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Abstract. Many types of data are generated at least partly by dis-
crete causes. Deep generative models such as variational autoencoders
(VAEs) with binary latents consequently became of interest. Because of
discrete latents, standard VAE training is not possible, and the goal of
previous approaches has therefore been to amend (i.e, typically anneal)
discrete priors to allow for a training analogously to conventional VAEs.
Here, we divert more strongly from conventional VAE optimization: We
ask if the discrete nature of the latents can be fully maintained by ap-
plying a direct, discrete optimization for the encoding model. In doing
so, we sidestep standard VAE mechanisms such as sampling approxima-
tion, reparameterization and amortization. Direct optimization of VAEs
is enabled by a combination of evolutionary algorithms and truncated
posteriors as variational distributions. Such a combination has recently
been suggested, and we here for the first time investigate how it can be
applied to a deep model. Concretely, we (A) tie the variational method
into gradient ascent for network weights, and (B) show how the decoder
is used for the optimization of variational parameters. Using image data,
we observed the approach to result in much sparser codes compared to
conventionally trained binary VAEs. Considering the for sparse codes
prototypical application to image patches, we observed very competi-
tive performance in tasks such as ‘zero-shot’ denoising and inpainting.
The dense codes emerging from conventional VAE optimization, on the
other hand, seem preferable on other data, e.g., collections of images of
whole single objects (CIFAR etc), but less preferable for image patches.
More generally, the realization of a very different type of optimization
for binary VAEs allows for investigating advantages and disadvantages
of the training method itself. And we here observed a strong influence
of the method on the learned encoding with significant impact on VAE
performance for different tasks.
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1 Introduction and Related Work

Objects or edges in images are either present or absent, which suggests the use of
discrete latents for their representation. There are also typically only few objects
per image (of all possible objects) or only few edges in any given image patch (of
all possible edges), which suggests a sparse code (e.g., [43I61120056]). In order to
model such and similar data, we study a novel, direct optimization approach for
variational autoencoders (VAEs), which can learn discrete and potentially sparse
encodings. VAEs [32I51] in their many different variations, have successfully
been applied to a large number of tasks including semi-supervised learning (e.g.,
[40]), anomaly detection (e.g., [33]) or sentence and music interpolation [5lJ52]
to name just a few. The success of VAEs, in these tasks, rests on a series of
methods that enable the derivation of scalable training algorithms to optimize
VAE parameters. These methods were originally developed for Gaussian priors
[32051]. To account for VAEs with discrete latents, novel methodology had to be
introduced (we elaborate below and later in Sec. S1).

The training objective of VAEs is derived from a likelihood objective, i.e.,
we seek model parameters @ of a VAE that maximize the data log-likelihood,
L(©) =3, log (pe(Z ™)), where we denote by (1N a set of N observed data
points, and where po(Z) denotes the modeled data distribution. Like conven-
tional autoencoders (e.g., [1]), VAEs use a deep neural network (DNN) to gen-
erate (or decode) observables & € R, from a latent code Z. Unlike conventional
autoencoders, however, the generation of data & is not deterministic but it takes
the form of a probabilistic generative model. For VAEs with binary latents, we
here consider a generative model with Bernoulli prior:

pe(Z) =TI, (7 (1 = mp) ' =*0), pe(Z]2) = N (% i(Z;W),0%T), (1)

with Z € {0,1} being a binary code, 7 € [0, 1] being parameters of the prior
on Z, and the non-linear function fi(z; W) being a DNN (that sets the mean of
a Gaussian distribution). pg(Z | Z) is commonly referred to as decoder. The set
of model parameters is © = {7, W,02}, where W incorporates DNN weights
and biases. Here, we assume homoscedasticity of the Gaussian distribution, but
note that there is no obstacle to generalizing the model by inserting a DNN
non-linearity that outputs a covariance matrix. Similarly, the algorithm could
easily be generalized to different noise distributions should the task at hand call
for it. Here, however, we will focus on the elementary VAEs given by

For conventional and discrete VAEs, essentially all optimization approaches
seek to approximately maximize the log-likelihood using the following series of
methods (we elaborate in Sec. S1):

(A) Instead of the log-likelihood, a variational lower-bound (a.k.a. ELBO) is
optimized.

(B) VAE posteriors are approximated by an encoding model, i.e., by a specific
distribution (usually Gaussian) parameterized by one or more DNNs.

(C) The variational parameters of the encoder are optimized using gradient as-
cent on the lower bound, where the gradient is evaluated based on sampling



Direct Optimization of Variational Autoencoders With Binary Latents 3

and the reparameterization trick (which allows for sufficiently low-variance
and yet efficiently computable estimates).

(D) Using samples from the encoder, the parameters of the decoder are optimized
using gradient ascent on the variational lower bound.

Optimization procedures for VAEs with discrete latents follow the same steps
(Points A to D). However, discrete or binary latents pose substantial further
obstacles for learning, mainly due to the fact that backpropagation through dis-
crete variables is generally not possible or biased [5312]. Widely used stochastic
gradient estimators for discrete random variables typically either exploit the
REINFORCE [65] estimator in combination with variance control techniques
[ITT1338I34] or reparameterization of continuous relaxations of discrete distri-
butions [29J41]; reparameterization is also combined with REINFORCE [22] or
generalized to non-reparameterizable distributions [8]. Also a recent approach by
Berliner et al. [3] is related to REINFORCE but uses natural evolution strate-
gies (not to be confused with evolutionary optimization we apply here) to derive
low-variance estimates for gradients (also see Related Workl and Sec. S1). While
accomplishing, in different senses, the goal of maintaining standard VAE train-
ing as developed for continuous latents (i.e., learning procedures and/or learning
objectives that allow for gradient-based optimization of the encoder and de-
coder DNNs), gradient estimation methods usually apply significant amounts of
methodology additional to the learning methods conventionally applied for VAE
optimization (see Fig. S2). These additional methods, their accompanying de-
sign decisions and used hyper-parameters increase the complexity of the system.
Furthermore, the additional methods usually impact the learned representations.
For instance, softening of discrete distributions, e.g., by using ‘Gumbel-softmax’
[29] or ‘tanh’ approximations [I8] seems to favor dense codes. While dense codes
(as also used by conventional VAEs and generative adversarial networks [21])
can result in competitive performance for a subset of the above discussed tasks,
other recent contributions point out advantages of sparse codes, e.g., in terms of
disentanglement [63] or robustness [60/45].

In order to avoid adding methods for discrete latents to those already in place
for standard VAESs, it may be reasonable to investigate more direct optimiza-
tion procedures that do not require, e.g., a softening of discrete distributions or
other mechanisms. Such a direct approach is challenging, however, because once
DNNs are used to define the encoding model (as commonly done), we require
methodologies for discrete latents to estimate gradients for the encoder (as done
via sampling and reparameterization; see Points C and D). A direct optimization
procedure, as we investigate here, consequently has to change VAE training sub-
stantially. For the data model of we will maintain the variational setting
(Point A) and a decoding model with DNNs as non-linearity. However, we will
not use an encoding model parameterized by DNNs (Point B). Instead, the varia-
tional bound will be increased w.r.t. an implicitly defined encoding model which
allows for an efficient discrete optimization. The procedure does not require gra-
dients to be computed for the encoder such that discrete latents are addressed
without the use of reparameterization trick and sampling approximations.
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Related Work. In order to maintain the general VAE framework for encoder opti-
mization in the case of discrete latents, different groups have suggested different
possible solutions (for discussion of numerical evaluations of related approaches,
see Sec. S1.3): Rolfe [53], for instance, extends VAEs with discrete latents by
auxiliary continuous latents such that gradients can still be computed. Work
on the concrete distribution [4I] or Gumbel-softmax distribution [29] proposes
newly defined continuous distributions that contain discrete distributions as limit
cases. Lorberbom et al. [39] merge the Gumbel-Max reparameterization with the
use of direct loss minimization for gradient estimation, enabling efficient training
on structured latent spaces (also compare [49/48] for further improved Gumbel-
softmax versions). Furthermore, work, e.g., by van den Oord et al. [44] combines
VAEs with a vector quantization (VQ) stage in the latent layer. Latents become
discrete through quantization but gradients for learning are adapted from latent
values before they are processed by the VQ stage. Similarly, Tomczak & Welling
[62] use, what they call, (learnable) pseudo-inputs which determine a mixture
distribution as prior, and the ELBO then contains an additional regularization
for consistency between prior and average posterior. Tonolini et al. [63] extend
this work and introduce an additional DNN classifier which selects pseudo-inputs
and whose weights are learned instead of the pseudo-inputs themselves. Tono-
lini et al. also argue for the benefits not only of discrete latents but of a sparse
encoding in the latent layer in general. Fajtl et al. [I8] base their approach on a
deterministic autoencoder and use a tanh-approximation of binary latents and
projections to spheres in order to treat binary values. Targeting not only the
optimization of discrete latent VAEs but also more general approaches such as
probabilistic programming or general stochastic automatic differentiation, Bing-
ham et al. [4] and van Krieken et al. [35] apply gradient estimators for discrete
random variables which optimize surrogate losses [54] derived based on the score
function [19] or other methods [35].

2 Direct Variational Optimization

Let us consider the variational lower bound of the likelihood. If we denote by
qgl)(Z) the variational distributions with parameters & = (M), ... &) then
the lower bound is given by:

F(@,0) =3, E o [log (pe (@™ | 2)pe(2))] — 32, E o [1og (¢5(2))], (2)

where we sum over all data points Z("'N) and where ]Eq<n) [h(é’)] denotes the
P

expectation value of a function h(Z) w.r.t. qé,n)(é’). The general challenge for

the maximization of F(®,O) is the optimization of the encoding model qgl).

VAEs with discrete latents, as an additional challenge, have to address the ques-
tion how gradients w.r.t. discrete latents can be computed. Seeking to avoid
the problem of gradients w.r.t. discrete variables, we do not use a DNN for
the encoding model. Consequently, we need to define an alternative encoding
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model qgl), which has to remain sufficiently efficient. Considering prior work on
generative models with discrete latents, variational distributions based on trun-
cated posteriors offer themselves as such an alternative. Truncated posteriors
have previously been considered to be functionally competitive (e.g., [EEI2TI58]).
Most relevant for our purposes are very efficient and fully variational approaches
that allow mixture models [26J17] and shallow generative approaches [14] to be
very efficiently scaled to large model sizes. In all these previous applications,
optimization of truncated variational distributions used standard expectation
maximization based on closed-form or pseudo-closed form M-steps available for
the shallow decoder models considered. In the context of VAEs with discrete
latents, the important question arising is if or how efficient optimization with
truncated variational distributions can be performed for deep generative models.

Optimization of the Encoding Model. Encoder optimization is usually based on
a reformulation of the variational bound of given by:

F(@.0) =3, B o [log (pe (™ | 2)] - 32, Dk (65 (2):pe(D)].  (3)

For discrete latent VAEs, the variational distributions in are commonly
replaced by an amortized encoding model ¢4 (Z) with a DNN-based parameteriza-
tion. When expectations w.r.t. go(2) are approximated (as usual) via sampling,
the encoder optimization requires gradient estimation methods for discrete ran-
dom variables (cf. and Sec. S1). At this point truncated posteriors
represent alternative variational distributions which avoid gradients w.r.t. dis-
crete latents. Given a data point Z (™, a truncated posterior is the posterior itself
truncated to a subset & of the latent space, i.e., for 7 € A applies:

;. PeZIZ™) _ pe(@™|2)pe(Z)

dp (%) = = e (4)
D pe(Z|EM) Y pe(F|Z)pe()
zred™ 1™

while qgl)(i’) = 0for #¢ ®". The subsets & = {@("N_ are the variational

parameters. Centrally for this work, truncated posteriors allow for a specific al-
ternative reformulation of the bound. The reformulation recombines the entropy
term of the original form with the first expectation value into a single
term, and is given by (see [14126J17] for details):

F(@,0)=) log( Y pe(@™[2)pe(2) ). (5)

7ce™

Thanks to the simplified form of the bound, the variational parameters "
of the encoding model can now be sought using direct discrete optimization
procedures. More concretely, because of the specific form of pairwise
comparisons of joint probabilities are sufficient to maximize the lower bound: if
we update the set 3" for a given Z(™ by replacing a state z°d e 3" with a
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state Z"V ¢ @(m’ then F(®,©) increases if and only if:
log (pe (™, 7)) > log (pe (&™), 2°')). (6)

To obtain intuition for the pairwise comparison, consider the form of log(pe (Z, 2))
when inserting the binary VAE defined by |[Eq. (1)l Eliding terms that do not
depend on 2 we obtain:

log pe (7, 2) = —||Z — Z(Z,W)|2 = 202, 7n 2, (7)

where 7, =log ((1 — ) /ﬂ'h). The expression assumes an even more familiar
form if we restrict ourselves for a moment to sparse priors with m, =7 < %, ie.,
7p, =7 > 0. The criterion defined by [Eq. (6)| then becomes:

Hi,»(n) _ ﬂ(gneW,W)”Q + 20_27} |2new‘ < Hf(n) _ ﬂ(EOId,W)HZ + 20’277(‘ |201d‘,

(8)
where || = Zthl 2z, and 2 027 > 0. Such functions are routinely encountered in
sparse coding or compressive sensing [16]: for each set 45("), we seek those states
7 that are reconstructing Z () well while being sparse (Z with few non-zero bits).
For VAEs, fi(Z,W) is a DNN and as such much more flexible in matching the
distribution of observables Z than can be expected from linear mappings. Fur-
thermore, criteria like usually emerge for maximum a-posteriori (MAP)
training in sparse coding [43]. In contrast to MAP, however, here we seek a

population of states zZ' in " for each data point. It is a consequence of the
reformulated lower bound defined by that it remains optimal to evaluate
joint probabilities (as for MAP) although the constructed population of states

3" can capture (unlike MAP training) rich posterior structures.

Evolutionary Search. But how can new states Z"°V that optimize 3" be found
efficiently in high-dimensional latent spaces? While blind random search for
states Z' can in principle be used, it is not efficient; and adaptive search space
approaches [26/17] are only defined for mixture models. However, a recently sug-
gested combination of truncated variational optimization with evolutionary op-
timization (EVO; [14]) is more generally defined for models with discrete latents,
and does only require the efficient computation of joint probabilities pg (&, ). It
can consequently be adapted to the VAEs considered here.

EVO optimization interprets the sets 3" of Eq. as populations of binary
genomes z, and we can here adapt it by using in order to assign to each
7¢ ¢ afitness for evolutionary optimization. For the concrete updates, we use
for each EVO iteration " as initial parent pool. We then apply the following
genetic operators in sequence to suggest candidate states 2"V to update the
@ based on (see Fig. S3 for an illustration and Sec. S1.2 and [I4]
for further details): Firstly, parent selection stochastically picks states from the
parent pool. Subsequently, each of these states undergoes mutation which flips
one or more entries of the bit vectors. Offspring diversity can be further increased
by crossover operations. Using the children generated this way as the new parent
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pool, the procedure is repeated giving birth to multiple generations of candidate
states. Finally, we update " by substituting individuals with low fitness with
candidates with higher fitness according to The whole procedure can
be seen as an evolutionary algorithm (EA) with perfect memory or very strong
elitism (individuals with higher fitness never drop out of the gene pool). Note
that the improvement of the variational lower bound depends on generating as
many as possible different children with high fitness over the course of training.

We point out that the EAs optimize each " independently, which allows
for distributed execution s.t. the technique can be efficiently applied to large
datasets in conjunction with stochastic or batch gradient descent on the model
parameters ©@. The approach is, at the same time, memory intensive, i.e., all sets
@ need to be kept in memory (details in Sec. S1.1). Furthermore, we point out
the we here optimize variational parameters " of the encoding model which
is fundamentally different from the approach of Hajewski & Oliveira [24] (who
use EAs to optimize DNN architectures of otherwise conventionally optimized
VAEs with continuous latents).

model qé, )( Z), we can compute the gradient of [E

W which results in (see Sec. S1 for details):

VwF(@,0)= — 5> Y &) Vw|z™ — @z w)|? 9)

n ~€q5(n)

Optimization of the Decoding Model. Using the previously described encoding
jw.r.t. the decoder weights

The right-hand-side has salient similarities to standard gradient ascent for VAE
decoders. Especially the familiar gradient of the mean squared error (MSE) shows
that, e.g., standard automatic differentiation tools can be applied. However, the

decisive difference is represented by the weighting factors qén) (2). Considering

m we require all 7 € 3" to be passed through the decoder DNN in order
to compute the q(")( 7). As all states of 3" anyway have to be passed through
the decoder for the MSE term of - the overall computational complexity
is not higher than an estimation of the gradient with samples instead of states
in ¢ (but we use many states per sl’)(n), compare Tab. S1).

To complete the decoder optimization, update equations for variance o2 and
prior parameters 7 can be computed in closed-form (compare, e.g., [57]) and are
given by

=2 Y V@) 1™ - aE w2,

n E@(”)
=LY Y ez
n ZE¢(71)

The full training procedure for binary VAEs is summarized in [Alg. 1] We refer
to the binary VAE trained with this procedure as Truncated Variational Autoen-
coder (TVAE) because of the applied truncated posteriorsﬂ

(10)

! Source code available at https://github.com /tvlearn,
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Algorithm 1 Training Truncated Variational Autoencoders (TVAE)
Initialize model parameters @ = (7T, W, 02)
Initialize each &' with S distinct latent states
repeat
for all batches in dataset do
for sample n in batch do
pnew — ¢(")
for all generations do

@"°V = mutation (selection ($"°V))
) )

O =D UV
end for
Define new &'’ by selecting the S fittest elements in 3" using
end for
Use Adam to update W using [Eq. (9)
end for

Use [Eq. (10)|to update 7, o2

until parameters © have sufficiently converged

3 Numerical Experiments

TVAE can flexibly learn prior parameters 7, and if low values for the m, are
obtained (which will be the case), the code is sparse. The prototypical application
domain to study sparse codes is image patch data [43J20]. We consequently use
such data to investigate sparsity, scalability and efficiency on benchmarks. For
all numerical experiments, we employ fully connected DNNs ji(z; W) for the
decoder (compare Fig. S4); the exact network architectures and activations used
are listed in Tab. S1. The DNN parameters are optimized based onusing
mini-batches and the Adam optimizer (details in Sec. S2.1).

Verification and Scalability. After first verifying that the procedure can recover
generating parameters using ground-truth data (see Sec. S2.2), we trained TVAE
on N = 100,000 whitened image patches of D = 16 x 16 pixels [25] using
two different decoder architectures, namely a shallow, linear decoder with H =
300 binary latents, and second, a deep non-linear decoder with a 300-300-256
architecture (i.e., H = 300 binary latents and two hidden layers with 300 and 256

units, respectively; details in Sec. S2.3). For both linear and non-linear TVAE,
we observed a sparse encoding with on average % = % and Z}{m‘ = %
active latents across data points, respectively. We observed sparse codes also
when we varied the parameter initialization and further modified the decoder
DNN architecture. As long as decoder DNNs were of small to intermediate size,
we observed efficient scalability to large latent spaces (we went up to H = 1,000).
Compared to linear decoders, the main additional computational cost is given by

passing the latent states in the 3" sets through the decoder DNN instead of just

through a linear mapping. The sets of states (i.e., the bitvectors in 45(71)) could be
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kept small, at size S = @(n)| = 64, such that N x (@(n) |+ |d5r(:;)w|) states had to
be evaluated per epoch. This compares to N x M states that would be used for
standard VAE training (given M samples are drawn per data point). In contrast

to standard VAE training, the sets & have to be remembered across iterations.

For very large datasets, the additional O(N x |Q§<n)
distributed over compute nodes, however.

|x H) memory demand can be

Denoising - Controlled Conditions. Due to its non-amortized encoding model,
the computational load of TVAE increases more strongly with data points com-
pared to amortized training. Consequently, tasks such as disentanglement of
features using high-dimensional input data, large DNNs, and small latent spaces
are not a regime where the approach can be applied efficiently. With this in mind,
we focused on tasks with relatively few data for which an as effective as possible
optimization is required, and for which advantages of a direct optimization can
be expected. As one such task, we here considered ‘zero-shot’ image denoising. To
apply TVAE in a ‘zero-shot’ setting (in which no additional information besides
the noisy image is available, e.g., [59I28]), we trained the model on overlapping
patches extracted from a given noisy image and subsequently applied the learned
encoding to estimate non-noisy image pixels (details in Sec. 52.4). In general,
denoising represents a canonical benchmark for evaluating image patch models,
and approaches exploiting sparse encodings have shown to be particularly well
suited (compare, e.g., [42J68/56]). The ‘zero-shot’ setting has recently become
popular also because the application of conventional DNN-based approaches has
shown to be challenging (see discussion in Sec. S2.4).

One denoising benchmark, which allows for an extensive comparison to other
methods is the House image. Standard benchmark settings for this image make
use of additive Gaussian white noise with standard deviations o € {15, 25,50}
A). First, consider the comparison in C where all models used the
same patch size of D = 8 x 8 pixels and H = 64 latent variables (details in
Sec. S2.4). C lists the different approaches in terms of the standard mea-
sure of peak signal-to-noise ratio (PSNR). Values for MTMKL [61] and GSC
[56] were taken from the respective original publications (which both established
new state-of-the-art results when first published); for EBSC [14], we produced
PSNRs ourselves by running publicly available source code (cf. Sec. S2.4). As can
be observed, TVAE significantly improves performance for high noise levels; the
approach is able to learn the best data representation for denoising and estab-
lishes new state-of-the-art results in this controlled setting (i.e., fixed D and H).
The decoder DNN of TVAE provides the decisive performance advantage: TVAE
significantly improves performance compared to EBSC (which can be considered
as an approach with a shallow, linear decoding model), confirming that the high
lower bounds of TVAE on natural images (compare Fig. S9) translate into im-
proved performance on a concrete benchmark. For ¢ = 25 and ¢ = 50, TVAE
also significantly improves on MTMKL, and GSC, which are both based on a
spike-and-slab sparse coding (SSSC) model (also compare [20]). Despite the less
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A Noisy (0=50) B TVAE Denoising Result D bpiferent Optimized Hyperparameters

o=15 =25 =50
N2Vv* 31.86+.37  29.34+ .37  24.24 + 57
S28 34.86+.13 32.87+.08 29.95+ .26

GSVAE-B  29.39+.02 28324.28 25.73+.14
GSVAE-C  30.94+.17 29.83+.04 26.75+.02
VLAE 34474+ .05  32444.05  29.16 .07

MTMKL 34.29 31.88 28.08
GSC 33.78 32.01 28.35
S5C 33.50 32.08 28.35

EBSC 33.66 .04 32.404.07 28.98 & .06
ES3C 34.90£.04 33.15£.06 29.83+.07
TVAE 34.274+.02  32.65+.06 29.98+.05

C Controlled Conditions Navi 33.91 32.10 98.94

o=15 =25 =50 KSVD 34.32 32.15 27.95

MTMKL 34.29 31.88 28.08 \])\3711\\111:\:]1;1 3{25’ :;g:g :;g:;'?
GSC 32.68 31.10 28.02

EBSC  32.20+.08 31.14+.13 28.50+.12 EPLL 34.17 32.17 29.12

TVAE  34.27+.02 32.65+.06 29.61+.02 BDGAN 34.57 33.28 30.61

DPDNN 35.40 33.54 31.04

Fig. 1. Denoising results for House. C compares PSNRs (in dB) obtained with different
‘zero-shot’ models using a fixed patch size and number of latents (means and standard
deviations were computed over three runs with independent noise realizations, see text
for details). D lists PSNRs for different algorithms with different optimized hyper-
parameters. The top category only requires the noisy image (‘zero-shot’ setting). The
middle uses additional information such as noise level (KSVD, WNNM, BM3D) or
additional noisy images with matched noise level (N2V'). The bottom three algorithms
use large clean datasets. The highest PSNR per category is marked bold, and the
overall highest PSNR is bold and underlined. B depicts the denoised image obtained
with TVAE for o = 50 in the best run (PSNR=30.03 dB).

flexible Bernoulli prior, the decoder DNN of TVAE provides the highest PSNR
values for high noise levels.

Denoising - Uncontrolled Conditions. To extend the comparison, we next eval-
uated denoising performance without controlling for equal conditions, i.e., we
also included approaches in our comparison that use large image datasets and/or
different patch sizes for training (including multi-scale and whole image process-
ing). Note that different approaches may employ very different sets of hyper-
parameters that can be optimized for denoising performance (e.g., patch and
dictionary sizes for sparse coding approaches, or network and training scheme
hyper-parameters for DNN approaches). By allowing for comparison in this less
controlled setting, we can compare to a number of recent approaches includ-
ing large DNNs trained on clean data and training schemes specifically targeted
to noisy training data. See [Fig. 1|D for an extensive PSNR overview with re-
sults for other algorithms cited from their corresponding original publications
if not stated otherwise. PSNRs for S5C originate from [55], GSVAE-B, EBSC
and ES3C from [I4], and WNNM and EPLL from [67]. For Noise2Void (N2V;
[36]), Self2Self (S2S; [50]), GSVAE-C [29], and VLAE [47], we produced results
ourselves by applying publicly available source code (details in Sec. S2.4). Note
that the best performing approaches in [Fig. 1]D were trained on noiseless data:
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B
56, EBSC (256) TVAE (50-500-500) Model Sparsity Lower Bound PSNR
=y M‘. GSVAE-B (256) b 39.02 25.06
& 7 = GSVAE-B (256-256-512) 1 38.68 25.06
P GSVAE-C ((32x8)-256-512)  n/a 45.66 26.18
EBSC (256) 15 43.85 28.37
TVAE (256-256-512) 2 46.86 29.96
N ingleton Means E— TVAE (50-500-500) 26 47.98 30.03
GSVAE-B (256) - . EBSC 112-1(1) ‘ T\:\I‘_'g(l—.)(#)nﬂl(li — - -
et ___M BNy mNETE VLAE (50-500-500) /s 15.93 28.83
. 46.09 29.69

)

S Bod™2 RN ES3C (256)

Fig. 2. Data encodings and denoising results for Barbara obtained with generative
model approaches and different decoding models. In B, approaches with binary (top)
and continuous (bottom) latents are separated. EBSC and ES3C are considered as using
a shallow, linear decoder. Listed are best performances of several runs of each algorithm.
*VLAE uses importance sampling-based log-likelihood estimation. C compares decoder
outputs for singleton (i.e., one-hot) input vectors. See Sec. S2.4 for details.

EPLL [71], BDGAN [70] and DPDNN [12] all make use of clean training data
(typically hundreds of thousands of data points or more). EPLL, KSVD [I5],
WNNM [23] and BM3D [10] leverage a-priori noise level information (these al-
gorithms use the ground-truth noise level of the test image as input parameter).
As noisy data is very frequently occurring, lifting the requirement of clean data
has been of considerable recent interest with approaches such as Noise2Noise
(N2N; [37]), N2V, and S2S having received considerable attention.

Considering [Fig. 1]D, first note that TVAE consistently improves PSNRs of
N2V, also when comparing to a variant trained on external data with matched-
noise level (N2VT in [Fig. 1/D). At high noise level (¢ = 50), PSNRs of TVAE
represent state-of-the-art performance in the ‘zero-shot’ category (Fig. 1|D, top);
compared to methods which exploit additional a-priori informaD,
middle and bottom), the denoising performance of TVAE (at high noise level) is
improved only by WNNM, BDGAN and DPDNN. At lower noise levels, TVAE
still performs competitively in the ‘zero-shot’ setting, yet highest PSNRs are
obtained by other methods (S2S and ES3C). [Figure 1D reveals that TVAE
can improve on two competing VAE approaches, namely GSVAE (which uses
Gumbel-softmax-based optimization for discrete latents) and VLAE (which uses
continuous latents and Gaussian posterior approximations). For more system-
atic comparison, we applied the VAE approaches using identical decoder archi-
tectures and identical patch sizes (details in Sec. S2.4). As striking difference
between the approaches, we observed GSVAE to learn a significantly denser en-
coding compared to TVAE. Furthermore, we observed that the sparse encodings
of TVAE resulted in strong performance not only in terms of denoising PSNR
but also in terms of lower bounds (see [Fig. 2)).

Inpainting. Finally, we applied TVAE to ‘zero-shot’ inpainting tasks. For TVAE,
the treatment of missing data is directly available given the probabilistic formu-
lation of the model. Concretely, when evaluating log-joint probabilities of a data-
point, missing values are treated as unknown observables (details in Sec. S2.5).
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House 50% Castle 50%  Castle 80% Original 50% missing __Restored
Papyan et al. 34.58 MTMKL n/a 28.94
BPFA 38.02 BPFA 36.45 29.12
DIP 39.16 ES3C 38.23 29.66
ES3C 39.59 TVAE 37.33 28.93
TVAE 38.56 PLE 38.34 30.07
IRCNN n/a 28.74

Fig. 3. Inpainting results for House (50% missing pixels) and Castle (50% and 80%

missing; top group lists ‘zero-shot’ approaches). PSNR for Papyan et al. as reported in

ZhTh 10.56)

[64]. Depicted is TVAE’s restoration for 50% missing pixels (sparsity =&~ = =2

In contrast, amortized approaches need to specify how the deterministic encoder
DNNs should treat missing values. evaluates performance of TVAE
on two standard inpainting benchmarks with randomly missing pixels. Methods
compared to include MTMKL, BPFA [69], ES3C, the method of Papyan et al.
[46], DIP [64], PLE [66], and IRCNN [6]. PLE uses the noise level as a-priori
information, and IRCNN is trained on external clean images. On House, TVAE
improves the performance of Papyan et al. and BPFA; highest PSNRs for this
benchmark are obtained by DIP (which, in contrast to TVAE, is not permuta-
tion invariant and uses large U-nets) and ES3C (which is based on a SSSC model
and EVO-based training). On Castle, PSNRs of TVAE are higher in comparison
to SSSC-based BPFA (for 50% missing pixels) and IRCNN.

4 Discussion

We investigated a novel approach built upon Evolutionary Variational Opti-
mization [I4] to train VAEs with binary latents. Compared to all previous opti-
mizations suggested for VAEs with discrete latents, the approach followed here
differs the most substantially from conventional VAE training. While all other
VAESs maintain amortization and reparameterization as key elements, the TVAE
approach instead uses a direct and non-amortized optimization. Recent work us-
ing elementary generative models such as mixtures and shallow models [I7J14]
have made considerations of direct VAE optimization possible for intermediately
large scales. A conceptual advantage of the here developed approach is its concise
formulation (compare Fig. S2) with fewer algorithmic elements, fewer hyperpa-
rameters and fewer model parameters (e.g., no parameters of encoder DNNs).
Functional advantages of the approach are its avoidance of an amortization gap
(e.g., [30M9]), its ability to learn sparse codes, and its generality (it does not
use a specific posterior model, and can be applied to other noise models, for in-
stance). However, non-amortized approaches do in general have the disadvantage
of a lower computational efficiency: an optimization of variational parameters for
each data point is more costly (Tab. S3). Conventional amortized approaches (for
discrete or continuous VAEs) are consequently preferable for large-scale data sets
and for the optimization of large, intricate DNNs. There are, however, alterna-
tives such as transformers (which can use >150M parameters) or diffusion nets,
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which both are considered to perform more strongly than VAEs for large-scale
settings and density modeling ([7U31I] for recent comparisons).

At the same time, direct discrete optimization can be feasible and can be
advantageous. For image patch data, for instance, we showed that TVAEs with
intermediately large decoder DNNs perform more strongly than Gumbel-softmax
VAEs (GSVAE), and TVAEs are also outperforming a recent continuous VAE
baseline (VLAE; and . The stronger performance of TVAE is presum-
ably, at least in part, due to the approach not being subject to an amortization
gap, due to it avoiding factored variational distributions, and, more generally,
due to the emerging sparse codes being well suited for modeling image patch
data. In comparison, the additional methods to treat discrete latents in GSVAE
seem to result in dense codes with significantly lower performance than TVAE.
Compared to GSVAE, the VLAE approach, which uses standard non-sparse (i.e.
Gaussian) latents, is more competitive on the benchmarks we considered. The
reason is presumably that VLAE’s continuous latents are able to better cap-
ture component intensities in image patches. This advantage does not outweigh
the advantages of sparse codes learned by TVAE, however. If sparse codes and
continuous latents are combined, the example of ES3C shows that strong per-
formances can be obtained to . For the here considered binary latents,
however, a linear decoder (compare EBSC) is much inferior to a deep decoder
(Figs. and S9), which suggests future work on VAEs with more complex,
sparse priors if the goal is to improve ‘zero-shot’ denoising and inpainting. Dense
codes are notably not necessarily disadvantageous for image data. On the con-
trary, for datasets with many images of single objects like CIFAR, the dense
codes of GSVAE and also of VLAE are, in terms of ELBO values, similar or
better compared to TVAE (Tab. S4). The suitability of sparse versus dense en-
coding consequently seems to highly depend on the data, and here we confirm
the suitability of sparse codes for image patches. In addition to learning sparse
codes, direct optimization can have further advantages compared to conventional
training. One such advantage is highlighted by the inpainting task: in contrast
to other (continuous or discrete) VAEs, it is not required to additionally specify
how missing data shall be treated by an encoder DNN (compare Sec. S2.5)

We conclude that direct discrete optimization can, depending on the data and
task, serve as an alternative for training discrete VAEs. In a sense, the approach
can be considered more brute-force than conventional amortized training: direct
optimization is slower but at scales at which it can be applied, it is more effective.
To our knowledge, the approach is also the first training method for discrete
VAEs not using gradient optimization of encoder models, and can thus contribute
to our understanding of how good representations can be learned by different
approaches.
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