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Abstract. Accurate and timely detection of bow shock and magne-
topause crossings is essential for understanding the dynamics of a planet’s
magnetosphere. However, for Mercury, due to the variable nature of
its magnetosphere, this remains a challenging task. Existing approaches
based on geometric equations only provide average boundary shapes, and
can be hard to generalise to environments with variable conditions. On
the other hand, data-driven methods require large amounts of annotated
data to account for variations, which can scale up the costs quickly. We
propose to solve this problem with machine learning. To this end, we
introduce a suitable dataset, prepared by processing raw measurements
from NASA’s MESSENGERﬁmiSSion and design a five-class supervised
learning problem. We perform an architectural search to find a suitable
model, and report our best model, a Convolutional Recurrent Neural
Network (CRNN), achieves a macro F1 score of 0.82 with accuracies
of approximately 80 % and 88 % on the bow shock and magnetopause
crossings, respectively. Further, we introduce an approach based on ac-
tive learning that includes only the most informative orbits from the
MESSENGER dataset measured by Shannon entropy. We observe that
by employing this technique, the model is able to obtain near maximal
information gain by training on just two Mercury years worth of data,
which is about 10 % of the entire dataset. This has the potential to sig-
nificantly reduce the need for manual labeling. This work sets the ground
for future machine learning endeavors in this direction and may be highly
relevant to future missions such as BepiColombo, which is expected to
enter orbit around Mercury in December 2025.
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1 Introduction

The magnetosphere of a planet is the region surrounding it where its magnetic
field dominates over the magnetic field of the interplanetary space. The mag-
netopause marks the outer boundary of the magnetosphere. Above the magne-
topause, lies the magnetosheath, which is the region between the magnetopause
and the bow shock — a shock wave that slows down the approaching supersonic
solar wind, and deflects it around the planet’s magnetospheric cavity. Principally,
the locations and characteristics of these regions around a planet are affected
by the varying solar wind conditions [9]. This is particularly the case for Mer-
cury (C.f. Figurell| (a)), the innermost planet in our solar system. Adding to it,
its weak magnetic field — only about 1% of the Earth’s [6], makes the magnetic
conditions around the planet even more dynamic, and thus interesting to study.
Studying such magnetospheres can yield valuable insights into understanding
more complex magnetospheres, such as that of our planet Earth.

It has long been of scientific interest in the planetary science community to
study Mercury’s bow shock and magnetopause signatures. To this end, NASA
launched a space-probe called MESSENGER orbiting Mercury for a long-term
empirical study. The relatively small size of Mercury’s magnetosphere, an order
of magnitude less than the Earth’s, allowed the collection of large amounts of
data in a significantly shorter time. During the four years of its voyage from
2011 to 2015, the spacecraft completed over 4000 orbits around the planet. As
sketched in Figure b)7 it passed through all the magnetic regions, yielding more
than 8000 incidences of bow shock and magnetopause crossings.

PLANETARY IONS
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Fig.1: (a) Schematic view of Mercury’s magnetic conditions [22].The bow shock
slows down the approaching solar wind to subsonic speeds. The magnetopause
further acts as an obstacle. (b) A typical MESSENGER orbit path: the space-
craft passed from the interplanetary magnetic field (IMF) through bow shock,
magnetosheath, magnetopause and magnetosphere regions of Mercury and then
through the same sequence in reverse [26].

Based on the data from the MESSENGER magnetometer, several studies
proposed geometric models of Mercury’s magnetosphere [12J24125]17]. However,
due to their global and static nature, they could only provide an average shape
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of the bow shock and magnetopause boundaries. The respective authors found
that the models struggle to capture the many fluctuations and nuances necessary
to generalise to all events. This issue may successfully be tackled by employing
data-driven statistical machine learning techniques. Given sufficient data, deep
neural networks have shown increasing promise in approximately modelling any
distribution, and have successfully been applied to complex tasks relating to
event detection, including but not limited to rare event detection in audio sig-
nals [04] and images [I3]. The problem of detecting boundary crossings in a
continuous stream of magnetic flux data could be viewed similarly.

The planetary science community recognises the importance of this paradigm
shift [I6]. We follow suit and propose to solve this problem, as a first step,
in a supervised deep learning setting. However, supervised learning requires a
suitable dataset and expert annotations. As this effort can get very costly given
the usually large amounts of unlabelled data in planetary sciences, it is prudent
to only annotate the most useful samples. Active learning can facilitate efficient
manual labeling by taking classifier specifics into account. However, it may not
necessarily be useful in all domain contexts. In planetary science, however, the
problem domain and data gathering context could provide an important frame
for devising a domain-specific active learning strategy.

In particular, it is reasonable to assume that different orbits may exhibit sim-
ilarities in their magnetic field structure, yet at the same time at least one entire
Mercury year would be necessary to capture all seasonal nuances. It remains,
however, unknown how the inter-orbital year distributions vary, and thus ques-
tions such as what is the lower bound on number of orbits required to obtain
a near maximum informational gain remain open. In this regard, we examine
how the model performance scales with available data on orbit-level. Further,
we consider it necessary not only to accurately classify and localise the crossing
timestamps, but also to classify ahead in time, which would be highly beneficial
for tasks such as instrument parameter adjustment, during real time use. More
precisely, our contributions can be summarised as follows:

1. We introduce a dataset suited to machine learning tasks and make it available
open source: https://github.com/epn-ml/messenger-prep

2. We conduct an architectural study to investigate the applicability of data-
driven neural networks by using just magnetometer data, without the solar
wind conditions, and to identify some best practices.

3. We devise a domain-specific active learning strategy and investigate how
many Mercury years’ worth of data are required for a sufficiently represen-
tative model.

4. We provide a high-quality codebase that may be used as a framework for
further studies on neural detection of bow shock and magnetopause crossings.
It is publicly available at: https://github.com/epn-ml/Freddie
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2 Related Work

The task of modelling the boundary crossings is not new. Naturally, Earth has
had the lion’s share of related work as evidenced by [2TJ200/1423]. This enabled
subsequent studies investigating various structural and statistical properties of
the magnetopause [I0]. The empirical and statistical studies require that a con-
sistent catalogue of boundary crossings is available from the in situ data. This
process has been recognised to be time-consuming, ambiguous and poorly repro-
ducible, and one that would significantly benefit from automation.

To this end, [I1] proposed a threshold-based method. However that turned
out to be hard to generalise given the different scales and distributions from
different missions [I5]. In another line of work, models using paraboloids of
revolution with variable flaring angles are explored for Mercury [2], Earth [II,
Jupiter [7], and Saturn [3]. These models were obtained by parabolic parame-
terisation of the magnetopause and bow shock crossing shapes. The averaged
boundary shapes can be used as initial parameter values for magnetospheric
magnetic field modeling. In this vein, [12] attempted to model Mercury’s bound-
ary crossings using such a model. This was followed by [24], where the authors
explored the applicability of hyperboloids and a figure similar to the Earth’s mag-
netopause shape, and also [25] whose authors modelled it as a three dimensional
non-axially symmetric shape. Philpott et. al [I7] extended the aforementioned
studies using a combination of an axisymmetric shape and a three-dimensional
shape with indentations in the cusp regions and a magnetotail that is wider in
the north-south versus east-west direction.

All these approaches share the drawback of applying static models that can-
not capture variable conditions in the environment, since they propose a fixed
geometric shape cemented for all times. We utilise the boundary crossing cat-
alogue provided by Philpott et. al as approximate guides for supervised deep
learning. This is particularly useful to test our active learning strategy so in
the future works this is suited to a semi-supervised setup, where only the most
necessary samples are required to be annotated by the domain expert.

3 Dataset

As the Fast Imaging Plasma Spectrometer (FIPS) on MESSENGER was not
equipped to capture the solar wind data, there are no in situ estimates of solar
wind parameters controlling the solar wind dynamic pressure which in part de-
termines the position and the flaring angle of the bow shock and magnetopause
boundaries. Thus, we are limited to features based on magnetic field measure-
ments only. We chiefly use Reduced Data Record (RDR) data products of the
MESSENGER MAG magnetometer instrument, obtained from the NASA PDS
PPI repository, and process it in the follwing manner: First, we remove the cal-
ibration signals, in order to not be biased by them. Next, we enrich the dataset
with Mercury position information. Then, to prepare the data indexed on orbit
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boundaries, we split them based on UTC-based day boundaries, and MESSEN-
GER orbit apoapsisﬂpoints as markers to separate individual orbits. To simplify
subsequent analysis, we also include the estimated planetary dipole magnetic
field contribution for each point, planetocentric distance of the spacecraft, and
recalculate position and magnetic field data in the aberrated MSO coordinate
system which accounts for the non-negligible orbital velocity of Mercury relative
to the speed of the solar wind. For more details and links to original sources,
please refer to the dataset repository.

Consequently, we obtain a prepared dataset comprising of 4049 orbits. Ad-
ditionally, we perform a few more removal steps, specific to our pipeline in this
work: (a) Missing values: Some of the orbits lack individual measurements or
even entire time steps. We conveniently remove those orbits, instead of correct-
ing or filling with interpolation. (b) Overhanging crossings: Some orbits have
crossings that extend into neighboring orbits or vice versa. After the cleaning
step, there remain 2776 orbits. We randomly split these orbits into training,
validation and test sets with a 70-20-10 percentage split, and normalise using
Z-score standardisation.

Finally, we leverage the crossing annotations by Philpott et al. [I7] visualised
in Figure [2] to assign each time step a magnetic region. This yields the class
distribution shown in table [I, which exhibits a significant imbalance that we
address later.

Table 1: Class labels with their abbreviations and frequency of occurence. The
boundary classes are highly underrepresented.

label||magnetic region share
0||interplanetary magnetic field (IMF)|64.8 %
1||bow shock crossing (SK) 3.7%
2||magnetosheath (MSh) 14.8%
3||magnetopause crossing (MP) 2.3%
4||magnetosphere (MSp) 14.4%

4 Methodology

4.1 Problem Formulation

To obtain aggregates, and have an augmented set of fixed shaped input vectors,
we use a sliding window. It has a stride of one, which ensures each time step of the
original series is contained in multiple windows, such that the crossings can be
presented to the model in all possible arrangements, to account for translation-
equivariance ﬂ Hence, the model’s input is a window of w € N successive time

5 The apoapsis of an elliptic orbit is the point farthest away from the planet.
5 The position of the event in the window should not matter.
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Orbit #226

004 — B IMF
By SK
3004 —— By MSh
— )| - MP

magnetic flux density [nT]

Fig. 2: Example annotation for orbit #226 (best viewed in colour). Annotations
mark the start and end of a magnetic region. We label the entire region inside
as belonging to the respective crossing. Each crossing appears twice in an orbit.

steps. Each of these time steps consists of d € N scalar features. We abstractly
represent the input window as follows:

X = [a0 2 . g)] e RO

Consider the last time step (*) in a window as representing the ‘present’.
Instead of merely classifying the ‘past’ time steps within a window, we also seek
to compute predictions on the magnetic region for f € N future time steps.
Therefore, we expect the output per time step as one-hot vectors. As we expect
the model to predict a class per time step, we pack multiple of these one-hot
vectors next to each other into a matrix. Thus, the target output matrix of
one-hot vectors is Y € R (w+f),

Formally, the task can be framed as a multi-dimensional multi-class classifi-
cation with a future component: Given the window X, we predict a sequence of
magnetic region probabilities, where each column sums up to one:

P11 Praw|Plw+1 - Plaw+f
Yy —| : : : : e [0,1]>*(w+S)
P51 Psw|Ps,w+1 0t Ps,wt-f

With the setup ready, the normalised vectors are then passed through the
neural networks, and the final activations can be represented as: vg : p;; =
~vo(X) where ~ is a chosen model, with 6 as its parameters. We experimentally
find a window size of two minutes, i.e., w = 120, to be both practical and
computationally kind, and fix the future size to f = 20 seconds. The selected
features include the 3 three-dimensional features, namely MSO position, flux
density and measurement errors, chosen via manual tuning on the evaluation
split, resulting in dimensionality d = 9.

To measure the error between the prediction Y and the ground truth Y, we
employ the standard categorical cross-entropy loss. Counteracting the consider-
able class imbalance inherent in the dataset, we weight each class inversely pro-
portional to its frequency f. € N in the dataset by virtue of w, := (Z?Zl fi)/ fe-
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The resulting weighted loss for a single time step j in a window is then

5
Ej(fﬂ Y)=- Z w; Y5 log(f’ij)

Note that the sum is only a formal construct, since exactly one of the Y;; for
fixed j is non-zero. By averaging across all time steps in a window, we straight-
forwardly obtain the window loss:

wf wf
N 1 N
LY,)Y) = wif S LYY)= E— f sz Z Y;; log(Y7))
Jj=1 Jj=

Finally, the average loss over all windows extracted from the training set
forms the overall optimisation target.

4.2 Model Architectures

As a first step in a feasibility study for model selection, we consider a total of six
architecture categories, namely: Multi Layer Perceptron (MLP), Convolutional
Neural Network (CNN), Fully Convolutional Neural Network (FCNN), Recur-
rent Neural Network (RNN), Convolutional Recurrent Neural Network (CRNN),
and Convolutional Attentional Neural Network (CANN). The reader is encour-
aged to refer to the code repository for specific implementation details. While
our architecture search space is biased towards shallower models, we are only
concerned with their relative performance, and by interpreting Table [2] find the
CRNN to be a suitable candidate for further experimentation.

4.3 Active Learning

For our active learning experiment, we exploit the domain specific data gather-
ing properties, particularly that bow shock characteristics differ between orbits.
Consequently, we ask the question whether an orbit-level informativeness mea-
sure can be constructed to reduce the amount of manual labelling. To evaluate
the impact of this orbit-level informativeness measure, we compare the model
performance when adding orbits to the training process.

We use an instance of pool-based active learning [19]: Initially untrained, the
model repeatedly selects samples from a pool of yet unlabeled samples, obtains
the labels, and trains incrementally on them. To address our performance scaling
question, we increment the training set not by individual windows but on the
level of entire orbits. In order to choose the next orbit(s) to add, it is needed
that we rank all yet unused orbits according to an informativeness measure.
Although solely relying on the top uncertain samples could sometimes lead to
overfitting [18], since we always add an entire orbit covering all classes, we find
this to be non-issue in our study, and for convenience, resort to it.

As our model has a series of Multinoulli distributions for output, we may
measure uncertainty as a function of the output probabilities. Shannon entropy
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is a mathematically well-funded measure of uncertainty in a probability distri-
bution that we utilise as the basis of our active learning strategy: Consider the
training set D C R¥>% x {IMF, SK, MSh, MP, MSp}**/ with number of fea-
tures d € N, window size w € N and future size f € N. Given a model prediction

A

Y = [, ..., 9@t € [0,1]°*@+) | we define its uncertainty as

5 5
w(¥) = max H(GY) = —min 3y log(y”) u(¥) = max H(§) = —min 3~y log(y”).
i=1 i=1

where H : A* — R is the Shannon entropy on the standard 4-simplex ﬂ

To achieve this on the orbit level, we must reduce the individual window
uncertainties to a single orbit score. As we are only interested in the crossings,
we can argue that the most uncertain windows of an orbit will usually overlap
with a crossing region, and thus for simplicity, only consider the uncertainty of
such windows for the overall orbit uncertainty. Let hence D, C D be the windows
belonging to the orbit o € N and

D, == {(X,y) € D, | y N {SK, MP} # 0}

be only those samples that overlap with a bow shock or magnetopause boundary
region. The average uncertainty over these windows then defines the integrated
orbit uncertainty of a model fg : R¥*® — R?*(w+/) for our task:

APy = = Y u(fe(X))

Dol 55
Y)ED,

Using this uncertainty measure, we formulate our active learning procedure
in Algorithm [I] Instead of strictly adding orbits one-by-one, we more generally
allow for an increment function 0 : Ng — N that dictates the number of most
uncertain orbits to add, depending on the number of already seen orbits.

5 Experiments

5.1 Model Evaluation

We compare the six models listed in section as to their classification per-
formance on the test set. To this end, we employ the following metrics: Macro
F1, overall accuracy, and the class-wise accuracy for the critical bow shock and
magnetopause classes, respectively. Table [2] illustrates results for all the models,
with their respective number of trainable parameters as an indicator of their
size. We see a clear improvement between the variants with and without the
recurrent component. The combination of convolutional and recurrent does no-
ticeably better than either alone, however the contribution is marginal compared
to that of RNN alone. The CRNN however achieves the highest overall scores

T An_l = {(p17p27"'7pn) S R™ |V’L iy 2 2 072?:1131' = 1} g [0’1]n
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active_learning(fy : R4*® — R5*(w+S) 1 model,
2 CP(D) : set of all training orbits,
0 : Ng — N increment function):

1 T:=10

2 | while|T] <|]:

3 U :=hash table()

a for D, € 2\ T do

5 | UD,] =4, (D)

o | | T=Tuwrep x(U.(T))
7 B fo = train(fg,T)

8 | return fg

Algorithm 1: Active learning scheme for incrementally adding orbits to the
training procedure in a flexible manner.

and the highest magnetopause accuracy. Our experimental CANN, with an at-
tention mechanism, accomplishes almost the same magnetopause performance
but lags slightly behind on the overall metrics. Although the CANN achieves a
higher bow shock accuracy than the CRNN, we continue our experiments with
the latter for its best overall performance.

Table 2: Comparison of the model architectures.
model ||macro F1|accuracy|SK accur.MP accur.||# params

MLP 74.73%| 86.60 % 73.87 % 84.05 % 245180
CNN 77.80%| 89.29% 74.75 % 84.62 % 1413372
FCNN 78.97%| 90.88% 78.83 % 89.08 % 1444796
RNN 79.93%| 92.03%| 81.50% 91.75 % 237701

CRNN|| 81.21%| 93.04 % 79.22% 92.22% 267333
CANN 80.20%| 92.46 % 81.30% 92.23 % 246469

Further, upon evaluating the best model on the test set, we see no real
evidence of overfitting (C.f. Table [3), which is a good sign. The model performs
better on the relatively easier classes of IMF, magnetosheath and magnetosphere.
The confusion matrices in Figure [3|show that the model consistently does better
on recall over precision.
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Table 3: CRNN performance on the test versus evaluation set.
set |imacro F1|accuracy|SK accur.MP accur.
eval 81.21%| 93.04% 79.22% 92.22%
test 81.95%| 93.13% 79.93% 87.51%

S 5 R & 5 ]
KEE SR KIE RGO
IMF X 00032 35¢05 0 0.8 IMF 14 0017 000071 08

SK 4 0.093 .8 0.11  0.00045 3.6e-06 SK 4 0.0056 Z 0.033  0.00052 1e-06

true class
true class

MSh 4 0005  0.097 0.053  0.00073 MSh 4 0.0011 0. 023  0.00077
0.4 0.4
iy 0 0 MP 0 0.0056
MSp{ 0 0.00083  0.038 02 MSpq 0 02
predicted class 0.0 predicted class 0.0
(a) Row-wise normalisation. (b) Column-wise normalisation.
Diagonal corresponds to recall. Diagonal corresponds to precision.

Fig. 3: Normalised confusion matrices for the CRNN. The results indicate appli-
cability for real-time predictions.

Qualitative Evaluation To confirm our findings, we evaluate the CRNN qual-
itatively, and utilise its past-only classifications in a window to infer predictions
for an entire orbit. Each time step receives distinct predictions from all sliding
windows it is contained in, which we integrate by averaging to obtain an overall
class probability distribution, and arg max yields a class prediction for the time
step. We do this for all orbits in the test set and plot their magnetic flux den-
sity along with the predictionsﬁ Upon visually inspecting all orbits in the test
set, we can confirm that the model overall predicts contiguous magnetic regions.
Further, we notice that in some cases, the crossings, albeit exaggerated w.r.t ex-
isting ground truth, correctly predicts the boundaries (Figure 4)), indicating that
it might be learning associations not available explicitly in labels. Although more
work needs to be done in this regard, this is very promising as it might lead to ex-
planations that could benefit the physical understanding of certain phenomena.
Nevertheless, we also identify some major qualitative issues that still remain,
such as scattered predictions, and boundary exaggerations (C.f. Figure |5)), some
of which may possibly be tackled by solutions that we identify in Section [6}

8 All plots for the entire test set are made available in the code repository linked
in Section [T}
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Fig.4: An example prediction where boundaries are slightly exaggerated. The
network tries to compensate for the conservative annotation, while yielding a
better prediction on the duration of the crossings (best viewed in colour).
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Fig.5: An example prediction with significantly exaggerated and scattered bow
shock crossing.

5.2 Active Learning

For our active learning experiments, we run Algorithm [I] with two different
choices for the increment function: one leading to a constantly growing training
set and one leading to an linearly growing training set. In this manner, we explore
how the classification performance scales with available data and determine the
order of magnitude of orbits required for a sufficiently informed model.

Constant Increment A straightforward choice of increment function would
be to add orbits one by one. Due to computational concerns and observed
overfitting on single orbits, we found 9(n) := 10 to be more suitable.

Linear Increment Due to some problems we identified with a constant in-
crement, we conduct another active learning experiment with the linear in-
crement function d(n) = max{|n/2,10|}. This choice ensures a constant
proportion of ‘new’ vs ‘old’ training orbits while preventing overfitting to a
single orbit.

Figure [f] plots the evaluation metrics discussed previously over the number of
already included orbits for both increment function choices. The learning curve

11
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for the constant increment shows only the first 1000 orbits, as the experiment
could not run until completion, but the evolution is clearly evident. In both
cases, we observe a rapid increase of all metrics in the beginning, followed by a
period of flattening. After no more than 500 orbits, the performance metrics are
comparable to those of the passively trained model.

In the constant case, the class accuracies for bow shock and magnetopause
later decrease, while the overall metrics continue to rise. This divergence implies
that the model focusses more on the majority classes and increasingly ignores the
two boundary classes we are concerned with. We suspect the constant increment
causes this mediocre development. Since the number of orbits added in each
iteration does not depend on the number of already seen orbits, their relative
proportion becomes increasingly skewed towards the known orbits. As a result,
the marginal returns diminish while learning from new orbits but continues to
optimise over the familiar ones repeatedly.

These observations explain our choice of the linear increment function. In-
deed, it leads to a much better development while at the same time requiring
substantially less iterations and hence computational cost. Due to the latter rea-
son, the improvement is slower in the beginning but reaches far higher scores
in the long run. However, they do not surpass the performance of the passively
trained model. This indicates that the lower bound on number of orbits re-
quired is not too high, further emphasising the need for clever data sampling
approaches.

Active Learning with Constant Increment Active Learning with Linear Increment

0 200 100 600 800 1000 0 250 500 750 1000 1250 1500 1750 2000
# training orbits # training orbits

(a) Constant increment (b) Linear increment

Fig. 6: Performance metric development during active learning.

Besides the performance metrics, we also evaluate the development of our
uncertainty measure during the active learning process. After all, it is the very
measure by which orbits are selected for training in the active learning scheme
and indicates the model’s confidence about its decisions. We are interested in
the point from where the uncertainty does not significantly decrease anymore,
implying that the model has nearly saturated its learning capabilities. In a sense,
the model has ‘seen enough’ until that point. Figure [7] plots the worst occur-
ring orbit uncertainty at each iteration as a function of the number of orbits
included in the process. Both start in the beginning with a value of just under
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log(5) ~ 1.609, which is the entropy of a uniform distribution on the five out-
comes. This is not a coincidence but rather results from the definition of our
orbit uncertainty measure in Section [£.3]and the model’s random parameter ini-
tialisation. Then, the orbit uncertainty decreases rapidly during the subsequent
iterations. Analogously to the performance metrics in Figure [6] the uncertainty
eventually flattens out and seems to almost asymptotically approach values of
0.5 and 0.6 respectively. Again, the maximum marginal improvement appears
during the first half, until about 500 orbits are included.

Worst Orbit Uncertainty with Constant Increment
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Worst Orbit Uncertainty with Linear Increment
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(b) Linear increment

Fig. 7: Orbit uncertainty development during active learning.

Taking all insights together, we conclude that the model’s learning capacity
saturates after 450 to 500 orbits. This constitutes an upper bound for the num-
ber of orbits required for a representative model. When summing the duration
spanned by the concrete orbits chosen by the model, this equates to roughly
two full Mercury years’ worth of MESSENGER orbits. We may therefore claim
that two Mercury years make for a sufficient set of observations for the model
to learn from. On the other hand, revisiting Figure [f] and Figure [7] confirms our
intuition that one complete Mercury year (around 230 orbits in this case) is at
least required. It remains for future work, hence, to explore the range in between.
With the improvements we propose in Section [6] it might even be possible to
lower this bound to just one Mercury year.

6 Conclusion

In this work, we built a discriminative end-to-end deep learning model for detect-
ing Mercury’s bow shock and magnetopause crossing signatures based on raw
measurements from NASA’s MESSENGER mission. Additionally, we devised an
active learning scheme to address the question of how many orbits worth of mea-
surement data is required for a representative model. To this end, we prepared
a dataset suited to machine learning tasks, which we make available publicly to
facilitate future research in this direction. To inspect the applicability of machine
learning to this problem we formulated a five class supervised machine learning
task, that given a window of measurements, predicts the classes for each time

13
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step in the current window, and at the same time predicts the classes the next
specified number of time steps. We applied various architectures and configu-
rations of neural networks to determine a suitable fit for the architecture, and
observed that the CRNN performs relatively better, which is consistent with
findings in other types of signals too, where both spatial and temporal features
are of relevance. We also observe that the neural networks are capable of pre-
dicting ahead in time, which is a good indication that there might be presence
of autoregressive characteristics in the signal. Our best CRNN model achieves
a macro F1 of about 82 % and consistently predicts magnetopause crossings
better than the bow shock crossings. This is no surprise since the magnetopause
crossings are also better discernible to the human eye. Further, the recall scores
of 78 % and 86 % on the bow shock and magnetopause crossings respectively,
are significantly and consistently better than the precision scores of 39 % and
61 % respectively. There can be several explanations for this: first, the model
clearly prefers not missing a boundary at the cost of false positives. Given the
use case, it is more important that a boundary is not missed, over exaggerated
crossings. Second, the annotations we used are clearly too conservative in many
instances, so the network tries to compensate for those based on the learned
statistical associations.

Based on the best model, we approached the central question underlying
this work with an active learning scheme. It employs the uncertainty sampling
strategy with a custom orbit-level measure based on Shannon entropy, by which
we iteratively determine the next orbits to include in the training set. After a
preliminary experiment with a constantly growing training set, we conducted
our main experiment with a linear increment, and observed it to be significantly
better. It likely ensures a constant portion of unseen orbits throughout all it-
erations. Although these strategies might suffer slightly from overfitting on the
very first set of orbits, we were able to derive that at least one and at most two
Mercury years’ worth of measurement data may be sufficient for a representa-
tive model that performs reasonably. Finally we recognise while our work yields
comprehensive insights into the structure of the MESSENGER magnetometer
data and hence the magnetic dynamics around Mercury, it can only provide a
starting point in machine learning endeavors.

As part of future work, it would be worthwhile to improve quantitative eval-
uation by employing metrics that are more sensitive to temporal onsets and
offsets. It would also be interesting to investigate if it suffices to let the model
predict only one class per window. For inference, this would result in one pre-
diction for each time step instead of multiple votes. This may tackle some of
the issues where some crossings are scattered. Likewise, the future classification
output may be compressed to a single value. For instance, this could use a binary
flag that indicates whether the class predicted for the present time step changes
in the near future. It would be useful to explore how concept drift detection
techniques help in this regard.

By and large, this work reveals two insights on a broader level: First, deep
learning can be used to build sophisticated models of the bow shock and mag-
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netopause, a favourable alternative to the existing geometric models that suffer
the downside of being static, and often do not accurately predict the duration
of the crossings. Second, active learning serves not only for enhancing labeling
efficiency but also for addressing data representativeness questions. We strongly
encourage future work to continue and improve our study, taking note of the
suggestions made above. The outcomes might become relevant for the upcoming
Mercury mission BepiColombo [§], which with its twin-aircraft probe will collect
significantly more data.
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