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Abstract. Having high-precision and high-resolution poverty map is
a prerequisite for monitoring the United Nations Sustainable Develop-
ment Goals(SDGs) and for designing development strategies with ef-
fective poverty reduction policies. Recent deep-learning-related studies
have demonstrated the effectiveness of the geographically-fine-grained
data composed with satellite images, geolocated article texts and Open-
Street-Map in poverty mapping. Unfortunately, there is no presented
method which considers the multimodality of data composition or the
underlying macroscopic social network among the investigated clusters in
socio-geographic space. To alleviate these problems, we propose CGPM,
a novelty end-to-end socioeconomic indicator mapping framework fea-
tured with the cross-modality knowledge integration of multi-modal fea-
tures, and the generation of macroscopic social network. Furthermore,
considering the deficiency of labeled clusters for model training, we pro-
posed a weak-supervised specialized framework CGPM-WS to overcome
this challenge. Extensive experiments on the public multimodality socio-
geographic data demonstrate that CGPM and CGPM-WS significantly
outperforms the baselines in semi-supervised and weak-supervised tasks
respectively of poverty mapping.

Keywords: Sustainability · Poverty Mapping· Multi-Modality· Social
Networks Mining.

1 Introduction

Recently, the application of data mining in the field of sustainable development
and global human rights protection has attracted a lot of attention [12, 22, 18].
One of the important applications is intelligent poverty mapping [19, 1]. The
main content of poverty mapping is to obtain high-precision key socioeconomic
indicators [4] that measure the wealth level or poverty level of geographically
distributed clusters. Having high-precision poverty maps is a crucial prerequisite
for monitoring the UN Sustainable Development Goals(SDGs) and designing
development strategies [10, 22] for effective poverty reduction policies.
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Driven by this, with the continuous progress of cutting-edge research in data
mining and the increasing availability of geospatial data, many recent studies
have proposed frameworks that combine deep learning algorithms with geospatial
information as a highly-accurate, low-cost, and scalable technical system [2] to
conduct poverty mapping.

Existing work on mapping poverty generally collects and uses multimodal
geospatial data. Among the many data sources, the image data from Google’s
satellite map [9, 26], Geolocated Article Texts data [15, 3] and Open Street Map
data [10, 14] are currently used by the mainstream. Open-sourced Demographic
and Health Survey(DHS) data is often used as professional socioeconomic indi-
cators.

However, we must emphasize that most of the existing A.I. poverty mapping
algorithms simply aggregate the training results of various specialized models.
Such algorithms cannot overcome the two challenges faced by the current poverty
mapping: 1) The ideal poverty mapping algorithm should realize the integration
and complementary enhancement of multimodal data, to obtain the optimal
cluster-level features representations. However, the proposed integrated or end-
to-end splicing frameworks do not have this function. 2) The various clusters
on the poverty map do not exist in isolation, and they constitute a potential
social network with multiple semantics. We hope to be able to intelligently mine
and generate the potential macro-social network structure at the cluster level,
and synergistically apply it to the optimization of node (cluster) level feature
representation, which will help to improve the accuracy of the poverty mapping
framework.

Therefore, to alleviate the above problems, we propose CGPM, a novelty
Poverty Mapping Framework simultaneously considers the Integration of Multi-
Modal Geographic data and the mining/generating of the underlying Macro-
scopic Social Network. The framework mainly includes two core components,
Cross-modal Feature Integration Module and Feature-based Macroscopic Social
Network Generating Module. In the Cross-modal Feature Integration Module, we
construct a cross-modality feature transformer based on the cross-modality at-
tention mechanism, and use it to conduct cross-modal feature transformation and
integration. In the Macroscopic Social Network Generating module, we generate
multiple feature-based candidate macroscopic social network structure graphs.
Furthermore, we jointly train the integrated representations, the generated social
network structure (parameterized), and the networks’ semantic embedding (pa-
rameterized)under the task, and eventually conduct the high-precision poverty
mapping. Meanwhile, to alleviate limitedness of the DHS labels that we often
face in actual surveying and mapping, we improved the CGPM and proposed a
specialized architecture for weakly supervised scenarios (CGPM-WS). CGPM-
WS performs refinement operations based on the pseudo-labeling technique to
obtain a better feature representation, and effectively overcome the above chal-
lenges. In conclusion, our contributions are as follows:

(a) CGPM is the first method which realizes cross-modal fusion and the
underlying macroscopic social networks generating simultaneously, thus to aug-
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ment the representations of the multimodal data in this field. Whether it is in
the field of poverty mapping or the related frontiers of data mining, CGPM is
significantly ahead of the baselines in terms of novelty and design, with relatively
strong academic significance.

(b) We designed a specialized architecture for weakly supervised scenarios-
CGPM-WS, as a migration variant of CGPM, to alleviate the problem of the
low coverage of the cluster areas marked by DHS.

(c) Extensive experiments in six typically developing countries demonstrate
that CGPM has a significant accuracy advantage over current baselines. CGPM-
WS has a significant accuracy advantage while maintaining granularity. It is val-
idated that CGPM has considerable application prospects in intelligent poverty
mapping research.

2 Related Work

2.1 Existing Poverty Mapping Framework

In recent years, some progress has been made in the research on integrated/migratory
poverty mapping based on artificial intelligence & data mining algorithms. Do-
hyung Kim [19] et al. proposed a migration algorithm based on satellite image
data to achieve high-precision poverty prediction. Evan Sheehan [15] et al. es-
tablished an integrated poverty-mapping-oriented deep neural network architec-
ture based on Wiki geographic text comment data and high-definition satellite
data. Chiara Ledesma [9] et al. introduced textual data and statistics from so-
cial media to optimize the accuracy of poverty prediction from the perspective
of interpretable learning. Masoomali Fatehkia et al. [3] transferred the inter-
pretability scheme to a wider range of socioeconomic indicator predictions and
assessed the generalization of existing methods compared to baselines. Kumar
Ayush [1] designed a dynamic mapping framework for poverty maps based on
Reinforcement Learning, which achieved high-precision poverty detection with
extremely high computational overhead. Lee.K [10] et al. proposed a techni-
cal approach to anchor clusters to sample alignment under multimodal data,
while designing a simple architecture suitable for weakly supervised environ-
ments. However, existing research has significant shortcomings in multimodal
data fusion and representation optimization, as well as the isolation assumption
of individual clusters. Therefore, to alleviate the above two problems has become
the motivation of our research.

2.2 Discussion: Underlying Macroscopic Social Network Mining &
Generating—Why and How

In our research, we note that the existing A.I. poverty mapping frameworks treat
each cluster as an isolated sample point. However, we know that in a spatial ge-
ographic area, due to the existence of social and economic ties, the clusters in
the area are not completely independent from each other, and their subsets will
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form multiple macro-social networks based on these linkages and ties. We inter-
pret the implications of the underlying macro-social network structure in poverty
mapping as mobility and homogeneity. The mobility structure refers to the ex-
istence of important linkages or ties between two clusters in terms of economic
and social activities. For example, the satellite city structures and core indus-
trial chains in the metropolitan areas. Due to the existence of the social network
formed economic circles, economic complexes and other entities among the clus-
ters [24], the social functions of each cluster often show different characteristics.
There exists uneven developments of the transformation, such as satellite cities
tend to undertake more housing and basic medical care, but lack of other posi-
tive socio-geographical characteristics. This economic phenomenon is not clearly
revealed in either the OSM features, the satellite images, or the lighting data. It
is difficult for the existing frameworks to compare the low-poverty clusters with
high-poverty clusters while recognizing their with uneven values in such indi-
cators with precise distinctions. The realization of feature sharing and dissemi-
nation among nodes in such a social network structure can effectively alleviate
this problem. Homogeneity structure means that, for a aggregated feature rep-
resentation measured by weight, if the values of two clusters show a sufficiently
high similarity, we can consider the two as homogeneous clusters. Therefore, we
can smooth the node feature vector of each cluster in such a homogeneous social
network to a certain extent [8], so as to alleviate the observation error. caused
by the operation in data collection and cluster anchoring.

Meanwhile, in sociological investigations, researchers often determine the
semantics of social network structures by means of subjective definitions[27].
However, in the A.I. application scenarios, this would not be an optimal graph-
structured representation. Therefore, we hope that the framework adaptively
learns a better latent social network structure representation from the node (clus-
ter) features, and cooperates them with the spatial node-level message passing
layer (with graph structure and node features as trainable inputs) training to
optimize the feature representations of each cluster. Such practices can be re-
alized with the Graph Structure Learning [28, 21, 13, 17] and Spatial Encoding
[25] techniques.

3 Data Acquisition and Preprocessing

Open Street Map Data & Preprocessing
OpenStreetMap (OSM) contains open-source geospatial and infrastructure

data open to the world[18]. A recent study shows that user-generated road maps
in OSM are about 86% complete by 2020, and more than 40% of countries have
a complete OSM street network[7]. We can obtain OpenStreetMap (OSM) data
for the target area from Geofabrik, an online repository for OSM data[6]. From
this, we extract extensive information about the number of roads, buildings and
points of interest in a specific area, which will be presented as tabular features.
We further discretize it to obtain Categorical Features.
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In our feature engineering, OSM feature extraction ranges from rural areas
with a 5 km radius and urban areas with a 2 km radius, each centered on the
cluster location. We identified five road types in the dataset: arterial, arterial,
paved, unpaved, and intersection. In terms of engineering road features, the
preprocessing techniques we employ are as follows: for each type of road, we
calculate the distance from the current cluster to the nearest road, the total
number of roads, and the total road length for each cluster.

Satellite Imagery Data & Preprocessing
High-definition satellite image data is the most used geospatial data with

the most stable acquisition channels in Poverty Mapping researches. We use
the Google Static Maps API to obtain satellite images of clusters in rural areas
within a radius of 0.5-5 km, and satellite images of clusters in urban areas within
a radius of 0.5-3 km. To support this study, we prepared a total of 77960 images
for download with a zoom level of 17, a scale of 1, and a pixel resolution of about
1.25 meters. And after matching it with the area covered by a single data point
of nighttime light data, typically each image can cover a land area of 0.25 km.

The Night Light (NTL) data we use is from the 2019 Visible Infrared Imag-
ing Radiometer Suite Day/Night Band Dataset(VIIRS DNB). The VIIRS DNB
dataset has a nighttime luminance resolution of 15 arcseconds, and contains
geophotometric data on the ground at continuous photometric levels from 0 to
122. It can be used with Satellite or by calculating statistics (for example, night-
time light intensity within 1x1 square kilometers around the area) as tabular
features. In this study, we choose the latter.

To more fairly demonstrate the efficiency of our proposed framework, align
with most Poverty Mapping methods, we deploy the trained open-source VGG16
model accepting 400 × 400 pixel images. Further, we augment the data with
random horizontal mirroring and use 30% dropout on the convolutional layers
instead of the fully connected layers. Finally, we start to fine-tune the entire net-
work using the Adam optimizer, and get a preliminary 3200-dimensional imagery
embeddings.

Wiki Text Data & Preprocessing
In terms of text encoding, we completely follow the preprocessing scheme of

MMPM [15]. We use the pre-trained Doc2vec model open sourced by Genism to
encode text data from about 1.2K articles. In terms of parameters, we set the
Windows Size as 8, and obtain a 400-dimensional text embeddings.

Labeling: Demographic and Health Survey Indicator
In this poverty mapping study, we use the Resident Wealth Index (DHS-WI)

published by the International Population and Health Organization as a depen-
dent variable indicator to measure the poverty level of the clusters. Through
past researches [16], scholars from various countries have widely recognized that
DHS-Program data can be used as the basic fact for constructing indicators to
measure social economic activities.

DHS-WI is a comprehensive wealth measurement index constructed by DHS
Program officials based on its surveys. In the existing work [23], the researchers
proved that the DHS-WI indicator has a strong correlation with the international
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wealth index [10](IWI, a common set of asset weighting calculations which is
widely accepted as a measure of wealth index or poverty level, and is difficult to
be calculated ).

Eventually, the representations of our pre-trained multi-modal features
(tabular-categorical features, image embeddings, text embeddings) can be writ-
ten as F ∈ Rn×df , I ∈ Rn×dI , T ∈ Rn×dt , which is the inputs of CGPM.

4 Methodology

Framework: Figure 1 demonstrate the architecture of CGPM, which is the
core algorithm of our proposed A.I. poverty mapping module based on cross-
modality integration and graph structure learning (social network generating).
We firstly construct a cross-modality feature transformer based on the cross-
modality attention mechanism in order to implement the cross-modal feature
transformation and integration. In the social network generating module, we
generate multiple feature-based candidate macroscopic social network structure
graphs. Furthermore, we jointly train the integrated representations, the gen-
erated social network structure (parameterized), and the semantic embedding
(relation embedding, parameterized) of each graph structure under the task,
eventually achieve/conduct? the high-precision poverty mapping.

Fig. 1. Framework of CGPM

4.1 Cross-modality Feature Integration

The motivation of the Cross-modality Feature Integration module is to utilize
the features from other source modalities to achieve the augmentation and sup-
plementation of the target modality [11]. Therefore, we deploy a multi-head
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Fig. 2. Structure of Cross-Modal Transformer

cross-modality transformer to achieve the integration of multi-modal informa-
tion of clusters to be mapped.

Note that we use Image as the target modality in our discussion. While in
the model architecture, all source modalities will be treated as target modal-
ity separately. In the computation of each channel of multi-head cross-modality
attention, we construct an attention matrix, then obtain the transferred repre-
sentations of features from source modalities, that can be written as:

XAttT
F,I =MulH

(
σ

(
(IWQI

)
T
(FWKF

)√
dk

)
(FWVF

)
T

)
(1)

Where WQI
∈ RdI×dk , WKF

∈ Rdf×dk and WVF
∈ Rdf×dk denotes the

weighted parameter matrix of cross-modality attention. σ(·) is defaulted to a
softmax activation function. MulH(·) is a multi-head function. XAtt

F,I ∈ Rn×dk

is the output of multi-head cross modality attention. We added residual connec-
tions into the calculation of the mapping and deployed position-wise feed-forward
to form a complete cross-modality transformer, which is written as:

XCM
F,I = conv 1d

(
XAtt

F,I

)
+ relu

(
XAtt

F,IW
F,I
1 + bF,I

1

)
WF,I

2 + bF,I
2 (2)

Where conv 1d(·) is a 1-dimension convolutional layer deployed to adjust the
residual dimension, and others are the formulation description of the positionwise
feed-forward networks. XCM

F,I denotes the output of the cross-modal transformer
about the transition from the source modality of discretized tabular features to
the target modality of the image embedding. Eventually we set an attenuation
coefficient to fuse the cross-modality information with the original information
of the target modality, which is:

XI = αI + (1− α)
(
αadXCM

F,I +
(
1− αad

)
XCM

T,I

)
(3)

αI and αad
I are settable attenuation coefficients. XCM

T,I denotes the output of
the cross-modality module on the transition from text-modality features to the
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image modality. In the calculation process of the entire cross-modality trans-
former, the BatchNorm operation is deployed in each specific layer. Since it is
a conventional optimization method, it is omitted from the formula descrip-
tion. Considering that our data source has three different modalities: Imagery,
Text, and (tabular/categorical) Feature, we need to deploy 6 parallel channels
of multi-head cross-modality transformers.

Finally, we concatenate integrated embeddings of the three target modalities,
which is written as:

X = concat (XI , XF , Xt) (4)

Where concat(·) denotes a horizontal concatenation operation, X denotes
the integrated cross-modality feature representation of clusters that we expect
for the multimodal knowledge fusion process.

4.2 Feature-based Macroscopic Social Network Mining &
Generating Module

The core function of this module is to generate the underlying macroscopic social
network structure and optimize the feature representation of clusters(referred
as nodes) using the learned graph structure. For nodes with high-dimensional
features, inspired by Graphformer[25], we deploy the spatial encoding of the
transformer layer to extract the global information of latent interactions, then
generate candidate graphs to embed each cluster into high-dimensional space of
underlying Macroscopic social networks, which can be written as:

Gr
i,j = σ

((
xiW

Q
r

) (
xjW

K
r

)T
√
d

)
(5)

Where WQ
r ,W

K
r ∈ Rdk×dg denotes weighted parameter matrices of the spa-

tial coding, Gr ∈ {Gr}Rr=1 denotes the r-th generated graph of the underlying
social networks. (In order to modeling multiple semantics of interactions in social
networks, we project to obtain |R| candidate graph in total) Meanwhile, consid-
ering the assumptions of social networks that linkages tend to exist between pair-
wise nodes with significant homogeneity, we implement a H-head multi-channel
metric-based approach to compute the similarity of features/embeddings of pair-
wise nodes using a cosine kernel function as a weight for candidate edges, which
is:

Sr
i,j =

1

|H|

Hr∑
h

cos
(
wr,h

s � xTi , wr,h
s �XT

j

)
(6)

While elements of wr,h
s ∈ Rdk represent the importance of features in the

measurement of similarity.
Eventually, we integrate the spatial encoding graph and node similarity graph

by a structure propagation operation, and to augment the representation of
underlying macroscopic social networks among clusters, which is

Ãr = spar (σ ((ηgG
r + (1− ηg) I) (ηsSr + (1− ηs) I)) , ε) (7)



Poverty Mapping with Multi - modality and Social Network Mining 9

While ηg, ηs denote restriction coefficients of the propagations. spar(·) is a
sparsification function that enhances the sparsity of learned graph structure
through dropping elements smaller than ε.

{
Ã1, . . . , ÃR

}
describes the gener-

ated underlying macroscopic social network obtained by CGPM. Furthermore,
we initially distribute a semantic embedding gr for each candidate graph/social
network (defined as basis vectors or obtained by random walk). We compute
node-level message passing[5, 20] under the precondition of considering the het-
erogeneous semantics of the underlying social networks, which is:

x
(l)
i = σ

 ∑
(j,r)∈N (i)

Ar
i,jW

r,(l)T
mp

(
x
(l−1)
j � g(l−1)r

)
+ h

(
x
(l−1)
i

) (8)

Where l represents the depth of the message passing layer (deployed as a
spatial graph convolutional layer), � denotes a composition multiply operation,
N (i) represents the set of clusters that have any social network structural con-
nection with the cluster i under various semantics. h(·) and g

(l)
r = W

(l)
relg

(l−1)
r

both denote a dimension alignment operation.
Eventually, the loss function of CGPM can be written as:

Ltask = Lrmse

(
X logit , Y

)
+ λLreg

(
X(l), {Ar}Rr=1

)
(9)

While Lrmse(·) denotes a standard RMSE loss function and Lreg(·) denotes
a constraint function that prevents over-smoothing the vector representation of
nodes and the learned macroscopic social network from being excessively dense.

4.3 CGPM-WS: for Weak Supervised Learning

Pseudo Labeling technology is the current solution to alleviate the challenge
of excessive weak supervision in poverty mapping. Unlike existing general so-
lutions which pseudo labels generated by other sub-models provide pseudo la-
beling refinement for CNNs(not mentioned previously), our proposed framework
CGPM-WS is discussed as follows:

Cold-start Stage:We train 50 iterations of CGPM to obtain cross-modality
integrated representations, as well as the parameters of each layer. Subsequently,
CGPM-WS (Weak Supervision System) starts. The Cross-modality Transformer
module (Paragraph 4.1) will be supplemented with the MLP(not mentioned pre-
viously layer and downstream tasks and moved to theC area (Cross-modality
Embedding Area), and the Macroscopic Social Network Mining module (Para-
graph 4.2) will be moved to theG area (Social Networks Generating Area).
Meanwhile, CGPM-WS includes an F area (Feature-based Model Area).

F Area: Take OSM data, and the features obtained from statistical descrip-
tion and artificial feature engineering of nightlight image and text data as inputs,
construct LightGBM model (Adaboost’s ensemble mode) for only DHS-WI la-
beled clusters. Furthermore, only when the first generation of the framework is
executed, LightGBM will make predictions for all clusters, and select clusters
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Fig. 3. Framework of CGPM-WS

whose predictions are the closest to the output of the pre-training, then utilize
the predictions as pseudo labels, so that the proportion of labeled clusters can
be supplemented to 15%. In all iterations of the system, 15% (ground-truth+
pseudo) will be input into the Macroscopic Social Network Generating module
as estimated labels. In addition to the cross-modality representation output by
the Cross-modality Integration Module, we concatenate the Tree Categorical
Embedding (Pred_leaf parameter) output by LightGBM with it to complement
the discretized tabular features.

G Area: We train the Social Networks Generating Module with received
labels and features. The output will be submitted to the C area as the Refinement
Label. After completing all training epochs, the output of the G Area is applied
to draw the poverty map.

C Area: We directly connect MLP layers, Refinement Labels and standard
loss functions to the downstream of the Cross-modality Transformer Module
to obtain the updated features embedding of the sampled clusters. We weight
and fuse the embedding vector on the Cross-modality Transformer side with the
corresponding part of the node representation in the G area at a decay rate of 0.1,
and submitted this embedding vector output from one layer of the MLP layers?
(the second layer was selected in the experiment) to the F area. , concatenate
with the features of the F area to provide a more informative representation for
the LightGBM model.

Residual Transmittal: In early iterations of training, we make a residual
between the output of the current round and the output of the previous round
of the ground-truth labeled clusters and input the residual into the F area. The
F area utilize the residual as labels, and take all the feature vectors received in
this area as the input to append an additional LightGBM sub-model. When the
F area provides estimated labels to the G area, the output is the summation of
the prediction of all LightGBM sub-models.

Meanwhile, we emphasize/conclude? that CGPM-WS is a specialized model
suitable for typical weak supervised environment.
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5 Experiment

5.1 Implementation Details:

We select six representative developing countries in southern Asia and Africa as
the experimental subjects: the Philippines(PHL), India(IND), Bangladesh(BAN),
Tanzania(TZA?), Uganda(UGA), and Nigeria(NGA). The statistics of the sam-
ple points we collected and used in the experiments are shown in Table 1. For
baselines, we choose TMPM [19] (transferable model modeled with satellite im-
ages and OSM data), WI-MMPM [15] (the most recognized end-to-end multi-
modal model, short for MMPM or WIPM) and HEPM [10] (specialized poverty
estimation framework for weakly supervised learning), the above three methods
are the most representative open source baselines.

For parameters, we set αI and αad
I as 0.8, 0.5. The depth of Cross-modal

Transformers and Message Passing are both set to 2. ε = 0.1, H = 4, |R| = 5 to
ensure fair evaluation, the linear layer depth of all models is set to 2.

Table 1. Clusters in our Experiment.

PHL BAN IND NGA UGA TZ
Total 9970 8705 33076 23649 10700 8935

Labelled 1213 600 2058 1681 1011 1044
Precisely Geolocated 6488 5729 8914 11057 5163 5597

Fig. 4. Satellite data

5.2 Evaluation

Following previous research, we measured the coefficient of determination (R-
squared) between the estimated wealth index of the model and the observed
wealth index in the recent 5-year DHS surveys. The R-squared can be inter-
preted as the proportion of the variance for the observed wealth index that is
explained by the estimated wealth index. Although the R-squared does not rep-
resent the accuracy of prediction precisely, it conveys a degree of performance in
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an intuitive way. Compared to RMSE, R-squared can be derived from economet-
rics showing whether our estimated index can be used to replace the DHS-WI
index for relevant empirical research.

In the experimental setting, we set up three groups:
1) In the Semi-Supervised Group, 50% of the clusters are labeled (containing

all labeled data points we have). We use 80% labeled clusters as a training set,
10% labeled clusters as a validation set, and 10% labeled and other unlabeled
clusters as de facto validation set.

2) In the Weakly-Supervised Group, 8%-18% of the clusters are labeled (con-
tains all the labeled data points we have, since the number of unlabeled data
points varies, this ratio fluctuates between 8%-18%). We use 80% labeled clus-
ters as training set, 10% labeled clusters as validation set, and 10% labeled and
other unlabeled clusters as de facto validation set.

3) Cross-National Group: the experimental group which is to verify the gener-
alization performance of our proposed method. In this group, we use the Philip-
pines as the training set, transfer the trained model to other countries, and
verify the performance. In CGPM and CGPM-WS, since the Macroscopic Social
Network cannot be migrated, during the training process, we merge the target
country and the Philippine clusters as the input, while using the labeled Philip-
pine clusters as the training set and the validation set, the target country as the
test set, thus to fairly evaluate the generalization of the model.

Table 2. Comprehensive Evaluation.

Performance Evaluation: Metric: Mean Pearson’s R-square + Values Deviation
PHL BAN NGA UGA TZ IND

Semi-Supervised Group: Labeled Ratio: 50%
TMPM 0.679±0.004 0.713±0.017 0.641±0.004 0.732±0.026 0.68±0.009 0.627±0.01
MMPM 0.715±0.011 0.74±0.006 0.675±0.002 0.717±0.009 0.765±0.005 0.695±0.006
HEPM 0.73±0.007 0.726±0.003 0.626±0.001 0.768±0.011 0.669±0.013 0.633±0.006
CGPM 0.824±0.005 0.78±0.002 0.737±0.004 0.793±0.003 0.775±0.007 0.764±0.001

Weakly-Supervised Group: Labeled Ratio: 10-20%
TMPM 0.656±0.019 0.593±0.017 0.597±0.016 0.674±0.021 0.64±0.011 0.639±0.033
MMPM 0.732±0.024 0.575±0.022 0.625±0.012 0.665±0.037 0.669±0.009 0.652±0.025
HEPM 0.783±0.009 0.718±0.006 0.682±0.008 0.721±0.009 0.683±0.006 0.707±0.011
CGPM 0.819±0.014 0.705±0.015 0.696±0.008 0.726±0.014 0.705±0.005 0.716±0.02

CGPM-WS 0.845±0.005 0.759±0.003 0.731±0.005 0.773±0.012 0.724±0.002 0.748±0.017
Semi-Supervised Cross National Experiment on

Cross-Modality Feature Integration Training (on PHL)
TMPM / 0.691±0.016 0.476±0.031 0.575±0.024 0.557±0.016 0.598±0.006
MMPM / 0.713±0.028 0.569±0.029 0.668±0.035 0.541±0.02 0.622±0.014
HEPM / 0.699±0.009 0.413±0.025 0.585±0.018 0.462±0.013 0.617±0.022
CGPM / 0.747±0.013 0.63±0.01 0.692±0.004 0.575±0.007 0.709±0.008

The results of the evaluation are reported in Table 2, from which we have
the following observations: (a): In the Semi-Supervised Group, the multimodal
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end-to-end approach significantly outperforms the multimodal model ensemble
method, while the performance improvement ratio is as high as eight percentage
points. At the same time, CGPM significantly outperforms all other baseline
methods in all country experiments, with an average advantage of about 6 per-
centage points. And considering the setting in this experiment, each module of
our CGPM uses a lightweight deployment scheme, implying that there is still
considerable room for improvements in the performance of CGPM. (b): In the
Weakly-Supervised Group, the weakly supervised learning methods are signifi-
cantly more suitable for this experimental setting. Both TTMPM and MMPM
suffer a large performance loss, while HEPM and CGPM-WS based on CGPM
improvement expands the performance advantage by about 5 percentage points,
compared to the previous set of experiments. Among them, CGPM-WS out-
performs the baseline schemes in all countries and has higher stability. (c) Our
proposed CGPM exhibits good generalization performance and stability beyond
the baselines in all multinational experiments. According to the experimental
results, the effect of transnational migration experiments is relatively good be-
tween countries in the same geographic region or countries(effect is good?) with
similar economic patterns and social development levels. Considering the perfor-
mance and the stability in the three sets of experiments, CGPM is more suitable
for poverty mapping deployed in countries with highly complex socioeconomic
environments (Philippines, Bangladesh, and India).

In order to visually demonstrate the accuracy and stability of CGPM, we
calculate the average of the model’s prediction results for the residential areas
by province in the Philippines and displayed it in Figure 5. From this, we can
conclude that the accuracy of TMPM is slightly insufficient, MMPM has an
overall shift in the predicted value, and the prediction result of CGPM is the
closest to the Ground Truth(not mentioned previously or you used another term
in the previous text) and has the highest accuracy.

Fig. 5. Case Visualization, Philippines

Meanwhile, to demonstrate the advantages of CGPM-WS over CGPM in the
weakly supervised learning domain, we run the CGPM and CGPM-WS models
in the Weakly-Supervised Group respectively, and present them in the form of
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scatter plots in Figure 6. The visualization results show that CGPM-WS has
higher accuracy in general, and the number of sample points with excessive
prediction bias is significantly less than that of CGPM.

Fig. 6. Case Visualization for Weakly Supervised Learning, Bangladesh (Ground
Truth, CGPM, CGPM-WS)

5.3 Ablation Study

In this section, we will verify the validity of each module of CGPM and CGPM-
WS. Therefore we set reduction models CGPM-C, CGPM-N, CGPM-WS-C,
CGPM-WS-N, which respectively remove the Cross-modality Feature Integra-
tion module, Feature-based Macroscopic Social Network Mining & Generating
module from CGPM and CGPM-WS. Specifically, for CGPM-C, and CGPM-
WS-C, we deploy a horizontal concatenation operation as the replacement of
the margin. For CGPM-C, and CGPM-WS-C, we additionally deploy a 2-depth
MLP layer for the output of Cross-modality Feature Integration module, as the
connection with loss function.

Experimental Result in Figure 7 demonstrates the Social Network Generating
module has significant effectiveness in countries with complex social structure,
high degree of modernization, large population, frequent and prosperous eco-
nomic activities. One possible reason is that there are numerous and important
underlying macro-social network structures among the clusters in such coun-
tries, and they have interrelated socioeconomic effects that cannot be neglected.
The Cross-modality Feature Integration module can stably improve the model
performance in all countries, which means that modeling with knowledge-fused
multimodal data will hopefully become a beacon for future poverty mapping
research.

6 Conclusion

In this paper, we propose an end-to-end Poverty Mapping framework, CGPM,
which is ahead of the academic frontier. CGPM innovatively realizes the cross-
modal transformation and integration of multimodal data in this field, as well
as the mining of underlying macroscopic social network structure, thus to opti-
mize the representations of clusters. Meanwhile, we propose a variant of CGPM,
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Fig. 7. Ablation Study

CGPM-WS, to specialize to overcome the weakly supervised learning challenges
commonly found in Poverty Mapping. Extensive experiments demonstrate that
CGPM and CGPM-WS significantly outperform the current baselines, and show
more promising research prospects.
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