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Abstract. It4 has been empirically observed in several recommenda-
tion systems, that their performance improve as more people join the
system by learning across heterogeneous users. In this paper, we seek to
theoretically understand this phenomenon by studying the problem of
minimizing regret in an N users heterogeneous stochastic linear bandits
framework. We study this problem under two models of heterogeneity; (i)
a personalization framework where no two users are necessarily identical,
but are all similar, and and (ii) a clustering framework where users are
partitioned into groups with users in the same group being identical, but
different across groups. In the personalization framework, we introduce
a natural algorithm where, the personal bandit instances are initialized
with the estimates of the global average model and show that, any agent
i whose parameter deviates from the population average by εi, attains
a regret scaling of Õ(εi

√
T ). In the clustered users’ setup, we propose

a successive refinement algorithm, which for any agent, achieves regret
scaling as O(

√
T/N), if the agent is in a ‘well separated’ cluster, or scales

as O(T
1
2
+ε/(N)

1
2
−ε) if its cluster is not well separated, where ε is pos-

itive and arbitrarily close to 0. Our algorithms enjoy several attractive
features of being problem complexity adaptive and parameter free —if
there is structure such as well separated clusters, or all users are similar
to each other, then the regret of every agent goes down with N (collabo-
rative gain). On the other hand, in the worst case, the regret of any user
is no worse than that of having individual algorithms per user that does
not leverage collaborations.

Keywords: Linear bandits · Personalization · Clustering

1 Introduction

Large scale web recommendation systems have become ubiquitous in the modern
day, due to a myriad of applications that use them including online shopping
services, video streaming services, news and article recommendations, restau-
rant recommendations etc, each of which are used by thousands, if not more
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users, across the world. For each user, these systems make repeated decisions
under uncertainty, in order to better learn the preference of each individual user
and serve them. A unique feature these large platforms have is that of collab-
orative learning —namely applying the learning from one user to improve the
performance on another [26]. However, the sequential online setting renders this
complex, as two users are seldom identical [39].

We study the problem of multi-user contextual bandits [6], and quantify the
gains obtained by collaborative learning under user heterogeneity. We propose
two models of user-heterogeneity: (a) personalization framework where no two
users are necessarily identical, but are close to the population average, and (b)
clustering framework where only users in the same group are identical. Both
these models are widely used in practical systems involving a large number of
users (ex. [28, 32, 39, 42]). The personalization framework in these systems is
natural in many neural network models, wherein users represented by learnt
embedding vectors are not identical; nevertheless similar users are embedded
nearby [37,38,45,48]. Moreover, user clustering in such systems can be induced
from a variety of factors such as affinity to similar interests, age-groups etc
[33,38,43].

Formally, our model consists of N users, all part of a common platform. The
interaction between the agents and platform proceeds in a sequence of rounds.
Each round begins with the platform receiving K contexts corresponding to K
items from the environment. The platform then recommends an item to each user
and receives feedback from them about the item. We posit that associated with
user i, is an preference vector θ∗i , initially unknown to the platform. In any round,
the average reward (the feedback) received by agent i for a recommendation of
item, is the inner product of θ∗i with the context vector of the recommended item.
The goal of the platform is to maximize the reward collected over a time-horizon
of T rounds. Following standard terminology, we henceforth refer to an “arm”
and item interchangeably, and thus “recommending item k” is synonymous to
“playing arm k”. We also use agents and users interchangeably.

Example Application: Our setting is motivated through a caricature of
a news recommendation system serving N users and K publishers [27]. Each
day, each of the K publishers, publishes a news article, which corresponds to
the context vector in our contextual bandit framework. In practice, one can use
standard tools to embed articles in vector spaces, where the dimensions corre-
spond to topics such as politics, religion, sports etc ( [44]). The user preference
indicates the interest of a user, and the reward, being computed as an inner
product of the context vector and the user preference, models the observation
that the more aligned an article is to a user’s interest, the higher the reward.

For both frameworks, we propose adaptive algorithms; in the personalization
framework, our proposed algorithm, namely Personalized Multi-agent Linear
Bandits (PMLB) adapts to the level of common representation across users.
In particular, if an agents’ preference vector is close to the population average,
PMLB exploits that and incurs low regret for this agent due to collaboration. On
the other hand if an agent’s preference vector is far from the population average,
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PMLB yields a regret similar to that of OFUL [6] or Linear Bandit algorithms [1]
that do not benefit from multi-agent collaboration. In the clustering setup, we
propose Successive Clustering of Linear Bandits (SCLB), which is agnostic to
the number of clusters, the gap between clusters and the cluster size. Yet SCLB
yields regret that depends on these parameters, and is thus adaptive.

2 Main Contributions

2.1 Algorithmic: Problem complexity adaptive and (almost)
Parameter-Free

We propose adaptive and parameter free algorithms. Roughly speaking, an algo-
rithm is parameter-free and adaptive, if does not need input about the difficulty
of the problem, yet has regret guarantees that scale with the inherent complex-
ity. We show in the two frameworks that, if there is structure, then the regret
attained by our algorithms is much lower as they learn across users. Simultane-
ously, in the worst case, the regret guarantee is no worse than if every agent had
its own algorithm without collaborations.

In the personalization framework, we give PMLB, a parameter free
algorithm, whose regret adapts to an appropriately defined problem complexity
– if the users are similar, then the regret is low due to collaborative learning
while, in the worst case, the regret is no worse than that of individual learning.
Formally, we define the complexity as the factor of common representation, which
for agent i is εi := ‖θ∗i − 1

N

∑N
l=1 θ

∗
l ‖, where θ∗i ∈ Rd is agent i’s representation,

and 1
N

∑N
l=1 θ

∗
i is the average representation of N agents. PMLB adapts to εi

gracefully (without knowing it apriori) and yields a regret of O(εi
√
dT ). Hence, if

the agents share representations, i.e., εi is small, then PMLB obtains low regret.
On the other hand, if εi is large, say O(1), the agents do not share a common
representation, the regret of PMLB is O(

√
dT ), which matches that obtained by

each agent playing OFUL, independently of other agents. Thus, PMLB benefits
from collaborative learning and obtains small regret, if the problem structure
admits, else the regret matches the baseline strategy of every agent running an
independent bandit instance.

The clustering framework considers the scenario when not all users are
identical or near identical. In this framework, the large number of users belong
to a few types, with users of the same type having identical parameters, but
users across types have different parameters. Assuming that all users are near
identical in this setting will not lead to good performance as all users can be far
from the average. We give a multi-phase, successive refinement based algorithm,
SCLB, which is parameter free—specifically no knowledge of cluster separation
and number of clusters is needed. SCLB automatically identifies whether a given
problem instance is ‘hard’ or ‘easy’ and adapts to the corresponding regret.
Concretely, SCLB attains per-agent regret O(

√
T/N), if the agent is in a ‘well

separated’ (i.e. ‘easy’) cluster, or O(T
1
2+ε/(N)

1
2−ε) if the agent’s cluster is not

well separated (i.e., ‘hard’), where ε is positive and arbitrarily close to 0. This
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result holds true, even in the limit when the cluster separation approaches 0. This
shows that when the underlying instance gets harder to cluster, the regret is
increased. Nevertheless, despite the clustering being hard to accomplish, every
user still experiences collaborative gain of N1/2−ε and regret sub-linear in T .
Moreover, if clustering is easy i.e., well-separated, then the regret rate matches
that of an oracle that knows the cluster identities.

Empirical Validation: We empirically verify the theoretical insights on
both synthetic and Last.FM real data. We compare with three benchmarks
—CLUB [18], SCLUB [29], and a simple baseline where every agent runs an in-
dependent bandit model, i.e., no collaboration. We observe that our algorithms
have superior performance compared to the benchmarks in a variety of settings.

2.2 Theoretical: Improved bounds for Clustering

It is worth pointing out that SCLB works for all ranges of separation, which
is starkly different from standard algorithms in bandit clustering ( [17, 18, 23])
and statistics ( [3, 24]). We now compare our results to CLUB [18], that can
be modified to be applicable to our setting (c.f. Section 7) (note that we make
identical assumptions to that of CLUB). First, CLUB is non-adaptive and its
regret guarantees hold only when the clusters are separated. Second, even in
the separated setting, the separation (gap) cannot be lower than O(1/T 1/4) for
CLUB, while it can be as low as O(1/Tα), where α < 1/2 for SCLB. Moreover,
in simulations (Section 7) we observe that SCLB outperforms CLUB in a variety
of synthetic and a real data setting.

2.3 Technical Novelty

The key innovations we introduce in the analysis are that of ‘shifted OFUL’
and ‘perturbed OFUL’ algorithms in the personalization and clustering setup
respectively. In the personalization setup, our algorithm first estimates the mean
vector θ̄∗ := 1

N

∑N
i=1 θ

∗
i of the population. Subsequently, the algorithm subtracts

the effect of the mean and only learns the component θ∗i − θ̄∗ by compensating
the rewards. Our technical innovation is to show that with high probability,
shifting the rewards by any fixed vector can only increase overall regret (Lemma
7). In the clustering setup, our algorithm first runs individual OFUL instances
per agent, estimates the parameter, then clusters the agents and treats all agents
of a single cluster as one entity. In order to prove that this works even when the
cluster separation is small, we need to analyze the behaviour of OFUL where
the rewards come from a slightly perturbed model.

3 Related Work

Collaborative gains in multi-user recommendation systems have long been stud-
ied in Information retrieval and recommendation systems (ex. [26, 28, 32, 42]).
The focus has been in developing effective ideas to help practitioners deploy
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large scale systems. Empirical studies of recommendation system has seen re-
newed interest lately due to the integration of deep learning techniques with
classical ideas (ex. [9, 34, 36, 37, 47, 49]). Motivated by the empirical success, we
undertake a theoretical approach to quantify collaborative gains achievable in a
contextual bandit setting. Contextual bandits has proven to be fruitful in mod-
eling sequential decision making in many applications [5, 18,27].

The framework of personalized learning has been exploited in a great detail in
representation learning and meta-learning. While [11,21,25,40,41] learn common
representation across agents in Reinforcement Learning, [2] uses it for imitation
learning. We remark that representation learning is also closely connected to
meta-learning [10,15,22], where close but a common initialization is learnt from
leveraging non identical but similar representations. Furthermore, in Federated
learning, the problem of personalization is a well studied problem [12,13,35].

The paper of [18] is closest to our clustering setup, where in each round, the
platform plays an arm for a single randomly chosen user. This model was then
subsequently improved by [30] and [29] which all exploit the fact that the users’
unknown vectors are clustered. As outlined before, our algorithm obtains a supe-
rior performance, both in theory and empirically. For personalization, the recent
papers of [46] and [4] are the closest, which posits all users’s parameters to be in
a common low dimensional subspace. [46] proposes a learning algorithm under
this assumption. In contrast, we make no parametric assumptions, and demon-
strate an algorithm that achieves collaboration gain, if there is structure, while
degrading gracefully to the simple baseline of independent bandit algorithms in
the absence of structure.

4 Problem Setup

Users and Arms: Our system consists of N users, interacting with a central-
ized system (termed as ‘center’ henceforth) repeatedly over T rounds. At the
beginning of each round, environment provides the center with K context vec-
tors corresponding to K arms, and for each user, the center recommends one of
the K arms to play. At the end of the round, every user receives a reward for the
arm played, which is observed by the center. The K context vectors in round t
are denoted by βt = [β1,t, . . . , βK,t] ∈ Rd×K .

User heterogeneity: Each user i, is associated with a preference vector
θ∗i ∈ Rd, and the reward user i obtains from playing arm j at time t is is given
by 〈βj,t, θ∗〉 + ξt. Thus, the structure of the set of user representations (θ∗i )Ni=1

govern how much benefit from collaboration can be expected. In the rest of the
paper, we consider two instantiations of the setup - a clustering framework and
the personalization framework.

Stochastic Assumptions: We follow the framework of [1, 6] and assume
that (ξt)t≥1 and (βt)t≥1 are random variables. We denote by Ft−1, as the sigma
algebra generated by all noise random variables upto and including time t − 1.
We denote by Et−1(.) and Vt−1(.) as the conditional expectation and conditional
variance operators respectively with respect to Ft−1. We assume that the (ξt)t≥1
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are conditionally sub-Gaussian noise with known parameter σ, conditioned on
all the arm choices and realized rewards in the system upto and including time
t− 1. Without loss of generality, we assume σ = 1 throughout. The contexts βi,t
are assumed to be drawn from a (coordinate-wise)5 bounded distribution (i.e.,
in any distribution supported on [−c, c]⊗d for some constant c) independent of
both the past and {βj,t}j 6=i, satisfying

Et−1[βi,t] = 0 Et−1[βi,t β
>
i,t] � ρminI. (1)

Moreover, for any fixed z ∈ Rd, of unity norm, the random variable (z>βi,t)
2 is

conditionally sub-Gaussian, for all i, with Vt−1[(z>βi,t)
2)] ≤ 4ρmin. This means

that the conditional mean of the covariance matrix is zero and the conditional
covariance matrix is positive definite with minimum eigenvalue at least ρmin.

Furthermore, the conditional variance assumption is crucially required to
apply (1) for contexts of (random) bandit arms selected by our learning algorithm
(see [18, Lemma 1]). Note this this set of assumptions is not new and the exact
set of assumptions were used in [6, 18]6 for online clustering and binary model
selection respectively. Furthermore, [16] uses similar assumptions for stochastic
linear bandits and [19] uses it for model selection in Reinforcement learning
problems with function approximation.

Example of contexts: Contexts, βi,t, drawn iid from Unif[−1/
√
d, 1/
√
d]⊗d

satisfy the above conditions, with ρmin = c0/d (c0 : constant). The 1/
√
d scaling

ensures that the norm is O(1). Observe that our stochastic assumption also
includes the setting where the distribution of contexts over time follows a random
process independent of the actions and rewards from the learning algorithm.

Performance Metric: At time t, we denote by Bi,t ∈ [K] to be the arm
played by any agent i with preference vector θ∗i . The corresponding regret, over

a time horizon of T is given by Ri(T ) =
∑T
t=1 Emaxj∈[K]〈θ∗i , βj,t − βBi,t,t〉.

Throughout, OFUL refers to the linear bandit algorithm of [1], which we use
as a blackbox. In particular we use a variant of the OFUL as prescribed in [6]7.

5 Personalization

In this section, we assume that the users’ representations {θ∗i }Ni=1 are similar
but not necessarily identical. Of course, without any structural similarity among
{θ∗i }Ni=1, the only way-out is to learn the parameters separately for each user. In
the setup of personalized learning, it is typically assumed that (see [8,14,31,46]
and the references therein) that the parameters {θ∗i }Ni=1 share some commonality,
and the job is to learn the shared components or representations of {θ∗i }Ni=1

5 In the clustering framework, we were able to remove this coordinate-wise bounded
assumption. We only assume boundedness in `2 norm.

6 The conditional variance assumption is implicitly used in [6].
7 We use OFUL as used in the OSOM algorithm of [6] without bias for the linear

contextual setting.
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Algorithm 1: Personalized Multi-agent Linear Bandits (PMLB)

1: Input: Agents N , Horizon T

Common representation learning : Estimate θ̄∗ = 1
N

∑N
i=1 θ

∗
i

2: Initialize a single instance of OFUL(δ), called common OFUL
3: for times t ∈ {1, · · · ,

√
T} do

4: All agents play the action given by the common OFUL
5: Common OFUL’s state updated by average of observed rewards at all

agents
6: end for
7: θ̂∗ ← the parameter estimate of Common OFUL at the end of round

√
T

Personal Learning

8: for agents i ∈ {1, . . . , N} in parallel do
9: Initialize modified ALB-Norm(δ) of [20] instance per agent (reproduced

in Algorithm 5 in Supplementary Material)
10: for times t ∈ {

√
T + 1, . . . , T} do

11: Agents play arm output by their personal copy of ALB-Norm (denoted
as β

b
(i)
t ,t

) and receive reward yt
12: Every agent updates their ALB-Norm state with corrected reward

ỹ
(t)
i = y

(t)
i − 〈βb(i)t ,t

, θ̂∗〉
13: end for
14: end for

collaboratively. After learning the common part, the individual representations
can be learnt locally at each agent.

We assume, that the contexts are drawn iid from Unif[−1/
√
d, 1/
√
d]⊗d. This

is for clarity of exposition and concreteness and without loss of generality, our
analysis can be extended to any distribution supported on [−c, c]⊗d. Moreover,
we relax this assumption in Section 6. We now define the notion of common rep-
resentation across users. Let ‖θ∗l ‖ ≤ 1 for all l ∈ [N ]. We define θ̄∗ = 1

N

∑N
l=1 θ

∗
l

as the average parameter.

Definition 1. (ε common representation) An agent i has εi common represen-
tation across N agents if ‖θ∗i − θ̄∗‖ ≤ εi, where εi is defined as the common
representation factor.

The above definition characterizes how far the representation of agent i is from
the average representation θ̄∗. Note that since ‖θ∗l ‖ ≤ 1 for all l, we have εi ≤ 2.
Furthermore, if εi is small, one can hope to exploit the common representation
across users. On the other hand, if εi is large (say O(1)), there is no hope to
leverage collaboration across agents.

5.1 The PMLB Algorithm

Algorithm 1 has (i) a common learning and (ii) a personal fine-tuning phase.
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Common Representation Learning: In the first phase, PMLB learns
the average representation θ̄∗ by recommending the same arm to all users and
averaging the obtained rewards. At the end of this phase, the center has the
estimate θ̂∗ of the average representation θ̄∗. Since the algorithm aggregates the
reward from all N agents, it turns out that the common representation learning
phase can be restricted to

√
T steps.

Personal Fine-tuning In the personal learning phase, the center learns the
vector θ∗i − θ̂∗, independently for every agent. For learning θ∗i − θ̂∗, we employ
the Adaptive Linear Bandits-norm (ALB-norm) algorithm of [20]8. ALB-norm is

adaptive, yielding a norm dependent regret, i.e., depends on ‖θ∗i − θ̂∗‖. The
idea here is to exploit the fact that in the common learning phase we have a
good estimate of θ̄∗. Hence, if the common representation factor εi is small, then
‖θ∗i − θ̂∗‖ is small, and it reflects in the regret expression. In order to estimate the

difference, the center shifts the reward by the inner product of the estimate θ̂∗.
By exploiting the anti-concentration property of Chi-squared distribution along
with some standard results from optimization, we show that the regret of the
shifted system is worse than the regret of agent i (both in expectation and in
high probability)9.

Without loss of generality, in what follows, we focus on an arbitrary agent
belonging to cluster i and characterize the regret. We assume

T ≥ C 1

N

[
τmin(δ)ρmin

d log(1/δ)

] 1
2α

, τmin(δ) =

[
16

ρ2min

+
8

3ρmin

]
log(

2dT

δ
) (2)

5.2 Regret Guarantee for PMLB

Theorem 1. Playing Algorithm 1 with T time and δ, where T ≥ τ2min(δ) (de-
fined in eqn. (2)) and d ≥ C log(K2T ), then the regret of agent i satisfies

Ri(T ) ≤ Õ(εi
√
dT + T 1/4

√
d2

ρminN
) log2(1/δ),

with probability at least 1− cδ − 1
poly(T ) .

Remark 1. The leading term in regret is Õ(εi
√
dT ). If the common represen-

tation factor εi is small, PMLB exploits that across agents and as a result the
regret is small as well.

Remark 2. Moreover, if εi is big enough, say O(1), this implies that there is no
common representation across users, and hence collaborative learning is meaning
less. In this case, the agents learn individually (by running OFUL), and obtain
a regret of Õ(

√
dT ) with high probability. Note that this is being reflected in

Theorem 1, as the regret is Õ(
√
dT ), when εi = O(1).

8 In Section 9, we modify ALB-Norm. For parameter θ, the original ALB-Norm yields
a regret of O[(‖θ‖ + 1)d

√
T ], while our modified algorithm obtains O(‖θ‖d

√
T ).

9 This is intuitive since, otherwise one can find appropriate shifts to reduce the regret
of OFUL, which contradicts the optimality of OFUL.
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Algorithm 2: Successive Clustering of Linear Bandits (SCLB)

1: Input: No. of users N , horizon T , parameter α < 1/2, constant C, high
probability bound δ

2: for phases 1 ≤ j ≤ log2(T ) do
3: Play CMLB (γ = 3/(N2j)α, horizon T = 2j , high probability δ/2j ,

cluster-size p∗ = j−2)
4: end for

The above remarks imply the adaptivity of PMLB. Without knowing the com-
mon representation factor εi, PMLB indeed adapts to it—meaning that yields
a regret that depends on εi. If εi is small, PMLB leverages common representa-
tion learning across agents, otherwise when εi is large, it yields a performance
equivalent to the individual learning. Note that this is intuitive since with high
εi, the agents share no common representation, and so we do not get a regret
improvement in this case by exploiting the actions of other agents.

Remark 3. (Lower Bound) When εi = 0, i.e., in the case when all agents have
the identical vectors θ∗i , then Theorem 1 gives a regret scaling as Ri(T ) ≤
Õ(T 1/4d

√
1

ρminN
). When the contexts are adversarily generated, [7] obtain a

lower bound (in expectation) of Ω(
√
dT ). However, in the presence of stochastic

context, a lower bound on the contextual bandit problem is unknown to the best
of our knowledge.

The requirement on d in Theorem 1 can be removed for expected regret.

Corollary 1. (Expected Regret) Suppose T ≥ τ2min(δ) for δ > 0. The expected
regret of the i-th agent after running Algorithm 1 for T time steps is given by

E[Ri(T )] ≤ Õ(εi
√
dT + T 1/4

√
d2

ρminN
).

6 Clustering

We now propose the clustering framework. Here, we assume that instead of
being coordinate-wise bounded, the contexts, βi,t ∈ Bd(1). The users’ vectors
{θ∗u}Nu=1 are clustered into L groups, with pi ∈ (0, 1] denoting the fraction of
users in cluster i. All users in the same cluster have the same the preference
vector–denoted by θ∗i for cluster i ∈ [L]. We define separation parameter, or
SNR (signal to noise ratio) of cluster i as ∆i := minj∈[L]\{i} ‖θ∗i − θ∗j ‖, smallest
distance to another cluster.

Learning Algorithm: We propose the Successive Clustering of Linear Ban-
dits (SCLB) algorithm in Algorithm 2. SCLB does not need any knowledge of the
gap {∆i}Li=1, the number of clusters L or the cluster size fractions {pi}Li=1. Nev-
ertheless, SCLB adapts to the problem SNR and yields regret accordingly. One
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Algorithm 3: Clustered Multi-Agent Bandits (CMLB)

1: Input: No. of users N , horizon T , parameter α < 1/2, constant C, high
probability bound δ, threshold γ, cluster-size parameter p∗

Individual Learning Phase
2: TExplore ← C(2)d(NT )2α log(1/δ)
3: All agents play OFUL(δ) independently for Texplore rounds

4: {θ̂(u)}Nu=1 ← All agents’ estimates at the end of round Texplore.
Cluster the Users

5: User-Clusters ← MAXIMAL-CLUSTER({θ̂(u)}Nu=1, γ, p∗)

Collaborative Learning Phase
6: Initialize one OFUL(δ) instance per-cluster
7: for clusters ` ∈ {1, . . . , |User-Clusters|} in parallel do
8: for times t ∈ {Texplore + 1, · · · , T} do
9: All users in the `-th cluster play the arm given by the OFUL

algorithm of cluster l.
10: Average of the observed rewards of all users of cluster l is used to

update the OFUL(δ) state of cluster l
11: end for
12: end for

attractive feature of Algorithm 2 is that it works uniformly for all ranges of the
gap {∆i}Li=1. This is in sharp contrast with the existing algorithms [18] which
is only guaranteed to give good performance when the gap {∆i}Li=1 are large
enough. Furthermore, our uniform guarantees are in contrast with the works in
standard clustering algorithms, where theoretical guarantees are only given for
a sufficiently large separation [3, 24].

SCLB is a multi-phase algorithm, invoking Clustered Multi-agent Linear
Bandits (CMLB) (Algorithm 3) repeatedly, by decreasing the size parameter,
namely p∗ polynomially and high probability parameter δj exponentially. Algo-
rithm 2 proceeds in phases of exponentially growing phase length with phase
j ∈ N lasting for 2j rounds. In each phase, a fresh instance of CMLB is instan-
tiated with high probability parameter δ/2j and the minimum size parameter
j−2. As the phase length grows, the size parameter sent as input to Algorithm 3
decays. This simple strategy suffices to show that the size parameter converges
to pi, and we obtain collaborative gains without knowledge of pi.

CMLB (Algorithm 3) : CMLB works in the three phases: (a) (Individual
Learning) the N users play an independent linear bandit algorithm to (roughly)
learn their preference; (b) (Clustering) users are clustered based on their esti-
mates using MAXIMAL CLUSTER (Algorithm 4); and (c) (Collaborative Learning)
one Linear Bandit instance per cluster is initialized and all users of a cluster
play the same arm. The average reward over all users in the cluster is used to
update the per-cluster bandit instance. When clustered correctly, the learning is
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faster, as the noise variance is reduced due to averaging across users. Note that
MAXIMAL CLUSTER algorithm requires a size parameter p∗.

6.1 Regret guarantee of SCLB

As mentioned earlier, SCLB is an adaptive algorithm that yields provable regret
for all ranges of {∆i}Li=1. When {∆i}Li=1 are large, SCLB can cluster the agents
perfectly, and thereafter exploit the collaborative gains across users in same
cluster. On the other hand, if {∆i}Li=1 are small, SCLB still adapts to the gap,
and yields a non-trivial (but sub-optimal) regret. As a special case, we show that
if all the clusters are very close to one another, then with high probability, SCLB
identifies treats all agents as one big cluster, yielding highest collaborative gain.

Definition 2 (α-Separable Cluster). For a fixed α < 1/2, cluster i ∈ [L] is
termed α-separable if ∆i ≥ 5

(NT )α . Otherwise, it is termed as α-inseparable.

Lemma 1. If CMLB is run with parameters γ = 3/(NT )α and p∗ ≤ pi and
α < 1

2 , then with probability at least 1− 2
(
N
2

)
δ, any cluster i that is α-separable

is clustered correctly. Furthermore, the regret of any user in the α-separated
cluster i satisfies,

Ri(T ) ≤ C1

 d

ρmin
(NT )α +

√
d

ρmin
(

√
T − d(NT )2α

ρmin
log(1/δ)

piN
)

 log(1/δ),

with probability exceeding 1− 4
(
N
2

)
δ.

We now present the regret of SCLB for the setting with separable cluster

Theorem 2. If Algorithm 2 is run for T steps with parameter α < 1
2 , then the

regret of any agent in a cluster i that is α-separated satisfies

Ri(T ) ≤ 4
(

2
1√
pi

)
+ C2

[
d

ρmin
(NT )α +

√
dT

ρminN

]
log2(T ) log(1/δ),

with probability at-least 1−cN2δ. Moreover, if α ≤ 1
2
(

log

[
ρminT
dpiN

]
log(NT )

), we have Ri(T ) ≤

Õ[2
1√
pi +

√
d

ρmin

√
T
N ] log(1/δ).

Remark 4. Note that we obtain the regret scaling of Õ(
√
T/N), which is op-

timal, i.e., the regret rate matches an oracle that knows cluster membership.

The cost of successive clustering is O(2
1√
pi ), which is a T -independent (problem

dependent) constant.

Remark 5. Note that the separation we need is only 5/(NT )α. This is a weak
condition since in a collaborative system with large N and T , this quantity is
sufficiently small.
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Algorithm 4: MAXIMAL-CLUSTER

1: Input: All estimates {θ̂(i)}Ni=1, size parameter p∗ > 0, threshold γ ≥ 0.
2: Construct an undirected Graph G on N vertices as follows:
||θ̂∗i − θ̂∗j || ≤ γ ⇔ i ∼G j

3: C ← {C1, · · · , Ck} all the connected components of G
4: S(p∗)← {Cj : |Cj | < p∗N} {All Components smaller than p∗N}
5: C(p) ← ∪C∈S(p∗)C {Collapse all small components into one}
6: Return : C \ S(p∗)

⋃
C(p) {Each connected component larger than p∗N is

a cluster, and all small components are a single cluster}

Remark 6. Observe that Ri(T ) is a decreasing function of N . Hence, more users
in the system ensures that the regret decreases. This is collaborative gain.

Remark 7. (Comparison with [18]) Note that in a setup where clusters are sep-
arated, [18] also yields a regret of Õ(

√
T/N). However, the separation between

the parameters (gap) for [18] cannot be lower than O(1/T 1/4), in order to main-
tain order-wise optimal regret. On the other hand, we can handle separations of
the order O(1/Tα), and since α < 1/2, this is a strict improvement over [18].

Remark 8. The constant term O(2
1√
pi ) can be removed if we have an estimate

of the pi. Here, instead of SCLB, we simply run CMLB with the estimate of pi

and obtain the regret of Lemma 1, without the term O(2
1√
pi ).

We now present our results when cluster i is α-inseparable.

Lemma 2. If CMLB is run with input γ = 3/(NT )α and p∗ ≤ pi and α < 1
2 ,

then any user in a cluster i that is α-inseparable satisfies

R(T ) ≤ C1L(
T 1−α

Nα
) + C2

√
d

ρmin
[

√
T − d(NT )2α

ρmin
log(1/δ)

p∗N
] log(1/δ),

with probability at least 1− 4
(
N
2

)
δ.

Theorem 3. If Algorithm 2 is run for T steps with parameter α < 1
2 , then the

regret of any agent in a cluster i that is α-inseparable satisfies

Ri(T ) ≤ 4(2
1√
pi ) + C L(

T 1−α

Nα
) log(T ) + C1

√
dT

Nρmin
log(1/δ) log2(T ),

with probability at-least 1−cN2δ. Moreover, if If α = 1
2 −ε, where ε is a positive

constant arbitrarily close to 0, R(T ) ≤ Õ
[
2

1√
pi +L( T

1
2
+ε

N
1
2
−ε )+

√
d

ρmin
(
√

T
N ) log(1/δ)

]
.
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(a) (b) (c)

Fig. 1: Synthetic simulations of PMLB.

(a) (b) (c)

Fig. 2: Synthetic data simulations for clustering.

Remark 9. As ε > 0, the regret scaling of Õ( T
1
2
+ε

N
1
2
−ε ) is strictly worse than the

optimal rate of Õ(
√
T/N). This can be attributed to the fact that the gap (or

SNR) can be arbitrarily close to 0, and inseparability of the clusters makes the
problem harder to address.

Remark 10. In this setting of low gap (or SNR), where the clusters are insepara-
ble, most existing algorithms (for example [18]) are not applicable. However, we
still manage to obtain sub-optimal but non-trivial regret with high probability.

Special case of all clusters being close If maxi 6=j ‖θ∗i − θ∗j ‖ ≤ 1/(NT )α, CMLB
puts all the users in one big cluster. The collaborative gain in this setting is the
largest. Here the regret guarantee of SCLB will be similar to that of Theorem 3
with pi = 1. We defer to Appendix 12 for a detailed analysis.

Remark 11. Observe that if all agents are identical maxi 6=j ‖θ∗i − θ∗j ‖ = 0 our
regret bound does not match that of an oracle which knows such information.
The oracle guarantee would be O(

√
T/N), whereas our guarantee is strictly

worse. The additional regret stems from the universality of our algorithm as it
works for all ranges of ∆i.

7 Simulations

Personalization setting: In Figure 1, we consider a system where the N
ground-truth θ∗ vectors are sampled independently from N (µ, σI). We choose µ
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from the standard normal distribution in each experiment and test performance
for different values of σ. Observe that for small σ, all the ground-truth vectors
will be close-by (high structure) and when σ is large, the ground-truth vectors
are more spread out. We observe in Figure 1 that PMLB adapts to the avail-
able structure. With small σ where all users are close to the average, PMLB
has much lower regret compared to the baselines. On the other hand, at large
σ when there is no structure to exploit, PMLB is comparable to the baselines.
This demonstrates empirically that PMLB adapts to the problem structure and
exploits it whenever present, while not being wore off in the worst case.

Clustering setting : For each plot of Figures 2, users are clustered such
that the frequency of cluster i is proportional to i−z (identical to that done
in [18]), where z is mentioned in the figures. Thus for z = 0, all clusters are
balanced, and for larger z, the clusters become imbalanced. For each cluster,
the unknown parameter vector θ∗ is chosen uniformly at random from the unit
sphere. We compare SCLB (ALgorithm 2), CMLB (Algorithm 3) with CLUB
[18], Set CLUB [29] and LinUCB-Ind the baseline where every agent has an
independent copy of OFUL, i.e., no collaboration. (Details in Appendix 17).
We observe that our algorithm is competitive with respect to CLUB and Set
CLUB, and is superior compared to the baseline where each agent is playing
an independent copy of OFUL. In particular, we observe either as the clusters
become more imbalanced, or as the number of users increases, SCLB and CMLB
have a superior performance compared to CLUB and Set CLUB. Furthermore,
since SCLB only clusters users logarithmically many number of times, its run-
time is faster compared to CLUB.

8 Conclusion

We consider the problem of leveraging user heterogeneity in a multi-agent stochas-
tic bandit problem under (i) a personalization and, (ii) a clustering framework.
In both cases, we give novel adaptive algorithms that, without any knowledge of
the underlying instance, provides sub-linear regret guarantees. A natural avenue
for future work will be to combine the two frameworks, where users are all not
necessarily identical, but at the same time, their preferences are spread out in
space (for example the preference vectors are sampled from a Gaussian mixture
model). Natural algorithms here will involve first performing a clustering on the
population, followed by algorithms such as PMLB. Characterizing performance
and demonstrating adaptivity in such settings is left to future work.
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