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Abstract. Multivariate Time Series (MTS) involve multiple time series
variables that are interdependent. The MTS follows two dimensions,
namely spatial along the different variables composing the MTS and
temporal. Both, the complex and the time-evolving nature of MTS data
make forecasting one of the most challenging tasks in time series analysis.
Typical methods for MTS forecasting are designed to operate in a static
manner in time or space without taking into account the evolution of
spatio-temporal dependencies among data observations, which may be
subject to significant changes. Moreover, it is generally accepted that
none of these methods is universally valid for every application. Therefore,
we propose an online adaptation of MTS forecasting by devising a fully
automated framework for both adaptive input spatio-temporal variables
and adequate forecasting model selection. The adaptation is performed
in an informed manner following concept-drift detection in both spatio-
temporal dependencies and model performance over time. In addition, a
well-designed meta-learning scheme is used to automate the selection of
appropriate dependence measures and the forecasting model. An extensive
empirical study on several real-world datasets shows that our method
achieves excellent or on-par results in comparison to the state-of-the-art
(SoA) approaches as well as several baselines.

Keywords: Multivariate Time Series · Forecasting · Automated Model
Selection · Spatio-temporal Dependencies · Concept-drift.

1 Introduction

Time series forecasting is an important task in time series analysis to study the
behavior of temporal data and forecast its future values [21, 20]. It is widely
applied in various fields, including weather forecasts, energy demand/consumption
predictions, and stock market prices forecasting, to name but a few [19–21]. In
nowadays’ rapidly growing digital environments and Internet-of-Things systems,
? This work is supported by the Deutsche Forschungsgemeinschaft (DFG) within the
Collaborative Research Center SFB 876 and the Federal Ministry of Education and
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the representation of time series data often involves multiple interdependent
variables, thus creating Multivariate Time Series (MTS) data [26]. On the one
hand, this data represents an enriched form of information about the application.
On the other hand, the number of these variables can increase drastically and
might include irrelevant and redundant ones. This may heighten the curse of
dimensionality. Therefore, it is necessary to carefully select the most important
time series variables. The evolution of MTS is spatio-temporal, along with the
different variables and over time, respectively. However, this spatio-temporal data
may involve multiple non-stationary processes and the dependencies along its
composing variables may also follow a non-stationary process. As a result, the
relationship between some time series variables and the target one might change
significantly over time. This phenomenon is broached in the machine learning
literature as concept drift [8]. Hence, previously learned concepts about data
become no longer valid, making the offline input variable selection procedures
inappropriate for making future predictions. Therefore, the selection of time
series variables should cope with the evolving nature of the spatio-temporal
dependencies in the MTS data.

Various Machine Learning (ML) models have already been successfully applied
to solve the forecasting task either by dealing with the MTS data as a collection
of ordered sequences of observations in an offline [26] or a streaming fashion
[20], or by using an embedding of the MTS to reformulate the forecasting task
as a regression task [21]. However, it is generally accepted that none of the ML
methods is universally valid for every task, in particular for forecasting [21].
Therefore, in addition to adaptive time-dependent spatial variables selection,
adequate model selection is required to cope with the characteristics of the MTS.
Most of the existing MTS forecasting models operate in a static manner, i.e. the
model is trained offline using some collection of historical data and a fixed selection
of input variables. Its parameters are optimized once at training time. At test
time, the model is deployed with fixed learned parameters and fixed information
about temporal and spatial data [26]. Methods for online MTS forecasting focus
either on very specific application/setting [9] or use a very specific family of ML
models, such as Deep Neural Networks [27, 22]. More recently, a drift-aware Vector
Autoregressive (VAR) model has been proposed in [20]. In contrast to the classic
VAR model which takes as input, all the variables of the MTS [26], an adaptive
selection procedure of a subset of input variables is done in the drift-aware VAR.
The update of this subset depends on a change in the Pearson-Correlation (PC)
[16] measured between two variables over a time-sliding window, which we assume
has occurred due to concept drift. Even though the proposed method is online
and adaptive, it focuses only on a particular model, namely the VAR. In addition,
the time series variables selection is done by ranking them according to their
relevance to the target time series using PC. No further analysis is carried out
to investigate the redundancy in the selected subset. The relevance/similarity
to the target is measured using the PC coefficient. However, it has been proven
that there is no single universal measure for the similarity between two time
series either for relevance or redundancy analysis [16]. The quality of the achieved
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results in this context depends to a large extent on the used time series measure
[16].

In this work, we propose an online adaptive framework for MTS forecasting
which performs both input variable time series selection and adequate forecasting
model selection. Input variables selection is done on two stages using relevance
and redundancy analysis. The selection is made dynamically and adaptively
in an informed manner following concept drift detection. The concept drift
detection covers the two MTS dimensions, namely spatial and temporal. Spatial
dependencies indicate the similarity between the input variables at one time
instant. We monitor the change of the similarity values over time. Temporal
dependencies indicate the patterns discovered within the same spatial dimension
over time. The drift detection within the temporal dimension is ensured by
tracking the change in the estimated model’s performance on a given target time
series variable over time. In addition, the choice of the adequate relevance and
redundancy measures, as well as the forecasting model is done in an automated
fashion using meta-learning on well-devised MTS meta-features. Our framework
is denoted in the rest of the paper, OAMTS: Online Adaptive Multivariate Time
series forecasting. We further conduct a comprehensive empirical analysis to
validate our method using 66 real-world MTS datasets from different domains.
We have created separate meta-data which cover a collection of real-world and
synthetic MTS with various characteristics for the meta-learning task. The
obtained results show that our method achieves excellent results in comparison
to the SoA approaches for MTS forecasting. We note that all experiments are
fully reproducible and that both the code and datasets are publicly available 1.

The main contributions of this work can be summarized as follows: We present
a novel method for online drift-aware input time series variables selection using
relevance and redundancy analysis; The drift detection mechanism is devised to
operate on both spatial and temporal dimensions; We fully automate the choice
of relevance and redundancy measures for MTS, as well as forecasting model
selection using meta-learning; We provide a comparative empirical study with
SoA methods, and discuss their implications in terms of predictive performance
and scalability.

2 Literature Review

In contrast to univariate time series forecasting, i.e. the forecast of a single time
series, where several methods for online adaptive single model selection [19] or
ensemble learning [20, 21] have been proposed, most of existing methods for MTS
forecasting are devised to operate in a static manner [26, 27, 9]. In other words,
the models in these methods are learned offline using a collection of historical
MTS data, their parameters are optimized using these datasets and stored to be
used at test time to make the predictions. In addition, most of these methods
are either application specific [9] or model specific, i.e. use an arbitrary selected
1 https://www.dropbox.com/sh/z2g0us0nti3nqzg/AAAJ6_6JcGZHN_y10q8XDYa_a?
dl=0
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machine learning model family [26]. The most widely used models are VAR [26,
20] or DNNs [27, 22]. In [9], MTS for energy forecasting in smart buildings is
transformed into a standard regression task using time series embedding, and
then, different types of feature selection methods for regression tasks are applied.
The features are extracted offline once and kept static at test time.

More recently, some works have exploited the success of some DNNs ar-
chitectures in computer vision-related applications and successfully transferred
and adapted them to MTS forecasting by treating the temporal and the spa-
tial dimensions in MTS as the 2d-dimension in images. Some of other works
focused on introducing some improvements or adaptations over existing DNNs
to cope with the characteristics of MTS [27, 22]. In [22], authors argued that the
random weights initialization in Recurrent Neural Networks (RNNs), disallows
the neurons from learning the latent features of the correlated variables of the
MTS. Therefore, they suggest using a pre-trained LSTM combined with a stacked
auto-encoder to replace the random weight initialization strategy adopted in deep
RNNs. In [27], Graph Neural Networks (GNNs) are adapted to MTS forecasting
by adding a mix-hop propagation layer and a dilated inception layer to capture
the spatial and temporal dependencies within the MTS. This is done to make
GNN capable of handling relational dependencies that are not known in advance
like in the case of MTS. Even though dependencies between the variables of
the MTS may change significantly over time, most of the aforementioned works
do not consider a time-dependent selection of the input time series variables to
the MTS forecasting model. The choice of the model is most often arbitrary or
transferred from another domain like computer vision or regression. In addition,
once the model is chosen, its corresponding parameters are kept fixed. It is
important to note that there exist methods for model adaptation to data changes
and model performance, more particularly to concept drift in the context of
streaming data classification [14, 15] and univariate time series forecasting [21].
These methods can be grouped into two main families, namely blind adaptation
and informed adaptation. In blind adaptation, the model is retrained either at
each time instant with each upcoming observation or over a fixed period in time
without any consideration of possible data or model performance changes. How-
ever, this family of methods is known to be time-intensive, resource-consuming,
and unpractical for online forecasting [21, 19]. Informed adaptation methods use
some statistical information about the data or model performance to inform
the model about the occurrence of concept drift and, if necessary, trigger input
data update using adaptive time-windowing approaches and input re-selection
[14, 15, 21] and subsequently, model retraining [20] or new model selection [19].
In this work, we propose an informed adaptation for MTS forecasting. This is
done by monitoring the changes in spatio-temporal dependencies in the MTS
and the model performance over time. Since the results achieved in various time
series tasks such as clustering and classification depend to a large extent on
the used measures for evaluating time series dependencies/similarities [16], we
suggest automating the choice of the adequate dependencies measures as well
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as the selection of the adequate model for a particular application by means of
meta-learning.

3 Methodology

In this section, we present our framework and its main components. For given
MTS data, the input time series variables to be used for forecasting are determined
in a timely manner by computing their relevance to the target time series variable.
Once the most relevant variables are identified, redundancy analysis through
time series clustering is carried out to remove redundant variables. The choice
of adequate time series measures for relevance and redundancy is determined
beforehand by the meta-learning component that decides as well which model
to be used for particular MTS data. Both input time series variables and model
updates are triggered once a concept drift in the spatio-temporal dependencies
among these variables or/and model performance is detected. Basically, either
new variables are selected or time windows are adjusted to update the time
series variables with recent observations. This depends on the nature of detected
concept drift, i.e. whether it is on variables dependencies or model performance
or on both.

3.1 Preliminaries

A time series variable Xi with i ∈ N, is a temporal sequence of values, where
Xi

1:t = {xi1, xi2, · · · , xit} denotes the sequence of Xi recorded until time t and xij
is the value of Xi at a time instant j. A MTS X consists of multiple time series
variables, i.e. X = {X1, X2, · · · , XN}, that are interdependent. The variables
are assumed in this work to be recorded simultaneously with the same frequency.
The MTS X1:t recorded until a time instant t can be formally described as N × t-
dimensional matrix, with Xj = {x1j , x2j , · · · , xNj } which represent the spatial
dimension of X for a fixed time instant j and Xi

1:t represents the evolution of X
over the temporal dimension across the variable i.

Given a target time series variable Xr, the goal of online input variable
selection is to determine which time series variables Xi, i ∈ [1, N ]\{r} should be
fed into the forecasting model at time t to forecast the next value at time t+1. It
is important to note that in MTS, each time series variable can play the role of the
target variable and be predicted using the remaining variables, as it may be that
only one or some variables need to be predicted. This is application dependent.
However, the reasoning applied to one target variable can be generalized to all the
remaining variables. We denote by Xi

ts:te the subsequence of Xi starting at time
instant ts and ending at time instant te. We divide the MTS X into Xtrain

ω =
{X1

1:t−ω, X
2
1:t−ω, · · · , XN

1:t−ω} and Xval
ω = {X1

t−ω+1:t, X
2
t−ω+1:t, · · · , XN

t−ω+1:t},
with ω a provided window size. Xtrain

ω is used for training the forecasting model
and Xval

ω is used to compute the relevance and redundancy measures, since both
input and target time series variables are required to be known.
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3.2 Forecasting Models Learning

Standard approaches for addressing MTS forecasting tasks include traditional
techniques for MTS analysis, such as the popular Vector Autoregressive VAR
family of methods [26], or ARIMAX [3] which is the extension of Autoregressive
Integrated Moving Average model (ARIMA) to MTS where some input time
series variables are provided as exogenous variables to forecast the dependent
variable, i.e. target variable. These models take as an input multiple time series
sequences X1:t. In addition, regression models can be employed in the context
of MTS forecasting by using a time-delayed embedding that maps a set of
observations from the target time series variable Xr ∈ X to a l ×N -dimensional
feature space corresponding to the l past lagged values of each observation in
each time series variable in X. Each observation is composed of a feature vector
zi ∈ Z ⊂ Rl×N , which denotes the previous l values of each variable, and a target
vector xi ∈ X ⊂ R, which represents the value we want to predict. The objective
is to construct a model f : Z → X, where f denotes the regression function.
In this work, we aim to select an adequate model given the characteristics of
MTS data in question. This is done by the meta-learning components in Section
3.5. Therefore, we consider a pool of candidate forecasting models P which is
designed to contain a set of various and heterogeneous models, such as VAR,
Gaussian processes, support vector regression, and DNNs. The candidate models
are trained on Xtrain

ω using the same number l of lagged values for each variable
in the MTS as input to model the following value in the time series.

3.3 Adaptive Input Time Series Variables Selection

Given a target time series Xr ∈ X, in order to forecast its value at a future time
instant t+ h, h ≥ 1 (for simplicity of notation, we assume h = 1), the selection
of the time series variables Xi, i ∈ [1, N ]\{r} whose l-lagged values will be used
as input for the forecasting model in addition to the l-lagged values of target
time series Xr, has to be determined in a timely-manner at t. The selection is
decided by measuring how much each of Xi,∀i ∈ [1, N ]\{r} is relevant to Xr

and whether Xi is redundant in the presence of the other variables.

Relevance The relevance of each Xi,∀i ∈ [1, N ]\{r} to Xr is measured by
computing the similarity between them on T valω = [t− ω + 1, t], denoted si,rt =
sim(Xi

t−ω+1:t, X
r
t−ω+1:t). The time series variables Xi,∀i ∈ [1, N ]\{r} are sorted

according to their si,rt and the top-n most similar variables to Xr are selected.
There is no single universal similarity measure between time series that is valid
for every application. The choice of the adequate similarity measure is done by
considering the characteristics of the MTS at question.

Redundancy The top-n selected input time series variables may include some
redundant variables that would lead to increasing the dimensionality of the MTS
forecasting task without contributing to the model’s accuracy. Relying on the
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computed similarity measures is not sufficient since they are measured over a
time window of observations T valω . For instance, two candidate variables can
have the same level of similarity to the target variables while being effectively
similar to it on two distinct time intervals included within T valω . Therefore, we
suggest removing redundancies by clustering the top-n variables and selecting
only one-time series representative per cluster. To compute clusters for time series,
several techniques are proposed in the literature which can be classified based
on the way they treat the data and how the underlying grouping is performed
[1]. One classification depends on whether the whole series, a subsequence, or
individual time points are to be clustered. In our case, we cluster the subsequences
{X1

t−ω+1:t, X
2
t−ω+1:t, · · · , XN

t−ω+1:t}. On the other hand, the clustering itself may
be shape-based, feature-based, or model-based. The choice of time-series represen-
tation and the clustering algorithm has a big impact on performance with respect
to cluster quality and execution time [23]. Again, no single clustering method is
universally valid and the success of the method depends on the characteristics
of the time series data [1]. Denote with the ci,jt the clustering measure used
for computing the distance between the two sequences Xi

t−ω+1:t and X
j
t−ω+1:t,

with i, j ∈ TOPn and Topn denotes the subset of selected input time series
variables,i.e. |TOPn| = topn. The choice of the clustering algorithm together with
the corresponding distance measure is decided by the meta-learning component.
Further details are provided in Section 3.5.

Drift-aware Variables Selection Adaptation Both relevance and redundan-
cies are monitored continuously over time. For relevance, with each upcoming
data observation at t + h, h ≥ 1, we slide T valω by one step, i.e. to include the
observation at t+ h, and we measure si,rt+h,∀i ∈ [1, N ]\{r}. Then, we computed:
smint+h = mini∈[1,N ]\{r} s

i,r
t+h in order to determine the distance between the target

sequence and the most dissimilar sequence within the N − 1 input variables.
Then, we compare it to the initial calculated distance sminti . In our case, ti = t
indicates the start of the online forecasting stage. The distance is treated as time
series where smint+h is its value at time t+ h.

Definition 1 (Weak stationary Similarity). The similarity structure between
a set of input time series variables and a target time series is said to be weakly
stationary if the true mean of ∆s is 0, with: ∆s

t+h =
∣∣smint+h − sminti

∣∣
Following this definition, we can assume that the distance between the target
time series sequence and the most dissimilar input sequence sets its boundary
under a form of a logical diameter. If this boundary diverges in a significant way
over time, a drift is assumed to take place. We propose to detect the validity of
such an assumption using the well-known Hoeffding Bound, which states that
after ω independent observations of a real-value random variable with range
R, its true mean has not diverged if the sample mean is contained within ±ζ:
ζ =

√
R2 ln(1/µ)

2ω with a probability of 1 − µ (a user-defined hyperparameter).
Once the condition of the weak stationary similarity presented in Definition 1 is
violated at td, a drift is assumed to take place at tds . A relevance re-computation
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is then triggered. A re-clustering is also performed, the selection of the variables
is updated and the reference diameter sminti is reset by setting ti = tds . This drift
type is denoted Drift Type I.

Similarly for the redundancy, we monitor continuously the distance measure
used for clustering ci,jt+h,∀Xi, Xj ∈ TOPn, which results in the similarity matrix
Ct+h = (ci,jt+h)1≤i,j≥topn ∈ Rtopn×topn and we place all the elements of Ct+h in a
vector ςt+h, where ςj,t+h ≥ ςj−1,t+h,∀j ∈ {1, · · · , top2n}. Let ςti denote the value
of ς at the initial instant ti = t of the generation of C. We monitor the deviation
∆ς
t+h =

∣∣ςt+h − ςti ∣∣ similarly to ∆s
t+h. We test the occurrence of concept drift

within the clusters following the same condition defined in Definition 1. If a
concept drift is detected at tdc , both relevance and redundancies re-computation
are triggered and a re-selection of input variables is performed. We reset then
ςti = ςtdc . This drift type is denoted Drift Type II.

3.4 Forecasting Models Adaptation

The increase in the forecasting error may indicate a possible change in the
relationship between the input variables and the target time series or outdated
model parameters due to outdated time series observations that were used for
training. Therefore, necessary measures such as input variables re-selection and/or
model re-training with recently acquired data have to be taken. To do so, the
forecasting error ε is estimated using the Root Mean Square Error (RMSE) and is
monitored over the sliding window of the recent observations T valω . The error can
be viewed as a time series, and at t+h εωt+h = 1

ω

∑t+h−1
j=t+h−ω(x

r
j− x̂rj)2, with x̂rj the

predicted value of Xr at time j. Naturally, with time-evolving data, the model’s
error changes over time and may follow non-stationary concepts. Let εti denote
ε value at the initial instant of its generation ti = t. Since the forecasting error
is directional, the drift-detection using the absolute value of the error deviation
with the Hoeffding-bound can be misleading. Therefore, we suggest using the
Page-Hinkley Test [20] to detect a significant increase in the forecasting error. We
present the pseudo-code of the Page-Hinkley Test in the supplementary materials.
ν and % are user-defined hyper-parameters, where ν is the tolerable change in
the estimated error and % is a threshold. A larger % avoids detecting false drift
alarms, but can also lead to missing true drifts [8]. The error drift detection is
denoted Drift Type III. An alert at time tdε declares the occurrence of Drift
Type III and triggers the update of the input variables through new selection,
i.e new relevance and redundancy re-computation and updates the current model
with the new input and the recent observations. It also restarts the Page-Hinkley
Test from the beginning. The model gets also updated with the update of the
input triggered by Drift Type I or Drift Type II.

3.5 Online Automated MTS Forecasting

As discussed above, there are no single universal similarity measures for relevance
and redundancies. Similarly, for the forecasting model, adequate model selection
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has to be performed to cope with the characteristics of the MTS in question.
Once the model is selected, the online adaptation scheme in our framework (See
Section 3.4) takes care of the update of the model in an informed manner to the
real-time changes in the data and the performance. To automate the choice of
the measures and the model, we use meta-learning. Let S and C be the spaces of
the relevance and redundancy measures, respectively. Denote with M the space
of the candidate models to solve the MTS forecasting task. Using a set of m MTS
characteristics represented here by the so-called meta-features, the goal of the
meta-task is to fit model fmeta : Rm → S×C×M to predict the best combination
of relevance and redundancies measures and forecasting model choice given a
vector of m MTS meta-features as input.

MTS Meta-features Several works have been proposed for extracting Univari-
ate Time Series (UTS) meta-features [25]. Therefore, most of the existing works
that tackled the same task for MTS use the same features developed for UTS to
extract meta-features from each time series variable in the MTS and concatenate
them in one feature vector [9]. In this work, in addition to the transfer of the
most often used meta-features in the context of univariate time series to the
MTS domain, we propose to add MTS-specific meta-features. We additionally
adapted the concept of land-marking developed for meta-tasks in classification
and regression [12] to MTS data. The extracted meta-features can be grouped
into three main families.

UTS-specific features For each time series variable in the MTS, we extract
different time series-specific features that can be grouped into three families,
including descriptive statistics, frequency domain, and auto-correlation features
[11]. The list of these features includes then trend, skewness of series, turning
points, kurtosis of series, step changes, length of series, non-linearity measure,
the standard deviation of de-trended series, power spectrum: maximal value, no.
of peaks not lower than 60% of the max, auto- and partial correlations at lags
one and two, seasonality. Since the number of variables in the MTS can be very
big, we compute the mean and the standard deviation of each extracted feature
over the different variables from a subset.

MTS-specific features We suggest investigating the relationships/dependence
among the MTS variables. To do so, we compute several similarity measures
[16], including Pearson Correlation, Euclidean distance, Dynamic time warping
distance, Mahalanobis distance, Amplitude and Phase differences of the Fourier
Transform (FT), and Shape similarity based on derived FT amplitude and phase
differences, between each pair of variables. These similarities computations result
in similarity matrices for each measure. Instead of concatenating all the coefficients
of all the matrices in one feature vector and increasing the meta-task input
dimensionality, we suggest computing diversity in similarity/dependence along
with all the variables pairs for each similarity matrix. Denote with S ∈ RN×N
the resulting similarity matrix of a given similarity/distance s between all the
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N MTS variables. We define the diversity as (note the similarity values are
normalized between -1 and 1) : div(S) = 1− 1∑

1≤i6=j,≤N

∑
1≤i6=j,≤N s(X

i, Xj)

Landmarking-based features This type of meta-features are designed to describe
the performance of some learning algorithms, called landmarkers, in various learn-
ing contexts on the same data. Landmarkers are machine learning models that are
computationally relatively cheap either in training or testing compared to other
models. So far, all the proposed landmarkers and corresponding meta-features
have been proposed for classical meta-learning applications to classification prob-
lems and one work has added the extension of this concept to regression [13],
whereas we focus on landmarkers integration for MTS forecasting. In regression,
the process starts by creating one landmarking model over the entire training
set. A small artificial neighborhood for each training example is created using
Gaussian noise. Then descriptive statistics of the models’ output, mean, stdev.,
1st/3rd quantile, are extracted. In our case, we use, LASSO, 1NN , MARS and
CART , as landmarkers [13] and train them on Xtrain

ω . We can distinguish three
types of Landmarking features:

– Global landmarking : We evaluate each model on each time Xval
ω and we

extract the descriptive statistics of the models’ output.
– Performance-based local landmarking : we split Xval

ω into equally-sized non-
overlapping time windows of size nω . We evaluate each model on each time
window and we extract for each window the descriptive statistics of the
models’ output.

– Model-based local landmarking : This type of local landmarking is designed
to characterize the landmarkers within a particular time series region, in
our case each time window of size nω. To do so, we extract the knowledge
that the landmarkers have learned about each window. In addition to the
prediction of each landmarker on each window, we compute the depth of the
leaf which makes the prediction and the number of examples in that leaf and
variance for each window for CART, the average over each window of the
width and mass of the interval in which each time value falls, and the average
over each window of absolute distance to the nearest neighbor for 1NN.

4 Experiments

We present the experiments carried out to validate OAMTS and to answer these
research questions: Q1: How does OAMTS perform compared to the SoA and
existing online methods for MTS forecasting?; Q2: To which extent is it necessary
to automate the choice of adequate relevance and redundancies measures, as well
as the forecasting model choice? Q3: What is the importance of each component,
namely relevance and redundancy, in the input time series variables selection on
the performance? Q4: What is the benefit of each drift type detection for the
performance of OAMTS? Q5: How scalable is OAMTS in terms of computational
resources compared to the most competitive online model selection methods?
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and what is the computational advantage of drift-aware adaptation of the
framework?

4.1 Experimental Setup

The methods used in the experiments were evaluated using the root mean
squared error (RMSE). We collected a total of 166 MTS from various real-world
applications. 100 MTS are exclusively used for the meta-learning task, while
the remaining 66 MTS are used for testing the meta-model which recommends
which relevance and redundancy measures and forecasting model from the pool
of candidate models that we have devised, to use. Following the recommendation
of the meta-model, these 66 MTS are used to validate the online forecasting
performance of OAMTS. Each of the 66 MTS was split using 50% for training
(Xtrain

ω ), and 25% for validation (Xval
ω ) and 25% for testing. Note that in each

MTS, we have chosen one variable as the target one depending on the application
and the remaining variables as different input variables. However, for some
applications like taxi demand forecasting, all the variables can play the role of
the target one and change the role between variables. A full list of the used
datasets, together with a description, is given in the code repository 2 and in the
supplementary materials.

Candidate models set-up We construct the pool P of candidate models. We
mentioned earlier that there is no single method for forecasting that outperforms
all the other methods on every time series. Hence, we incorporate and test different
families of models. Traditional time series forecasting models like VAR [26] is
included. Regression models are also included in P and are applied after using
MTS embedding of dimension N × l. These models include Gradient Boosting
Machines GBM [5], Support Vector Regression SVR [4], Random Forest RF [2],
Projection Pursuit Regression PPR [6], MARS MARS [7], and Partial Least
Squares Regression PLS [17]. Neural networks based models that are designed for
time series forecasting task are introduced to P such as Multi-Layer Perceptron
MLP [10], Bidirectional LSTM bi-LSTM [24]. More recently , CNN-LSTM
[28] and Convolutional LSTM Conv-LSTM [28] are suggested to solve MTS
forecasting tasks. Using different parameter settings for each family, we generate
a pool of 20 candidate models.

Meta-learning task set-up The list of similarity measures considered
to measure the variables relevance includes Pearson Correlation, Spearman
correlation, Euclidean distance, Dynamic time warping distance, Manhattan
distance, and Fourier-based distance. A detailed description of each measure
can be found in [16] (Table1). For redundancies, we have chosen K-means [18]
as the clustering algorithm with distance measure either Euclidean distance
or Dynamic time warping distance. For the models, we consider the selection
from the pool P. Note for the meta-data labelling, we consider all the possible
combinations of relevance, redundancy measures and model type and we evaluate
2 https://www.dropbox.com/sh/z2g0us0nti3nqzg/AAAJ6_6JcGZHN_y10q8XDYa_a?
dl=0
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our framework performance on each MTS dataset in the meta set by splitting
it into 80% for training the framework and 20% for testing. Even though, the
meta-task is performed fully offline (only meta-model predictions are output
online), this annotation is very resource-consuming because of the big number of
combinations. That is why we restrained the size of the metadata to 100 MTS.
However, we aim to enlarge this data in the future. There are different options
on how to tackle the meta-learning task. One possible option would be to encode
all the combinations of relevance, redundancy measures, and model type which
would lead to a high number of classes compared to the size of the meta-data.
Another option is to consider it as a multi-label classification task. However,
a classifier’s performance on different labels can vary significantly. Therefore,
we have chosen to split the task into three learning tasks. The first one is for
relevance measure prediction and is a multi-class classification task solved with
SVM [4]. The second task is for redundancy measure prediction and is a binary
classification task solved with SVM [4]. The third task is for model selection and
is a multi-class classification task solved with RF [2]. The choice of the learning
algorithm is decided using a cross-validation evaluation of the accuracy on the
meta-data.

OAMTS set-up: OAMTS has also a number of hyper-parameters that are
summarized in Table 1 in the supplementary materials. We compare OAMTS
against the following approaches which include SoA methods for MTS forecasting.
Some of them operate in an online fashion.

SoA Forecasting Models: ARIMAX[3]: Auto-Regressive Moving Average
model with exogenous variables, LSTM[19]: Long Short Term Memory Network
which has shown better performance than the remaining neural networks such as
MLP and CNN-LSTM and comparable performance with bi-LSTM, VAR[26]:
Traditional Vector Autoregressive model. Its order is tuned using Akaike Infor-
mation Criterion (AIC) using the R-package ’vars’, Drift-aware VAR [20] A
recent framework that selects the relevant variables using Pearson-Correlation for
the VAR model and update them following concept-drift detection. It uses also
L1-regularization to prevent over-fitting. However, redundancies are not removed.

OAMTS Variants:OAMTS-Ran: The variant of OAMTS that is computed
using a random selection of Relevance and Redundancies measures and model,
OAMTS-VAR: The variant of OAMTS that uses VAR as the forecasting
model instead of the automatic model selection. Relevance and Redundancies are
selected by the meta-model, OAMTS-Rel: The variant of OAMTS that performs
adaptive input selection by considering only the relevance, OAMTS-Red: The
variant of OAMTS that performs adaptive input selection by considering only
the redundancy, OAMTS-DI-II: The variant of OAMTS that performs model
adaptation following concept drift in the input structure (Drift type I and
Drift type II, OAMTS-DIII: The variant of OAMTS that performs model
adaptation following in the changes in the error (Drift type III), OAMTS-
Per: The variant of OAMTS that performs model adaptation periodically without
any consideration of concept drift occurrence, with each upcoming 10% data
points, OAMTS-BG: The variant of OAMTS where we assume we know the
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background truth of which Relevance and Redundancies measures to use and
which model to select. This is done by evaluating all the possible combinations
on the test set. This variant is used as a reference model to know how well the
meta-learning component performs.

4.2 Results

Table 1 presents the average ranks and their deviation for all methods. For the
paired comparison, we compare our method OAMTS against each of the other
methods. We counted wins and losses for each dataset using the RMSE scores. We
use the non-parametric Wilcoxon Signed Rank test to compute significant wins
and losses (significance level 0.05). In the results in Table 1, OAMTS outperforms

Table 1: Comparison of OAMTS to different SoA for 66 time series. The rank
column presents the average rank and its standard deviation across different time
series. A rank of 1 means the model was the best performing on all time series.
We report only significant wins and losses of OAMTS against remaining methods.

Method Our Method
Wins Losses Avg.rank

VAR 40 0 7.7±0.9
ARIMAX 20 20 3.0±2.2
LSTM 40 0 7.8±1.4
Drift-aware VAR 40 0 6.7±0.9
OAMTS-VAR 40 0 7.6±0.7
OAMTS-Ran 40 0 5.0±0.9
OAMTS-Rel 40 0 5.9±1.3
OAMTS-Red 40 0 6.3±0.6
OAMTS-Per 39 1 4.3±0.8
OAMTS-DI-II 30 10 3.2±1.2
OAMTS-DIII 7 33 2.9±0.7
OAMTS - - 2.2±0.5
OAMTS-BG - - 1.9±0.6

the baseline methods in terms of wins/loses in pairwise comparison. The online
MTS forecasting methods, e.g., Drift-aware VAR [20] and OAMTS-VAR show
inferior performance compared to OAMTS. VAR and LSTM, SoA methods for
forecasting, are considerably worse in average rank compared to OAMTS. The
most competitive SoA approach to OAMTS is ARIMAX. Nevertheless, it has a
higher average rank and a lower performance than our method. VAR is considered
to be the most widely used method of MTS forecasting but it can be seen from
OAMTS-VAR that it is not always the best model choice. This is also confirmed
by the Drift-aware VAR performance. It can also be seen that none of OAMTS-
Rel and OAMTS-Red is able on its own to reach the performance of OAMTS
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which shows the importance of both relevance and redundancies consideration in
the input selection. These results address the research questions Q1-Q2.

Table 2 presents some examples where we show the ground truth of which
are the best relevance and redundancies measures, as well as the model choice for
some data sets. It is clear from Table 2 that there is no one single best relevance

Table 2: Ground truth of the best model and relevance/redundancy measures for
some datasets.

Dataset Model Similarity measure Clustering method
Taxi-1 PLS Pearson correlation DTW
Taxi-2 MARS Euclidean distance DTW
Taxi-3 PLS Spearman correlation DTW
Chengdu-city-3 MARS Spearman correlation Euclidean

and redundancies measures, as well as one optimal model choice, even for MTS
data sets extracted from the same data source like Taxi1,2,3 that are extracted
from NYC Trip Record Data (Yellow taxi 2021). This justifies the necessity of
automating these choices. Random choices would lead to considerably worse
performance which is reflected in the performance of OAMTS-Ran in Table 1. In
addition, comparing OAMTSto OAMTS-BG, we can see a slight difference in
the ranks in favor of course of OAMTS-BG but it highlights the usefulness of
the meta-learning component in our framework for automating all the choices.
These results address the research question Q3.

From Table 1, we can also see that none of the drift adaptation methods
is able on its own to perform as well as OAMTSwhich deploys the three drift
types to monitor changes in the input dependence structure as well as the model
performance. In addition, OAMTS which relies on the informed adaption of the
framework using concept drift detection is better than OAMTS-Per. This can be
explained by the fact that unnecessary updates are not always beneficial. This
answers the research question Q4.

In the next experiment, we compare the runtime of OAMTS and its variants
against some SoA methods in Table 3.

All the reported runtimes concern only the online predictions and any op-
eration computed offline is not taken into account. The results demonstrate
that OAMTS has lower runtime than OAMTS-Per. This is due to using drift
detection to update only when necessary. This results in faster predictions and
less computational requirements. The high deviation of the runtime of OAMTS is
due to the different numbers of drifts per time series. This answers question Q5.

4.3 Discussion and future work

The empirical results indicate that OAMTS has performance advantages compared
to popular MTS forecasting methods. We show that our method, for adaptively
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Table 3: Empirical runtime comparison between different methods in Seconds.
Method OAMTS OAMTS-Per LSTM
Avg. Runtime 34.26 72.12 150.09
± 94.51 35.29 29.26

selecting input MTS variables and performing the model update, is able to
gain excellent and reliable empirical performance in our setting. The informed
adaptation following concept drift detection makes our method in addition to
better predictive performance, computationally cheaper than blind adaptation
methods like periodic ones. In future work, we plan to enhance further the
meta-learning components by adding more datasets and annotating them, and
establishing a direct mapping to the best combination of measures and model
choice as target label as we assume that there is a link in addition to the MTS
characteristics that we tried to cover from different perspectives, between relevance
and redundancies measures and the chosen forecasting model. This investigation
will make the scope of our future work. In addition, we’ve thought about adding
more time series clustering algorithms so that we change the mapping to the
clustering algorithm directly instead of the relevance measure. We may also think
about enlarging the pool P.

5 Concluding Remarks

This paper introduces OAMTS: a novel, practically useful online adaptive frame-
work for multivariate time series forecasting. OAMTS uses adaptive input selection
by investigating relevance and redundancies. Both input variables and learning
models are updated in an informed manner following different types of concept
drift detection. The choice of the relevance and redundancies measure, as well as
the model, is automated using meta-learning. An exhaustive empirical evaluation,
including several real-world datasets and multiple comparison algorithms, showed
the advantages of OAMTS in terms of performance and scalability.
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