a general evaluation metric to address
situations with both cooperation and (asymmetric) competition, and
varying degrees of heterogeneity (from completely homogeneous teams to
completely heterogeneous teams with no repeated agents) to better un-
derstand whether multi-agent learning agents can adapt to this diversity.
In this paper, we extend the Shapley value to incorporate both repeated
players and competition. Because of the combinatorial explosion of team
multisets and opponents, we analyse several sampling strategies, which
we evaluate empirically. We illustrate the new metric in a predator and
prey game, where we show that the gain of some multi-agent reinforce-
ment learning agents for homogeneous situations is lost when operating
in heterogeneous teams.

Keywords: Multi-agent reinforcement learning - Cooperation-Competition
game - Evaluation.

1 Introduction

The evaluation of how much a member contributes to a team is a key question
in many disciplines, from economics to biology, and has been an important ele-
ment of study in artificial intelligence, mostly in the area of multi-agent systems
(MAS). When a homogeneous multi-agent system has to achieve a collaborative
goal, evaluation can be based on measuring overall performance under several
agent configurations. However, a more general and realistic version of the prob-
lem is when teams are heterogeneous, with players behaving differently and
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Fig. 1: Predator-prey game using the Multi-agent Particle Environment (MPE)
[3,4] where we see 3 predators (in red), 2 preys (in green), and landmarks (in
black). With m = 5 agents playing in total, and | = 3 different kinds of agents to
choose from (MADDPG, DDPG and random), the combinations with repetitions
of the team sizes configurations (Ipred, lprey) = (4,1),(3,2),(2,3),(1,4) make a
total of 454+-60+60-+45= 210 experiments, and a larger number if we also consider
experiments with m < 5. Determining which agent has the most contributions to
the team considering all roles, and estimating this number with a small number
of experiments is the goal of this paper.

reacting in various ways depending on their teammates. The Shapley value [1]
is a well-known metric of the contribution of a player to a heterogeneous team
taking into account different coalition formations.

Things become more sophisticated in situations where the players are learning
agents [2]. Even if some of these agents use the same algorithm, they may end
up having different behaviour after training, with important variations when the
same episode is re-run. Despite this variability, they still should be considered as
‘repeated’ players, something that the original Shapley value does not account for
well. Finally, and yet more generally, teams may compete against other teams
in asymmetric games, and the contribution of each player will depend on the
composition of its team but also on the composition of the opponent team, with
the same algorithm possibly appearing once or more on one team or both. This
is the general situation we address in this paper.

This situation suffers from poor stability in the payoffs when teams are com-
posed of several learning agents: the same algorithm will lead to very different
payoffs depending on the configuration of teams [5]. This requires many iterations
in the evaluation protocols, which makes each value for a team configuration ex-
pensive to calculate. Consequently, it is even more difficult than in other uses of
the Shapley value to collect all possible team configurations. As a result, approx-
imations based on sampling become necessary to deal with the huge number of
combinations [6].

Motivated by these issues, we present the following contributions. First, we
extend the Shapley value to incorporate repeated players and opposing teams:
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more technically, the new Shapley value can be applied to cooperative-competitive
scenarios when asymmetric teams are multisets of players. Second, we analyse
several sampling strategies to approximate this new Shapley value, which we
evaluate empirically. Third, we apply this extended Shapley value estimation to
a popular asymmetric multi-team multi-agent reinforcement learning (MARL)
scenario: predator and prey teams composed of three different kinds of algo-
rithms, which accounts for the heterogeneity of the team. An example of the
scenarios we want to evaluate is presented in Fig. 1. We show that some MARL
algorithms that work well in homogeneous situations, such as MADDPG, de-
grade significantly in heterogeneous situations.

The rest of the paper is organised as follows. The following section overviews
related work on the evaluation of multi-agent systems, and multi-agent reinforce-
ment learning in particular. Section 3 builds on the original definition of the
Shapley value to the extension for multisets and opposing teams (cooperative-
competitive), also showing what original properties are preserved. Some sampling
methods for approximating this extension are explained in section 4. Section 5
discusses the MARL and single-agent reinforcement learning algorithms and de-
fines the experimental setting. Section 6 covers the experimental results and
section 7 closes the paper.

2 Background

The evaluation of competitive and cooperative games is at the heart of game
theory, pervading many other disciplines. Let us start the analysis with com-
petitive (non-cooperative) games, for two-player games or in multi-agent games.
Nash equilibrium [7] is the most common way to define the solution of a non-
cooperative game and is invariant to redundant tasks and games, but discovering
the Nash equilibrium is not always easy or possible in a multi-agent system [§].
Some new methods are based on the idea of playing a meta-game, that is, a
pair-wise win-rate matrix between N agents, as in [9] and the recently proposed
a-Rank method [10], which was shown to apply to general games. These meth-
ods are also inspired by early ranking systems used in (symmetric) competitive
games, like the Elo score in chess [11], which estimates the strength of a player,
based on the player’s performance against some of the other opponents. With
sparse match results and strongly non-transitive and stochastic players, the pre-
dictive power of Elo may be compromised, and this gets even worse in multi-agent
games with more than two players per game. As a result, other rating systems
such as Glicko [12], TrueSkill [13] and Harkness [14] have been proposed. How-
ever, these extensions still show problems of consistency [15,16], very sensitive
to non-transitivity and high variability of results between matches.

On the other hand, in purely cooperative games, players are organised into a
coalition, a group of players that need to cooperate for the same goal. When the
team is homogeneous, the evaluation is easy, as n equal copies of an algorithm or
policy are evaluated each time. The best policy or algorithm can be selected just
by averaging results. However, in heterogeneous teams, we need to determine the
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contribution of each specific player in a wide range of situations with complex
interactions —the attribution problem. The Shapley value [1] has emerged as
a key concept in multi-agent systems to determine each agent’s contribution.
Given all the coalitions and their payoffs, the Shapley value determines the
final contribution of each player. Because of the combinatorial explosion in team
formations, approximations are required, both to reduce the computational cost
[17] but more importantly to reduce the number of experiments to be run or
actual games to be played. Still, in cooperative game theory, the Shapley value
provides a key tool for analysing situations with strong interdependence between
players [18,19].

The general situation when both competition and cooperation need to be
evaluated has been present in many disciplines for centuries, from economics to
biology, from sports to sociology. It is also increasingly more prevalent in arti-
ficial intelligence, with areas such as reinforcement learning introducing better
algorithms for cooperative games but also for cooperative-competitive environ-
ments. For instance, DDPG is a deep reinforcement learning agent based on
the actor-critic framework, with each agent learning the policy independently
without considering the influence of other agents. MADDPG |[3] is also based on
an actor-critic algorithm, but extends DDPG into a multi-agent policy gradient
algorithm where each agent learns a centralised critic based on the observations
and actions of all agents. This and other methods (e.g., [20]) are illustrated on
some testbed tasks showing that they outperform the baseline algorithms. How-
ever, this comparison assumes a homogeneous situation (all the agents in the
team use the same algorithm). It is unclear whether these algorithms can still
operate in heterogeneous situations. In some cases, the algorithms do not work
well when the exchange of information only happens for a subset of agents in
the coalition, but in many other cases it is simply that the only available metric
is an average reward and the problem of attribution reemerges [21].

Finally, things become really intricate when we consider both competition
and cooperation, and we assume that teams can be heterogeneous. But this sce-
nario is becoming increasingly more common as more algorithms could poten-
tially be evaluated in mixed settings (cooperation and competition) [3,22,23,24].
It is generally believed that more collaboration always leads to better system
performance, but usually because systems are evaluated in the homogeneous
case. Are these ‘better’ agents robust when used in a mixed environment, when
they can take different roles (in either team in a competitive game) and have
to collaborate with different agents? This is fundamental for understanding how
well Al systems perform in more realistic situations where agents have to col-
laborate with other different agents (including humans). This question remains
unanswered because of several challenges: (1) No formalism exists to determine
the contribution of each agent —its value— in these (possibly asymmetric)
competition-cooperation situations with repeated agents (2) Heterogeneous situ-
ations are avoided because any robust estimation requires a combinatorially high
number of experiments to evaluate all possible formations. These two challenges
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are what we address in this paper. We start by extending the Shapley value for
competitive games and repeated agents next.

3 Extending the Shapley Value

A cooperative game(N,v) is defined from a set of n = |N| players, and
a characteristic function v : 2V — R. If § € 2V is a coalition of players (a
team), then v(S) is the worth of coalition S, usually quantifying the benefits
the members of S can get from the cooperation. The Shapley value of player 4
reflects its contribution to the overall goal by distributing benefits fairly among
players, defined as follows:

a =1 X ("5") EUE) - els) (1)

n
SCN\{i}

where (v(SU{i})—v(S)) is the marginal contribution of i to the coalition S, and
N\{i} is the set of players excluding i. The combinatorial normalisation term
divides by the number of coalitions of size |S| excluding 1.

Note that the above expression assumes that the size of the largest team,
let us denote it by m, is equal to the number of players we have, n. However,
in general, these two values may be different, with m < n, and a generalised
version of the Shapley value is expressed as:

=
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It is now explicit that the marginal contributions are grouped by the size of .S,
i.e., |S] = j. Also, we see that the number of ‘marginal contributions’ to compute
m— m
for each ; isr;=>_ (" ; 1), and for all ; in total this is r=">" ('} )- This counts
Jj=0 Jj=0
the sets with < m elements including (}, even if we assume v(f)) = 0). For the
special case of n = m we have r = |2V| = 27 i.e., we have to calculate as many

experiments as the power set of V.

3.1 Multisets of Agents

One first limitation of the Shapley value is that coalitions are sets of players.
If we have n agents then the coalitions will have sizes up to n. However, a
common situation in artificial intelligence is that we can replicate some agents
as many times as we want. This decouples the number of agents from the
size of the coalitions. For instance, with agents {a,b,c} and coalitions up to
m = 4 agents, we could have coalitions as multisets such as S1={a,a,b} or
So={b,b,b,d}. A straightforward way of extending the Shapley value with mul-
tisets is to consider that, if there are [ different players and the coalitions are
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of size m, we can define m ‘copies’ of each of the [ different agents into a
new set N={a1,as,as, aq,b1,bs,b3,by,c1,co,c3,c4}. With this we end up hav-
ing |[N| = n =1[-m agents and no multisets. In the examples above, we would
have m=4 and 1=3, n=12, with S1={a1,as,b1} or So={b1, b2, b3,d1} (actually
there are several possible equivalent variants of each of them).

We can now use Eq. 2, but many results should be equivalent, e.g., v({a1, b3})
=v({az,b3}) with all possible variants. Suppose R is the subset of 2%V, where all
redundant coalitions have been removed and only a canonical one has been kept.
Then Eq. 2 can be simplified into:

—

m -1

i) =23 (O X Uty - us) )

j= SER:|S|=j

where ((2)) denotes the combinations of size y of x elements with repetitions.

The derivation simply replaces the combinations of j elements taken from n
by the combinations of j elements taken from /=7 with repetitions. Note that
S can now contain i, and we have situations where the marginal contribution
is calculated over a coalition S that already has one or more instances of i
compared to S with an extra instance of 7. Now, the number of required values
m—1
(or experiments) for each ¢;(v) is r; = Y, ((]l)), with a total of
§j=0

=)

For instance, with [=m=3, we have n=9 and we have r=14+346+10=20 possi-

ble sets. With [=3 and m=4, this would be r=1+3+6+10+15=35. With [=m=4,

this would be r=14+4+4104-20+35=70. With [=m=5, this would be r=145+15+35+70
+126=252.

3.2 Cooperation-Competition Games

The Shapley value was designed for cooperation, so there is only one team, with
the same goal and share of the payoff for each agent. However, in situations where
there are more than one team competing against each other, several instances of
the same type of agents can be part of one or more teams. An agent cooperates
with the members of the same team, while different teams compete against them.
We extend the Shapley value for this situation. We will work with two opposing
teams, but this can be extended to any number of teams.

Consider the two team roles {4, B} in a competitive game, e.g., A could
be predators and B could be preys. When considering the role A we define the
game® (v, N4), where B is the opponent. Similarly, for game®”(v? NB) the
role is B and A is the opponent. Role A can have teams up to m* players, and
role B can have teams up to m? agents. N4 is the set of the {4 different agents
of role A, with this we end up having n4 =4 - m# agents, and similarly for B.
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The possible teams for role A, namely R4 = {T{*, T', ...}, are the same as we did
for R for cooperative games avoiding repetitions. Similarly, R? = {TZ, TZ,...}
for B. Then we now extend v for competition by defining v4(T4,T?), as the
value of team T4 € R4 in role A against T® € RP as opponent in role B. Note
that if we fix the opponent, e.g., T5, from the point of the role A, we have its
Shapley value from Eq. 3:

mA—1
1 nt /m? -1 -
@?(UAvTB) = m Z (( é )) Z dUA(S, ZaTB) (5)
J=0 SeRA:|S|=j
where dv?(S,i,T8) = [vA(SU{i},TP) — v4(S,T?)] is the marginal contribu-
tion of agent i to coalition S when the opponent team is 72. Then, if we have
all possible teams for role B, then we can define ¢:!(v*):

it (v) A |133| Zo {((nAémA))_l

j=

> > dv* (8,4, T7)

SERA:|S|=j TBERB

The amount that agent i gets given a team gameZ (v®, NB) when playing
against 74 in role A is p2(vB,T4). And the Shapley value ¢?(vP) is defined
symmetrically to Eq. 6.

The value of agent ¢ for all its possible participations in any team of any role
is finally given by:

o4, 0%) = 3 [ (") + P (07)] (”
The above equation makes sense when v and v® have commensurate values
(e.g., through normalisation), otherwise one role will dominate over the other.
A particular case where this equation is especially meaningful is for symmetric
team games, where both roles have the same scoring system. Finally, the total
required values (experiments) for all ¢?! is:

SRR G | R U G ]

For instance, for 4 = 1B = 3 and m? = m® = 4, we have r = 352 = 1225
experiments (note that they are the same experiments for ¢, so we do not
have to double this). The huge numbers that derive from the above expression,
also illustrated in Fig. 1 for a small example, means that calculating this ex-
tension of the Shapley value with repetitions and opposing teams exacerbates
the combinatorial problem of computing the value of a huge number of coali-
tions. Consequently, we need to find ways of approximating the value, through
sampling, as we see next.
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3.3 Properties

In this work, we propose extending the Shapley value to calculate the benefits of
each agent in the case of mixed settings (cooperation and competition games).
The original Shapley value is characterised by the well-known properties of ef-
ficiency, symmetry, linearity, and null player. Let us analyse these properties
for Eq. 6. We will see here that if game?(N4,v4) is defined from a set of
nA = |N A| players, we find that a special case of efficiency holds, the symmetry
and the linearity property are met completely, while the null player property
does not make sense in our case.

1. Efficiency. Efficiency in game? (v, N4) requires that the sum of all the
Shapley values of all agents is equal to the worth of grand coalition:

S o) = vA(N4

iENA

For m? < n?, we cannot define the grand coalition if the maximum number
of team members (in the lineup) is lower than the total number of agents.
This is similar to many games such as football or basketball, where only a
subset of players (11 and 5 respectively) can play at the same time. Accord-
ingly, it is impossible to have a coalition with n* agents. For the very special
case where m? = n4, then we have the simple case of only one kind of agent
l4 =1 and the property is not insightful any more.

2. Symmetry. Now we see that the symmetry property holds in full:
Proposition 1. If for a pair i,k € N4, we have that vA(S U {i},TB) =
vA(SU{k}, TB) for all the sets S that contain neitheri nor k, then o (v4) =

Af, A
0 (v7).

3. Linearity. The easiest one is linearlity as we only have composition of linear

functions.

Proposition 2. If v4(S,T8) and w?(S,T?) are the value functions de-
scribing the worth of coalition S, then the Shapley value should be repre-
sented by the sum of Shapley values of the player derived from v* and
vB:pf (’UA + wA) = ; (UA) + @ (wA). And for a, we have ¢! (avA) =
ap; (UA

4. Null player. A null player refers to a player who does not contribute to the
coalition regardless of whether the player is in the coalition or not. For many
team formations having both cooperation and competition, e.g., predator
and prey game, even if a player is completely motionless, the other team
members and the opponent team’s members are affected by this agent, and
it cannot have null effect. For instance, in the prey and predator game, if
there is a collision, it will produce a reward to this player, which is not in line
with the understanding of a null player. This property is not really important
in our setting, as many factors affect the result to look for a normalised case
where an absolute zero value is meaningful.



Heterogeneity Breaks the Game 9

4 Approximating the Shapley Value

Applying the Shapley value requires the calculation of many v4 and v? as per
Eq. 6. In deep reinforcement learning, for instance, calculating v# for a pair
of teams in simple games such as predator-prey with a reasonable number of
steps and episodes may require enormous resources. We explore what kind of
sampling is most appropriate for the new extension of the Shapley value taking
into account the trade-off between the number of experiments to be run (e.g.,
number of different v4 and v? that are calculated) while keeping a good ap-
proximations to the actual Shapley values (note that we need a value for each i
of the [ different players).

4.1 Algorithms for Sampling

Monte-Carlo is the common and practical approach approximating the Shapley
value [25,26]. Castro et al. [27] propose a sampling method to approximate the
Shapley value by using a polynomial method. The stratified sampling method
was first applied by Maleki [28]. These methods and many extensions have been
successfully applied to approximate the Shapley value [29,30,31].

In what follows we present three methods for our setting. We have to sample
from R4 and RP, but we will only discuss sampling for one role to simply
notation.

Simple random sampling This method simply chooses k elements S = {51, S, ...,
Sk} from R with a uniform distribution and without replacement. Then, for each
agent i, where ¢ = 1..[, we compose all SU{i} for each S € S, and check whether
the new composed set is already in the sample. Then we calculate the approxi-
mation 7. Note that we sample on the population of experiments (the sets S in
§) and not on the population of marginal contribution pairs {v(S U {i}),v(S)}.
If we fix s, the number of sampled experiments, and then try to find or generate
the case when i is added, then the exact number of complete pairs will depend
on the number of overlaps. If we want to get a particular value of pairs, we can
sample elements from R incrementally until we reach the desired value.

Stratified random sampling The way the Shapley value is calculated by groups
of coalitions of the same size (with j going from 0 to m—1) suggests a better
way of sampling that ensures a minimum of coalitions to calculate at least some
marginal contribution pairs for each value of ;. Stratified sampling divides R into
strata, which each stratum containing all the sets S such that |S|=j. If the size
of a stratum I is lower than or equal to a specific value I,:,, we will sample
all the elements from the stratum. For all the other strata, we will pick the
same number for each. For instance, with [=m=4 and I,,;,=5, and s=14 , we
would do s=14443+3+3 from the total of r=14+4+4104+20+35=70. If s=23 we
would do s=1+4+46+646. Once S is done, we proceed as in the simple random
sampling when I'; > 5 : for each ¢ = 1..l, we compose all SU{i} for each S € R,
and check whether the new composed set is already in the sample. Then we
calculate the approximation ¢}.
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Information-driven sampling While stratified sampling tries to get information
from all sizes, when samples are small, we may end having very similar coalitions,
e.g., {a,a,b} and {a,b,b}. Information-driven sampling usually aims for a more
diversified sampling procedure. In our case, we use the Levenshtein distance
as a metric of similarity between the different samples (assuming the multisets
are ordered). Our version of information-driven sampling is actually based on
the stratified random sampling presented above, where similarity is used intra-
stratum and the coalitions are ordered with the largest average Levenshtein
distance from the previous ones in the stratum.

4.2 Analysis of Sampling Methods

To evaluate which sampling method is best, we need to be able to calculate the
actual Shapley values for several values of [ and m. Doing this in a real scenario
would be unfeasible, so we use synthetically generated data and explore different
degrees of sampling for each method, to determine the method with best tradeoff
between the approximation of the Shapley value and the number of experiments
required.

The synthetic data is generated as follows. First, the worth v of each player
(singleton sets) is generated from a uniform distribution v ~ U(0,1). Second,
the contribution of a coalition is the sum of separate player contributions, i.e.,
v({a,b}) = v({a})+v({b}). Third, we corrupt a number v of these v for multisets,
also using a uniform distribution ~ U(0, 1). With this procedure, we have created
six datasets. Synthetic data 1 is a game with m=I[=4. There are three variants
with v= 1, 5 and 10 corrupted data, named ‘test1’, ‘test2’ and ‘test3’ respectively.
Synthetic data 2 is a game with m=I[=>5. There are also three variants with v =
1, 10 and 30 corrupted data. We used I},;n = 5.

With these six synthetic datasets, we now evaluate the three methods and
compare the approximate Shapley value with the true Shapley value using all
coalitions. The total number of different coalitions (range of the z-axis) for syn-
thetic data 1, with m=Il=4 (n=16) is 70, and synthetic data 2, with m=I[=5
(n=25) is exactly 252, coming from Eq. 4. To achieve a stable and robust eval-
uation, we repeat sampling 50 times before corruption and create 50 repetitions
in each case for the corruptions. Then, we have 50x50 repetitions in total.

We computed the Spearman correlation and Mean Square Error (MSE) be-
tween the true Shapley and the approximation value. Fig. 2 shows the three
sampling methods for increasing sampling size. The stratified and information-
driven sampling methods only need a few coalitions (around 20 for m=I[=4,
and around 40 for m=I=5) to reach high Spearman correlation (0.98) and very
low MSE. Since we do not see a clear difference between the stratified and
information-driven methods, we will use the former in what follows.

5 Experimental Setting

Now we can explore how the new extensions are useful to determine the value of
different algorithms in heterogeneous multi-agent systems with both competition
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and cooperation. In order to do this, we choose MPE (multi-agent particle envi-
ronments), a simple multi-agent particle world [3,4] that integrates the flexibility
of considering several game configurations with different kinds of learning agents.
In particular, MPE comes with a single-agent actor-critic algorithm, Deep De-
terministic Policy Gradient (DDPG), in which the agent will learn directly from
the observation spaces through the policy gradient method, and a multi-agent
variation, Multi-Agent DDPG (MADDPG), where decentralised agents learn a
centralised critic based on the observations and actions of all agents.

We will explore their behaviour in the predator-prey game, a common coop-
erative and competitive game, where several predators (A4) have to coordinate to
capture one or more preys (B). Preys can also coordinate as well to avoid being
caught. In the MPE standard implementation of this game, preys are faster than
predators. The arena is a rectangular space with continuous coordinates. Apart
from the agents themselves, there are also some static obstacles, which agents
must learn to avoid or take advantage of. Agents and obstacles are circles of dif-
ferent size, as represented in Fig. 1. The observation information for each agent
combines data from the physical velocity, physical position, positions of all land-
marks in the agent’s reference frame, all the other agents’ position, and all the
other agents’ velocity. The prey will increase the reward for increased distance
from the adversary. If collision, the reward will be —10. Contrarily, the adversary
will decrease the reward for increased distance from the prey. If collision, the
reward will be 4+10. In addition, prey agents will be penalised for exiting the
screen.

Several questions arise when trying to understand how MADDPG and DDPG
perform in heterogeneous situations. In particular, (1) Is MADDPG robust
when it has to cooperate with different agents? (2) Is this the case when non-
cooperative agents, such as a random agent is included? (3) Are the results
similar for the predator role as for the prey role? To answer these questions, we
will explore a diversity of situations (roles as prey or predator) and three types
of agents (in both teams, so [*=[%=3). These are MADDPG, DDPG, and a ran-
dom walk agent, represented by M, D and R respectively in the team. The total
number of training episodes in the experiments is 60,000. We variate the number
of agents in our experiments with a maximum of m4=m®=4. The number of
combinations is 35x35=1225, according to Eq. 8. We do stratified sampling with
sizes ranging from 37 to 199, using I,,;,,=3. We use the same sampling for prey.

6 Results

We report here a summary of results. Further results with all the code and data
readily available at a git repository?.

One of the main motivations for MADDPG was showing that when several
agents of this kind cooperate they can achieve better results than their single-
agent version, DDPG. In this homogeneous setting, [3] show that “MADDPG

4 https://github.com/EvaluationResearch/ShapleyCompetitive.
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predators are far more successful at chasing DDPG prey (16.1 collisions/episode)
than the converse (10.3 collisions/episode)”. We analysed the same situation
with homogeneous teams of predators of 2, 3 and 4 MADDPG agents against
13 variations of prey teams of size 1, 2, 3 and 4. We do the same experiments
with DDPG predators with exactly the same preys. In Table 1 (first two rows)
we show the average rewards of the 39 games each. As expected, the predator
M teams scored better than those with only D agents. The values are consistent
with the apparent superiority of MADDPG over DDPG.

Table 1: Average reward for 39 homogeneous predator teams composed of two
to four agents (first row with Ms only and second row with Ds only) against a
diversity of 13 prey coalitions of size 1 to 4 (the same in both cases). Average
rewards for 22 heterogeneous predator teams of sizes between 2 and 4 (all includ-
ing at least one random agent R) against a diversity of 11 prey coalitions of size
one to four (the teams in the third row contain an agent M that is systematically
replaced by an agent D in the fourth row)

Teams Predator|Prey
M (hom.: MM, MMM, MMMM)|3788K  |-3324K
D (hom.: DD, DDD, DDDD) 3517K  |-3375K
M (het.: MR, MRX, MRXY) |[3121K |-3437K
D (het.: DR, DRX, DRXY) 3184K  |-3380K

We can tentatively explore whether this advantage is preserved in heteroge-
neous teams. If we now build predator teams where apart from M or D agents we
include other agents (and always a non-cooperative random agent R), we now
get worse results (Table 1, last two rows) as expected, but interestingly we see
that the average reward of the M teams is now worse than the D teams.

Because of the careful pairing of the experiments M vs D in Table 1, the
average return are meaningful to illustrate the difference, but they do not really
clarify whether the contributions of M and D are positive or negative (the aver-
age for predator will typically be positive as most results are positive, and the
opposite for prey). This phenomenon is replicated when we calculate the average
for all the experiments. In this predator-prey game, adding more preys (even if
they are good) usually leads to more negative rewards, and hence the averages
are negative. But could we still have a good agent, whose contribution is positive
for the prey team? This is possible for the Shapley value, as the difference be-
tween two negative values can be positive, and does happen for some examples.
Consequently, the Shapley values in Fig. 3 show a clearer picture of the actual
contributions of each agent to the team (for either roles). While there are some
fluctuations, the trends seem to stabilise around a sample size of 130, showing
that the sampling method is effective beyond this level.

Looking at the sample size 199, as predators, the MADDPG agent has a value
of 1387K while DDPG is at 1413K. The value of the random agent plummets to
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Fig.3: Approximating Shapley for predator-prey environment with increasing
sample size. Left: Predator. Right: Prey.

507K, which makes sense. As preys, the DDPG agent is also the most valuable,
with a Shapley value of ~79K while MADDPG goes down to —102K. The random
agent is further down, at —3361K. Comparing with the results of Table 1, the
approximation of the Shapley value integrates both homogeneous and heteroge-
neous cases, and shows that the gains of M in the homogeneous situations are
counteracted by the poorer performance in the heterogeneous situations. Overall,
for both predator and prey, the results for M and D are very close. The take-away
message in this particular game is that D or M should be chosen depending on
the proportion of heterogeneous coalitions that are expected or desirable.

7 Conclusions

The Shapley value provides a direct way of calculating the value of an agent
in a coalition, originally introduced in cooperative scenarios with no repeated
agents (completely heterogeneous). For the first time, we introduce an extension
that covers both cooperative and competitive scenarios and a range of situations
from complete heterogeneity (all agents being different) to complete homogene-
ity (all agents in a team equal). These multisets, and the existence of two or more
teams competing, increase the combinatorial explosion. To address this, we have
analysed several sampling methods, with stratified sampling finding good ap-
proximations with a relatively small number of experiments. We have applied
these approximations to a prey-predator game, showing that the benefits of a
centralised RL agent (MADDPG) in the homogeneous case are counteracted by
the loss of value in the heterogeneous case, being comparable overall to DDPG.

There are a few limitations of this extension. First, as we have seen in the
asymmetric game of predator-prey, the Shapley value as predator is not com-
mensurate with the Shapley value as prey, and these values should be normalised
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before being integrated into a single value for all roles in the game. Second, the
extension does not take into account the diversity of the team, something that
might be positive in some games (or some roles of a game). Third, the Shapley
value does not consider that some coalitions may be more likely than others,
something that could be addressed by including weights or probabilities over
agents or teams in the formulation, or in the sampling method. These are all
directions for future work.
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