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Abstract. Nowadays, the data collected in physical/engineering sys-
tems allows various machine learning methods to conduct system mon-
itoring and control, when the physical knowledge on the system edge
is limited and challenging to recover completely. Solving such problems
typically requires identifying forward system mapping rules, from system
states to the output measurements. However, the forward system iden-
tification based on digital twin can hardly provide complete monitoring
functions, such as state estimation, e.g., to infer the states from measure-
ments. While one can directly learn the inverse mapping rule, it is more
desirable to re-utilize the forward digital twin since it is relatively easy
to embed physical law there to regularize the inverse process and avoid
overfitting. For this purpose, this paper proposes an invertible learning
structure based on designing parallel paths in structural neural networks
with basis functionals and embedding virtual storage variables for infor-
mation preservation. For such a two-way digital twin modeling, there is
an additional challenge of multiple solutions for system inverse, which
contradict the reality of one feasible solution for the current system. To
avoid ambiguous inverse, the proposed model maximizes the physical
likelihood to contract the original solution space, leading to the unique
system operation status of interest. We validate the proposed method
on various physical system monitoring tasks and scenarios, such as in-
verse kinematics problems, power system state estimation, etc. Further-
more, by building a perfect match of a forward-inverse pair, the proposed
method obtains accurate and computation-efficient inverse predictions,
given observations. Finally, the forward physical interpretation and small
prediction errors guarantee the explainability of the invertible structure,
compared to standard learning methods.

Keywords: Inverse system identification - Invertible neural network -
System edge - System unobservability.

1 Introduction

Monitoring is essential for the sustainable operation of physical systems. How-
ever, physical knowledge may be partially unknown, and sensor measurements
are limited for system identification on the system edges [22,11,19,10]. Such weak
knowledge on the edge challenges traditional monitoring approaches based on
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accurate physical models. To bridge the gap, there are works on machine learning
models using collected data for system identification [1,4,36]. However, although
the data-driven method can mimic the behavior of a physical system, they are
not indeed a digital twin to be used for system operation at any operating point
[5], e.g., at new operating points never happened in the past. The problems
have two causes. One is the lack of physical interpretation, and the other is the
mismatch between forward and inverse mapping. These two are natural proper-
ties when the physical governing function is available. Therefore, it is essential to
build the digital twin with both logical check (consistency of two-way mappings)
and physics for an actual replica of the physical counterpart. This paper looks
into the inverse learning for state estimation that is consistent with the forward
mapping and has physics embedded.

Specifically, an intuitive way for inverse learning is to directly learn the in-
verse mapping rule from collected data in a discriminative manner. However,
it easily causes poor performance due to overfitting. Even worse, the inverse
mapping is usually more complex than the forward. For example, unlike the
physical priors of the forward system model, the inverse model usually does not
have a pre-defined physical form as a reference. Therefore, it is hard to maintain
high accuracy directly using fitting models like deep neural networks (DNNs),
especially in the extrapolation scenario.

Therefore, this paper aims to learn an accurate forward system with physi-
cal regularization while enforcing invertibility. As the prior physical knowledge
is embedded into the forward mapping, the physics will regularize the inverse
process automatically against overfitting in the second. Such an idea has some
similarities to the (variational) auto-encoder [15,25,13,33]. However, the forward-
inverse pair in the auto-encoder is forced by the reconstruction loss instead of the
interoperability. So, the auto-encoder has neither a decoder providing a perfect
inverse nor a physical interpretability. Thus, we would like to build a forward
mapping with physics and inverse the forward DNN if possible.

For invertible transformation, we propose splitting the input variables into
two groups with a swap of DNN links in the forward mapping to invert the for-
ward DNN for system states. Such a method is much better than auto-encoder,
as it can create a perfect pair of encoder and decoder without the approximation
errors in typical auto-encoder [7,8]. Now that we know the principles of designing
invertible DNN, we want to systematically embed physicals with three consid-
erations. First, we aim to embed physical functionals to reveal similar forms as
the physical laws. Second, we aim to embed the physical size of input/output
variables into the functionals. Third, we aim to have a unique solution, since the
current system state is unique no matter how many possible algebraic solutions
there can be according to the mathematical function.

To achieve the first goal, we split the input into a twin set so that we not only
provide all possible candidates as input to the physical DNN to maximize the
physical gains but also preserve the structural requirement of having separated
inputs for the invertible DNN. For the second goal, we propose to add storage
variables into the output of the forward mapping rule. This step is to ensure no
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physical information loss, e.g., when the output of the forward mapping is with
a smaller dimension than the input. But, how to pick up the correct output size
in the forward mapping? The answer is the network size. The minimum number
of states is the network size according to the definition of state estimation.
For the third goal, we will utilize the Bayesian framework and the maximum
likelihood estimation, for which we use the historical indicator to select the
best outcome and avoid the confusion of multiple solutions [18,14]. For example,
Fig. 1 shows the collected data in a power system case. The curves of power
generation, consumption loads, and node voltages indicate the standard data
pattern during system operations. Different quantities stay within the standard
operation limit of physical systems. We incorporate such a pattern in the inverse
learning problems to ensure a feasible solution and physical uniqueness.

The proposed model can be implemented on various physical/engineering
systems for monitoring with unobservability, including manipulator inverse kine-
matics, structural health monitoring of high-rise buildings, position estimation of
robotic system, state estimation of power and water system, etc. [18,14,29,35,32,11,27].
For example, photovoltaic (PV) and electric vehicle (EV) penetrations change
the power distribution system dramatically, where a fast-monitoring tool like
state estimation (SE) is necessary for operation. Nevertheless, it is hard to con-
duct traditional SE due to unavailable power system modeling, and partial ob-
servability [20,6]. Thus, we conduct experiments to demonstrate how the de-
signed invertibility efficiently infers hidden system states of interest and how
the embedded physics in the forward system identification leads to consistently
better performance compared to the state-of-art learning methods.

Our main contributions include 1) designing an invertible system that can
ensure strict consistency between forward and inverse mapping for edge systems
with unobservability; 2) embedding the physical information in the forward map-
ping to indirectly regularize the inverse learning and avoid overfitting so that
the state estimation can be conducted at an arbitrary operating point; and 3)
showing how to embed the physical property comprehensively (functionals and
variable size) so that information won’t get lost due to dimension reduction for
some use cases on the system edge.

2 Related Work

2.1 Solve the Inverse Problem of Physical Systems

It has been a basic task of interest to analyze the inverse process of physi-
cal/engineering system, which is to extract true states from observations for
system operation and control [9,3]. In traditional works, researchers solve such
problems by iterative simulations or algorithms based on models. These meth-
ods typically require prior system knowledge, e.g., solving power flow using the
Newton-Raphson method with a detailed system model and estimating unknown
states using Kalman Filter with system dynamics model [17,30,28,34]. However,
the complete system information can often be unavailable or inaccurate in com-
plex physical/engineering systems, especially on the system edge [22,11,19,10].
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Fig. 1: Example of power distribution system to show the standard data pattern in
spring and summer operations: (Top) generation of system-wide photovoltaics (PVs),
(middle) aggregated commercial and residential loads, and (bottom) average voltage
per unit values.

While traditional methods are limited, some studies propose to leverage machine
learning tools, approximating the (inverse) mapping rule with data observations
[23,35,37,14,26]. However, the data-driven methods either oversimplify the com-
plex physical model or directly use intractable black-box approximation, lack-
ing the interpretability and correctness for system operators to understand and
trust. This calls for an invertible structure for learning the forward and inverse
processes together with one-to-one mapping.

2.2 Enforce Inverse in Representation Learning

For the idea of unifying the forward and inverse learning, we trace back to
the early work in conventional NN inversion that iteratively finds the optimal
solutions [21,31]. However, inverting the highly nonlinear and implicit NN for
optimum is difficult and computationally inefficient. Therefore, the family of rep-
resentation learning uses a similar criterion but approximates inference instead
of extensive optimization iterations. For example, the popular auto-encoders
[15] connect two neural network models in sequence and in symmetry to ap-
proximate the inverse correlation while simultaneously training the forward NN.
Specifically, the auto-encoder minimizes the reconstruction mismatch of inputs
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to enforce an imperfect decoder that approximately inverts the encoder. In fact,
the approximation error is unavoidable so that the true inverse counterpart can-
not be reached in training. Moreover, as both the forward and inverse functions
are black-box models, there is 1) no physical guarantee over implicit learning
and 2) no physical meaning of the quantities in latent space.

In contrast, the flow-based models [7,8] construct a sequence of invertible
transformations as the forward mapping. Compared to auto-encoders, they lever-
age the change of variable theorem to ensure a deterministic inverse of the for-
ward mapping without any approximation. Previous work usually uses such a
model for complex density estimation tasks like image generation, which are
quite different from our target cases. To better represent complex image data,
they map images to latent space with a simple distribution in the forward process
first and then obtain an “easy” inverse. These models are trained by maximizing
the likelihood, in an unsupervised learning manner, to find the solution in a
high-density region, which can be viewed as the inverse of dataset [2]. Though
the models show good performance in image generation, the design has a strong
requirement for splitting the input and output, which is hard to be satisfied fully
in physical systems. Also, the design doesn’t reveal any physical interpretability,
which is necessary for physical system identification. Finally, the design does not
consider the unobservability issue, either. Such problems require a comprehensive
way to embed all possible physics knowledge from different perspectives.

3 Problem Formulation for Two-Way System Monitoring
with Unobservability

Wrist Center

(b)

Fig.2: Example: (a) geometry of the 3-DOF kinematics system in 2D space and (b)
geometry of the 5-DOF kinematics system in 3D space.

The physical system identification is a supervised learning task to recover
the forward system model f in y = f(x), mapping input variables x € X
to output variables y € ). Subsequently, to infer desired states of physical
systems, we aim to find an inverse mapping g : Y — X that satisfies x = g (y) =
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f~Y(y), Yy € Y. For instance, Figure 2 shows the end-effector position of a
robot arm following forward kinematics functions of joint degrees of freedom.
The inverse kinematics is to control the joint motions to reach the desired end-
effector positions. For such a system, system information is usually required
to understand the forward process, e.g., physical function types. When system
information is unavailable, one can use machine learning to approximate the
forward mapping in a data-driven manner. Unlike the forward mapping, state
estimation is another monitoring tool based on inverse learning. However, the
inverse learning process is even harder for problems like (1) hard to embed
physical law, (2) can have multiple solutions, and (3) information loss due to
uneven dimensions between input and output.

To solve these problems, we propose unifying the learning of two-way map-
pings in an invertible system identification. The two-way mappings indicate
learning the forward-inverse pair. Specifically, we aim to learn the function of
inverse mapping = ¢ (y) so that it work in a pair with the forward mapping
y = f (x). Therefore, our goal is to let y = ¢! (z) approximate the analytical
model y = f (x). invertible structure in the approximation model g~ (-) to en-
force an automatic inverse = g (y) for state inference. In this learning process,
we have two major targets: 1) to obtain a forward mapping rule that accurately
approximates the system model and preserves physical interpretation as much
as possible, and 2) to find a perfectly matched forward-inverse pair and estimate
the most possible states under the partially observable scenario.

3.1 Optimization Objectives to Identify Invertible System Model

To reach the first goal, we form an optimization problem to find g~ (-) as close
as possible to the ground truth of the forward model f (). For simple notation,
we represent g~! as hypothesis function h,

N
h* = argmin Y {1 (h(x;),y;), 1
hg%;l(()y) (1)

where H is a predefined class of hypothesis functions, e.g., parameterized neural
networks. Since it is a supervised learning task, ¢;(-) represents the regression
loss function. We use mean square error to measure the mismatch in forward
system model recovery. Moreover, for a perfect match of the two-way mappings,
we follow the reconstruction loss used by auto-encoder,

N

h* = arfiger;ltin;& (zi, A" (R (x2))), (2)

where f5(-) is the square loss and h=! (h(x;)) denotes the reconstructed x; at
the output of inverse mapping.

While the supervised learning loss penalizes errors in point estimates during
training, it can not easily bypass the ill-conditioned problem for the inverse. For-
tunately, physical/engineering systems have operation standards, as the power
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system example in Fig. 1 shows. Only one solution is feasible to stay within
the operating limits or satisfy specific patterns. To promote physically feasible
solutions as the second target, we leverage the common criterion for statisti-
cal inference. In particular, estimating the probabilistic states x is to maximize
likelihood of the posterior probability density [7], which is

& = argmax p(x|y). (3)

This process is to learn the invertible representation of real dataset. As long as
we design an invertible function hypothesis function h, increasing the likelihood
as in (3) contracts the original output data space to the high-density regions.
Namely, it tends to locate a high-density data region and estimates the states
that stay within the standard operation limit of physical systems

3.2 Virtual Storage Variables to Compensate System
Unobservability

For system identification, the recovery of the forward model is sensitive to the
data availability in the system. Unfortunately, modern physical/engineering sys-
tems are hard to guarantee full observability. Even worse, limited sensors be-
hind the unobservability may lead to information reduction in the forward map-
ping, making inverse mapping with insufficient knowledge. Therefore, we propose
adding virtual storage variables to the output of the forward mapping. All the
input knowledge is preserved in the storage variables in the output of the forward
mapping. For example, we propose using the network size to decide the number
of storage variables. This is because the number of system states indicates the
size of the minimum number of variables in a system that can recreate all the
measurements in the network, according to the definition of state estimation.
And, the number of state variables is typically the same as the network size.
Using these variables will not only preserve information, but also format the
physical units in the latent layer, which is due to a perfect match on the num-
ber of state variables. To exhibit such inherent properties in invertible system
identification, we introduce virtual variables 4’ on the output side. ¢’ is used to
compensate the dimension reduction caused by unobservability while imitating
the hidden quantities for homogeneous units in the final expression.

During training, the virtual quantities y’ are generated from simple orthog-
onal random variables, e.g., samples from standard isotropic Gaussian distribu-
tions. We observed that, compared to directly using Gaussian random variables,
it’s better to update the generation by a parameterized neural network. Specifi-
cally, we convert the virtual variables via a fully-connected NN and update this
NN simultaneously with minimizing the reconstruction error in (2). It can better
compensate for the information loss caused by unobservability. Thus, the inverse
model changes to = g (y,vy’). y’ are independent from observable y and serve
as factorial prior of system uncertainties to estimate the posterior.
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4 Physically Invertible System Identification

I
i
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Fig. 3: Illustrate invertible transformation (top) and the structure of the proposed INN.

4.1 Invertible Transformation

To unify the learning of forward and inverse mappings, the key idea is to provide
an invertible structure for system identification that find a pair of matched map-
pings. Enforcing the inversion of g(-) and g~*(-), we consider change of variables,
shown below. With = g (y,vy’), the change of variables theorem shows

N / 99 (y,y')
py') =p(x —Q(yvy)‘y)|detwf7

’ (4)

99 (y,y') -1
p(zly) = ply')| det =5 = =]
a /
where %S/’yy/) is the Jacobian matrix of function g () at  and det (-) repre-

sents the determinant of Jacobian. (4) serves as the theoretical basis of invertible
function design. And, we need to find easily invertible functions with non-zero
Jacobian determinant.

One intuitive way of invertible design is the linear and addictive function,

e.g., the forward y = ax + b and the inverse z = %y — g. The determinant of
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Jacobian is constant a to ensure invertibility. Motivated by the simple inverse,
we follow the invertible design in [7] to split the multi-variate inputs and outputs
and construct the following transformation unit:

Y1 = a1%1, Y3 = a2T2 + t1(T1), (5)
1 * 1 *

x1=—(y1), T2 = *(yz - tl(xl))y (6)
ay ag

where y* = [y, y'] for simple notation. Similar to the linear and addictive func-
tion, the inverse mapping (6) is easy to derive and the determinant of Jacobian
is ajag. Such a split formula is flexible that the nonlinear functions ¢;(-) can be
arbitrarily complex for representation, without affecting the invertible property.

The unit transforms one part of inputs for invertibility and leaves the other
untouched. To enable complete coupling of all dimensions, we composite several
units and transform each part in turn. We show in the following proposition
1 that more than three compositions are necessary to completely transform all
inputs dimensions and coupling with the output.

Proposition 1. With each transformation unit in (5), more than three compo-
sitions are necessary to completely transform all input dimensions and coupling
with the output.

The proof is intuitive by deriving the Jacobian matrix of the composited invert-
ible functions. For the k*" unit, the Jacobian is

oy ®) oy (k)
&) ) a; 11 0
J. = c’):z:il 8:1:,(_, _ (k) (7)
B gyl gyl | T | 287 (@) a(k)l2 .
2ot oafr| L oal7

For every other layer, the columns exchange due to the in-turn transformation.
Using the chain rule, the Jacobian of the composited function is II;Ji. Only
when k& > 3, the 0’s are eliminated from Jacobian matrix and thus indicate a
full transformation of all dimensions.

Fig. 3 (top) illustrates the invertible transformation. As for the NN structure
in the bottom, with each unit to be invertible, the sequence of composited units
is invertible, and the Jacobian determinant is easily computed for optimizing

(3)-

4.2 Building Invertible NN Structure for Physical Interpretability

The sequence of invertible transformations is trained to maximize the likelihood
of the training data. However, the unsupervised learning manner performs poorly
in generalizing to the out-of-range dataset and reaching global optimum [16].
Furthermore, unlike image density estimation, extrapolation is often the primary
concern in the physical system when new operation points occur and have never
been recorded in the historical data. In such cases, an accurate inverse solution
requires perfect forward mapping learning to recover the governing function of a
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physical system. Thus, we aim to find a hypothesis that not only minimizes the
empirical prediction error (1) but also reveals the underlying analytical function.

However, it is challenging to meet the latter target as any large physical
systems (e.g., power, water, traffic systems) have limited sensor deployment for
full observability. For these cases, we need to simultaneously recover govern-
ing functions in the observable region and approximate hidden correlation in
data whenever physical recovery is impossible. According to [36], we express the
ground truth f(-) in the form y = f () = fi () + f2 () = Wig(x) + f2 (x).
f1(+) denotes the recoverable physical law of the observable, and f>(-) denotes
the mapping regarding the unobservable region. Learning f;(x) only is a sys-
tem identification problem, where ¢(x) are the physical features of specific sys-
tems (e.g., coupling of quadratic and sinusoidal terms for power system) and
Wi represents unknown system parameters to be recovered. To enable physical
interpretability, we embed ¢(x) into the invertible hypothesis function (5). In
this way, the invertible unit can reveal physics and match the underlying model
during learning.

Thus, the proposed invertible NN structure unifies the forward and inverse
mappings. The model is trained by optimizing two loss functions simultaneously
to reach the optimal inverse solution. On one hand, using the supervised learning
loss aims to minimize the mismatch of sample predictions and makes the forward
mapping as close to the governing function as possible. On the other hand,
using the unsupervised learning loss focuses on a high-density region to avoid
ill-conditioned problems in an inverse process. In practice, we observe a trade-off
between the two loss terms. Therefore, a hyperparameter is adopted to balance
the penalization. The hyperparameter is chosen through cross-validation in the
experiments. By training the invertible NN structure, if we find the optimal
forward mapping that reveals physics, we naturally obtain the inverse following
physical laws.

5 Experiments

The proposed invertible NN is applicable for various inverse problems in phys-
ical systems. We validate the algorithm on kinematics systems, power systems,
robotic systems, and high-rise buildings (structural health). The results are sim-
ilar, so we focus on the two most representative systems for in-depth evaluation
with respect to each of the proposed designs. They are the inverse kinematics,
where hidden states follow one-way cascading correlation, and the inverse power
flow, where states yield two-way interactive correlation.

FEvaluation Criteria: Learning the inverse mapping in physical system can be
seen as a regression problem. Therefore, we use the evaluation metric mean
square error (MSE) for state estimation. For the physical system analysis, the
interpretability is essential so that we evaluate by the accuracy of learning system
parameters for the forward system model. The higher the accuracy, the more
reducible is the learned model.
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Baselines: We compare the proposed model with the following state-of-the-
art baselines on learning the inverse system mapping: support vector regres-
sion (SVR) with polynomial kernel or RBF kernel [35], residual neural net-
work (ResNet) [12], variational autoencoder (VAE) to approximate the forward-
inverse pair [15], NICE/RealNVP to learn the invertible transformation [7,8].
The first two methods directly learn the inverse mapping while the other two
methods enforce the inverse model from forward model to obtain inverse so-
lutions [13,37]. In particular, we use the same architecture (depth, width, and
activation) for the NN ¢; (-) in invertible structure, ResNet, and auto-encoder. We
showed previously that at least three invertible units are required to completely
transform all dimensions. Therefore, the depth of NNs is a hyper-parameter se-
lected from 3 — 10 layers in validation, and the width depends on the problem
size of the test system.

The Adam optimizer is used to train NNs for 200 epochs for each experiment,
where we set up a learning rate hyper-parameter set {0.001,0.0002,0.00005},
and momentum parameters $; = 0.5, 85 = 0.999. All the experiments are im-
plemented on a computer equipped with Inter(R) Core(TM) i7-9700k CPU and
Nvidia Geforce RTX 3090 GPU.

Table 1: The prediction errors (MSEx107?) of invertible kinematics system identifica-
tion: the inverse solution and forward mapping recovery.

Joint Angle Forward Model

Case Model

Prediction Prediction
SVR 0.0004 + 0.00 N/A
ResNet 0.001 £ 0.00 N/A

3-DOF VAE 0.001 +0.01 0.0015 £ 0.00
RealNVP  0.0005 £+ 0.00 0.0004 £ 0.00
Proposed INN 0.0002 £+ 0.00 0.0001 £ 0.00

SVR 0.19 £ 0.07 N/A
ResNet 0.124+0.03 N/A
5-DOF VAE 0.10 £ 0.04 0.09 +£0.02

RealNVP 0.08 £0.01 0.04 £0.02
Proposed INN 0.06 & 0.02 0.02 £0.00

5.1 Inverse Kinematics Problem

To test the applicability of the proposed model on physical inverse process, we
start with a basic inverse kinematics problem, where instruments are not fully
equipped to collect all the data. As shown in Figure 2(a), the movement of
end-effectors is determined by multiple degrees of freedom (DOF) chains in the
robotic systems. The manipulator in 2D space moves with the rotations of three
joints (3 DOFs) that connect 4 rigid parts. The task is to find the most likely
joint motions to reach the desired end-effector position. Given the configuration
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of joint angles, the forward kinematics equations describe the motion of the hier-
archical skeleton structure. However, the system parameters, e.g., joint lengths,
are unknown. We aim to identify the possible rotation angles of three joints given
the expected end-effector coordinates. In this case, 1000 different configurations
are sampled for training and random Gaussian noises are added (N(0,0.01)).

For a more complex setup, we consider the manipulator in 3D space with
5 DOFs (Figure 2(b)). The new DOFs in the added dimension are intractable
where measurements of 6, and 65 are unavailable. In this case, we evaluate
the prediction of joint rotations in inverse process. Moreover, we evaluate the
partial recovery of the governing function on observable parts in the forward
system identification. Table 1 compares the numerical results of the proposed
physics-interpretable invertible NN with the baselines.

For the 3-DOF setup, both SVR and the proposed model have good esti-
mation results. Specifically, our physics-interpretable invertible NN outperforms
the original RealNVP due to the physics embedding in the forward mapping.
It can also be verified by the accuracy of system parameter recovery, where the
proposed INN reaches near 100% for this fully observable case. For the 5-DOF
case that has some unobservables, the variational auto-encoder and RealNVP
have much lower errors than the first two models that directly approximate the
inverse process. Although the proposed invertible neural network can not recover
all the system parameters due to the unobservability, it shows a generally lower
error in estimating inverse solution than the original RealNVP.

5.2 Inverse Power Flow Problem: Distribution System State
Estimation

After the demonstration of the basic kinematics problem, we test the proposed
model on more complex and larger systems. Different from the single link in
the manipulator, the standard power system can be seen as a graph with many
internal couplings. The real utility feeder usually has more complex connections
and a larger scale. For an N-node power system, the governing physical law is
the classic power flow equations (PF) [35]. The power system state estimation
(SE) is of great interest for many downstream operation applications [24,37].
Estimating voltage phasor states from standard measurements (e.g., power in-
jections, branch power flows, and current magnitudes) is an inverse process of
power flow analysis. Test feeders IEEE 8- and 123-bus networks, and a utility
feeder (2721 nodes with 371 active ones) are used for experiments, shown as
8-bus, 123-bus, and Utility in Table 2. Since ground truth data is not directly
available, we conduct traditional simulations with one-year real power data (15-
min interval) in MATPOWER [38]. The model information is only available to
prepare the dataset and remains unknown during training. The real-world mea-
surements usually have errors due to communication issues. We add random
Gaussian noise with a 1% — 2% standard deviation to simulate the measurement
errors (as usually used by state estimation). Moreover, we prepare out-of-range
data (3x PV generation and loads) to validate extrapolation capability.
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Table 2: The prediction errors (MSEx1073/p.u.) of power system cases: the inverse
state estimation and the forward power flow mapping.

(a) Testing on the in-range data scenario.

Scenario  Case SVR ResNet VAE RealNVP Proposed INN

8-bus 0.08 £0.02 0.04 £ 0.00 0.03 £ 0.01 0.008 £ 0.00 0.006 =+ 0.00

(In—%]in e) 123-bus 0.21 4+ 0.04 0.17 4+ 0.02 0.13 + 0.03 0.09 £+ 0.01 ' 0.05 = 0.03

8 Utility 0.27 +£0.12 0.23 +£0.05 0.16 £ 0.03 0.13 £0.07 | 0.11 &£ 0.02

PF 8-bus N/A N/A  0.05+0.010.007 £ 0.00 0.002 &£ 0.00

(In-Range) 123-bus N/A N/A 0.11 +0.06 0.06 +£0.03 0.02 4 0.01

8 Utility N/A N/A 0.154+0.01 0.13+£0.02 0.04 4 0.03

(b) Testing on the out-of-range data scenario for extrapolation.

Scenario Case SVR ResNet VAE RealNVP Proposed INN
SE 8-bus 0.14 £0.04 0.09 £ 0.03 0.09 £ 0.02 0.03 £ 0.01 0.009 + 0.00
(Extrapolation) 123-bus 0.29 £+ 0.11 0.22 £ 0.06 0.25 £ 0.02 0.15 £ 0.03  0.07 £ 0.02
P Utility 0.43 +0.19 0.35 4+ 0.02 0.31 4+ 0.09 0.19 + 0.06 0.15 = 0.04
PF 8-bus N/A N/A  0.07£0.03 0.04 £+ 0.02/0.004 =& 0.00
(Extrapolation) 123-bus N/A N/A 0.21+0.030.18+0.07 0.06 & 0.03
P Utility ~ N/A N/A  0.2440.06 0.22 £ 0.05 0.11 = 0.05

The numerical results of estimation are included in Table 2 and Fig. 4 to
compare different methods. As we explained, SE denotes the inverse process
while PF denotes the forward mapping recovery. First, we observe a general
decrease in MSEs for forward-inverse learning methods compared to the direct
inverse learning methods (SVR and ResNet).

While the errors of inverse solutions are small, we look back to the forward
learning. VAE has a relatively poor result as the reconstruction errors cannot
reach zeros in approximation. Although RealNVP naturally has the perfect cor-
respondence to learn an explicit forward, the proposed INN outperforms it by
a large margin for forward mapping recovery. This could also be explained by
the ablation study of our proposed model. For the observable region, the gov-
erning PF function can be recovered by the proposed INN. The ablation study
results (Table. 3) demonstrate how physics embedding greatly impacts the for-
ward model recovery. Without physics consistency in learning model, both the
MSEs of inverse estimation and forward output prediction are higher. Further,
the comparison of state estimation given in-range and out-of-range inputs in Fig.
4a and Fig. 4b reveals a better extrapolation capability of the proposed INN.
During the experiments, we observe that, when there is no physics embedding,
increasing the weight of the density estimation loss can lower the MSE slightly.
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Ground Truth SVR ResNet —-—-VAE —=—RealNVP ——Proposed INN

10 20 30 40 50 60 70 80 90
Bus Index

(a) Estimated voltage magnitudes given in-range inputs (generation and load)

Ground Truth SVR ResNet —-—-VAE —=— RealNVP —¢— Proposed INN ‘

0 10 20 30 40 50 60 70 80 90
Bus Index

(b) Estimated voltage magnitudes given out-of-range inputs for extrapolation evaluation.

Fig. 4: Validating estimation results of all the nodes (from feeder head to end) on one
phase of 123-bus system.

6 Conclusion

In this paper, we propose a physics-interpretable inverse learning method to
tackle the challenge of solving the inverse process of physical systems. Rather
than a direct approximation, we unify the forward and inverse learning, and
simultaneously optimize over the pair of mappings. The proposed method takes
advantage of the flexible NN structure and the recent advances in density esti-
mation to guarantee a perfect forward-inverse pair and solve the ill-conditioned
physical systems problem. Moreover, since the generative model has limitations
in the adversarial task of physical system identification, we embed physics into
the invertible structure to enable interpretability and further enforce the inverse
solution following physical laws. Numerical experiments have been conducted
on physical /engineering systems with typical couplings to evaluate the proposed
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Table 3: Ablation study of the proposed invertible neural network.
W /o Physics W /o Virtual
Embedding  Variables
8-bus 0.006 £ 0.00 0.01 £0.00 0.0240.01

Scenario Case Proposed INN

(In—i{]inge) 123-bus 0.05 +0.03 0.08 £0.02 0.07 &+ 0.01

Utility 0.11+0.02 0.154+0.05 0.17+0.03

PR 8-bus 0.002 £ 0.00 0.003 £ 0.00 0.002 + 0.00

(In-Range) 123-bus 0.02+0.01 0.05+0.02 0.02+0.01

Utility 0.04 £0.03 0.154+0.06 0.05%+0.02

SE 8-bus 0.009 4+ 0.00 0.04 £0.01 0.04 £ 0.00

(Extrapolation) 123-bus 0.07 +=0.02 0.13+0.05 0.16 £ 0.03

Utility 0.15+0.04 0.23+0.03 0.23+0.07

PF 8-bus 0.004 4= 0.00 0.03 £0.02 0.005 =+ 0.00

. 123-bus 0.06 £ 0.03 0.21 +0.05 0.08 +0.02
(Extrapolation)

Utility 0.11+0.05 0.26+0.02 0.1540.04

method. Our model outperforms the baseline methods on both the inverse pro-
cess learning and the forward model recovery and output prediction.
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