
Model Selection in Reinforcement Learning with
General Function Approximations

Avishek Ghosh?1(�) and Sayak Ray Chowdhury?2
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Abstract. We3 consider model selection for classic Reinforcement Learn-
ing (RL) environments – Multi Armed Bandits (MABs) and Markov De-
cision Processes (MDPs) – under general function approximations. In the
model selection framework, we do not know the function classes, denoted
by F and M, where the true models – reward generating function for
MABs and and transition kernel for MDPs – lie, respectively. Instead, we
are given M nested function (hypothesis) classes such that true models
are contained in at-least one such class. In this paper, we propose and
analyze efficient model selection algorithms for MABs and MDPs, that
adapt to the smallest function class (among the nested M classes) con-
taining the true underlying model. Under a separability assumption on
the nested hypothesis classes, we show that the cumulative regret of our
adaptive algorithms match to that of an oracle which knows the correct
function classes (i.e., F and M) a priori. Furthermore, for both the set-
tings, we show that the cost of model selection is an additive term in the
regret having weak (logarithmic) dependence on the learning horizon T .

Keywords: Model Selection · Bandits · Reinforcement Learning

1 Introduction

We study the problem of model selection for Reinforcement Learning problems,
which refers to choosing the appropriate hypothesis class, to model the map-
ping from actions to expected rewards. We choose two particular frameworks—
(a) Multi-Armaed Bandits (MAB) and (b) markov Decision Processes (MDP).
Specifically, we are interested in studying the model selection problems for these
frameworks without any function approximations (like linear, generalized linear
etc.). Note that, the problem of model selection plays an important role in ap-
plications such as personalized recommendations, autonomous driving, robotics
as we explain in the sequel. Formally, a family of nested hypothesis classes Hf ,
f ∈ F is specified, where each class posits a plausible model for mapping ac-
tions to expected rewards. Furthermore, the family F is totally ordered, i.e., if
f1 6 f2, then Hf1 ⊆ Hf2 . It is assumed that the true model is contained in
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at least one of these specified families. Model selection guarantees then refer to
algorithms whose regret scales in the complexity of the smallest hypothesis class
containing the true model, even though the algorithm was not aware apriori.

Multi-Armed Bandits (MAB) [7] and Markov decision processes (MDP) [25]
are classical frameworks to model a reinforcement learning (RL) environment,
where an agent interacts with the environment by taking successive decisions
and observe rewards generated by those decisions. One of the objectives in RL
is to maximize the total reward accumulated over multiple rounds, or equiv-
alently minimize the regret in comparison with an optimal policy [7]. Regret
minimization is useful in several sequential decision-making problems such as
portfolio allocation and sequential investment, dynamic resource allocation in
communication systems, recommendation systems, etc. In these settings, there
is no separate budget to purely explore the unknown environment; rather, ex-
ploration and exploitation need to be carefully balanced.

Optimization over large domains under restricted feedback is an important
problem and has found applications in dynamic pricing for economic markets
[6], wireless communication [8] and recommendation platforms (such as Netflix,
Amazon Prime). Furthermore, in many applications (e.g., robotics, autonomous
driving), the number of actions and the observable number of states can be very
large or even infinite, which makes RL challenging, particularly in generalizing
learnt knowledge across unseen states and actions. For example, the game of
Go has a state space with size 3361, and the state and action spaces of certain
robotics applications can even be continuous. In recent years, we have witnessed
an explosion in the RL literature to tackle this challenge, both in theory (see,
e.g., [4, 10,18,22,29]), and in practice (see, e.g., [21, 31]).

In the first part of the paper, we focus on learning an unknown function
f∗ ∈ F , supported over a compact domain, via online noisy observations. If the
function class F is known, the optimistic algorithm of [26] learns f∗, yielding
a regret that depends on eluder dimension (a complexity measure of function
classes) of F . However, in the applications mentioned earlier, it is not imme-
diately clear how one estimates F . Naive estimation techniques may yield an
unnecessarily big F , and as a consequence, the regret may suffer. On the other
hand, if the estimated class, F̂ is such that F̂ ⊂ F , then the learning algorithm
might yield a linear regret because of this infeasibility. Hence, it is important
to estimate the function class properly, and here is where the question of model
selection appears. The problem of model selection is formally stated as follows—
we are given a family of M hypothesis classes F1 ⊂ F2 ⊂ . . . ⊂ FM , and the
unknown function f∗ is assumed to be contained in the family of nested classes.
In particular, we assume that f∗ lies in Fm∗ , where m∗ is unknown. Model se-
lection guarantees refer to algorithms whose regret scales in the complexity of
the smallest model class containing the true function f∗, i.e., Fm∗ , even though
the algorithm is not aware of that a priori.

In the second part of the paper, we address the model selection problem for
generic MDPs without funcction approximation. The most related work to ours
is by [4], which proposes an algorithm, namely UCRL-VTR, for model-based RL
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without any structural assumptions, and it is based on the upper confidence
RL and value-targeted regression principles. The regret of UCRL-VTR depends on
the eluder dimension [26] and the metric entropy of the corresponding family of
distributions P in which the unknown transition model P ∗ lies. In most practical
cases, however, the class P given to (or estimated by) the RL agent is quite
pessimistic; meaning that P ∗ actually lies in a small subset of P (e.g., in the game
of Go, the learning is possible without the need for visiting all the states [27]).
We are given a family of M nested hypothesis classes P1 ⊂ P2 ⊂ . . . ⊂ PM ,
where each class posits a plausible model class for the underlying RL problem.
The true model P ∗ lies in a model class Pm∗, where m∗ is unknown apriori.
Similar to the functional bandits framework, we propose learning algorithms
whose regret depends on the smallest model class containing the true model P ∗.

The problem of model selection have received considerable attention in the
last few years. Model selection is well studied in the contextual bandit setting.
In this setting, minimax optimal regret guarantees can be obtained by exploiting
the structure of the problem along with an eigenvalue assumption [9,12,15] We
provide a comprehensive list of recent works on bandit model selection in Sec-
tion 1.2. However, to the best of our knowledge, this is the first work to address
the model selection question for generic (functional) MAB without imposing any
assumptions on the reward structure.

In the RL framework, the question of model selection has received little at-
tention. In a series of works, [23,24] consider the corralling framework of [2] for
contextual bandits and reinforcement learning. While the corralling framework
is versatile, the price for this is that the cost of model selection is multiplicative
rather than additive. In particular, for the special case of linear bandits and
linear reinforcement learning, the regret scales as

√
T in time with an additional

multiplicative factor of
√
M , while the regret scaling with time is strictly larger

than
√
T in the general contextual bandit. These papers treat all the hypothe-

sis classes as bandit arms, and hence work in a (restricted) partial information
setting, and as a consequence explore a lot, yielding worse regret. On the other
hand, we consider all M classes at once (full information setting) and do infer-
ence, and hence explore less and obtain lower regret.

Very recently, [20] study the problem of model selection in RL with function
approximation. Similar to the active-arm elimination technique employed in
standard multi-armed bandit (MAB) problems [11], the authors eliminate the
model classes that are dubbed misspecified, and obtain a regret of O(T 2/3). On
the other hand, our framework is quite different in the sense that we consider
model selection for RL with general transition structure. Moreover, our regret
scales asO(

√
T ). Note that the model selection guarantees we obtain in the linear

MDPs are partly influenced by [15], where model selection for linear contextual
bandits are discussed. However, there are a couple of subtle differences: (a) for
linear contextual framework, one can perform pure exploration, and [15] crucially
leverages that and (b) the contexts in linear contextual framework is assumed
to be i.i.d, whereas for linear MDPs, the contexts are implicit and depend on
states, actions and transition probabilities.
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1.1 Our Contributions

In this paper, our setup considers any general model class (for both MAB and
MDP settings) that are totally bounded, i.e., for arbitrary precision, the metric
entropy is bounded. Note that this encompasses a significantly larger class of
environments compared to the problems with function approximation. Assuming
nested families of reward function and transition kernels, respectively for MABs
and MDPs, we propose adaptive algorithms, namely Adaptive Bandit Learning
(ABL) and Adaptive Reinforcement Learning (ARL). Assuming the hypothesis
classes are separated, both ABL and ARL construct a test statistic and thresholds
it to identify the correct hypothesis class. We show that these simple schemes
achieve the regret of Õ(d∗ +

√
d∗M∗T ) for MABs and Õ(d∗H2 +

√
d∗M∗H2T )

for MDPs (with episode length H), where d∗E is the eluder dimension and M∗ is
the metric entropy corresponding to the smallest model classes containing true
models (f∗ for MAB and P ∗ for MDP). The regret bounds show that both ABL

and ARL adapts to the true problem complexity, and the cost of model section is
only O(log T ), which is minimal compared to the total regret.

Notation For a positive integer n, we denote by [n] the set of integers
{1, 2, . . . , n}. For a set X and functions f, g : X → R, we denote (f − g)(x) :=

f(x) − g(x) and (f − g)2(x) := (f(x)− g(x))
2

for any x ∈ X . For any P :
Z → ∆(X ), we denote (Pf)(z) :=

∫
X f(x)P (x|z)dx for any z ∈ Z, where ∆(X )

denotes the set of signed distributions over X .

1.2 Related Work

Model Selection in Online Learning: Model selection for bandits are only
recently being studied [9,13]. These works aim to identify whether a given prob-
lem instance comes from contextual or standard setting. For linear contextual
bandits, with the dimension of the underlying parameter as a complexity mea-
sure, [12,15] propose efficient algorithms that adapts to the true dimension of the
problem. While [12] obtains a regret of O(T 2/3), [15] obtains a O(

√
T ) regret

(however, the regret of [15] depends on several problem dependent quantities
and hence not instance uniform). Later on, these guarantees are extended to
the generic contextual bandit problems without linear structure [16, 19], where
O(
√
T ) regret guarantees are obtained. The algorithm Corral was proposed

in [2], where the optimal algorithm for each model class is casted as an expert,
and the forecaster obtains low regret with respect to the best expert (best model
class). The generality of this framework has rendered it fruitful in a variety of
different settings; see, for example [2, 3].

RL with Function Approximation: Regret minimization in RL under
function approximation is first considered in [22]. It makes explicit model-based
assumptions and the regret bound depends on the eluder dimensions of the mod-
els. In contrast, [32] considers a low-rank linear transition model and propose a

model-based algorithm with regret O(
√
d3H3T ). Another line of work param-

eterizes the Q-functions directly, using state-action feature maps, and develop
model-free algorithms with regret O(poly(dH)

√
T ) bypassing the need for fully
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learning the transition model [17, 30, 35]. A recent line of work [29, 33] general-
ize these approaches by designing algorithms that work with general and neural
function approximations, respectively.

2 Model Selection in Functional Multi-armed Bandits

Consider the problem of sequentially maximizing an unknown function f∗ : X →
R over a compact domain X ⊂ Rd. For example, in a machine learning applica-
tion, f∗(x) can be the validation accuracy of a learning algorithm and x ∈ X is a
fixed configuration of (tunable) hyper-parameters of the training algorithm. The
objective is to find the hyper-parameter configuration that achieves the highest
validation accuracy. An algorithm for this problem chooses, at each round t, an
input (also called action or arm) xt ∈ X , and subsequently observes a function
evaluation (also called reward) yt = f∗(xt) + εt, which is a noisy version of the
function value at xt. The action xt is chosen causally depending upon the history
{x1, y1, . . . , xt−1, yt−1} of arms and reward sequences available before round t.

Assumption 1 (Sub-Gaussian noise) The noise sequence {εt}t≥1 is condi-
tionally zero-mean, i.e., E [εt|Ft−1] = 0 and σ-sub-Gaussian for known σ ,i.e.,

∀t ≥ 1, ∀λ ∈ R, E [exp(λεt)|Ft−1] ≤ exp

(
λ2σ2

2

)
almost surely, where Ft−1 := σ(x1, y1, . . . , xt−1, yt−1, xt) is the σ-field summa-
rizing the information available just before yt is observed.

This is a mild assumption on the noise (it holds, for instance, for distributions
bounded in [−σ, σ]) and is standard in the literature [1, 26,28].

Regret: The learner’s goal is to maximize its (expected) cumulative reward∑t
t=1 f

∗(xt) over a time horizon T (not necessarily known a priori) or, equiva-
lently, minimize its cumulative regret

RT :=
∑T

t=1
(f∗(x∗)− f∗(xt)) ,

where x∗ ∈ argmaxx∈X f(x) is a maximizer of f (assuming the maximum is
attained; not necessarily unique). A sublinear growth of RT implies the time-
average regret RT /T → 0 as T →∞, implying the algorithm eventually chooses
actions that attain function values close to the optimum most of the time.

2.1 Model Selection Objective

In the literature, it is assumed that f∗ belongs to a known class of functions F .
In this work, in contrast to the standard setting, we do not assume the knowledge
of F . Instead, we are given M nested function classes F1 ⊂ F2 ⊂ . . . ⊂ FM .
Among the nested classes F1, ..FM , the ones containing f∗ is denoted as realizable
classes, and the ones not containing f∗ are dubbed as non-realizable classes. The
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smallest such family where the unknown function f∗ lies is denoted by Fm∗ ,
where m∗ ∈ [M ]. However, we do not know the index m∗, and our goal is to
propose adaptive algorithms such that the regret depends on the complexity of
the function class Fm∗ . In order to achieve this, we need a separability condition
on the nested models.

Assumption 2 (Local Separability) There exist ∆ > 0 and η > 0 such that

inf
f∈Fm∗−1

inf
x1 6=x2:D∗(x1,x2)6η

|f(x1)− f∗(x2)| ≥ ∆,

where4, D∗(x1, x2) = |f∗(x1)− f∗(x2)|.

The above assumption5 ensures that for action pairs (x1, x2), where the obtained
(expected) rewards are close (since it is generated by f∗), there is a gap between
the true function f∗ and the ones belonging to the function classes not containing
f∗ (i.e., the non-realizable function classes). Note that we do not require this
separability to hold for all actions – just the ones which are indistinguishable
from observing the rewards. Note that separability is needed for model selection
since we neither assume any structural assumption on f∗, nor on the set X .

We emphasize that separability is quite standard and assumptions of sim-
ilar nature appear in a wide range of model selection problems, specially in
the setting of contextual bandits [16, 19]. It is also quite standard in statistics,
specifically in the area of clustering and latent variable modelling [5, 14,34].

Separability for Lipschitz f∗: If the true function f∗ is 1-Lipschitz. In that set-
ting, the separability assumption takes the following form: for ∆ > 0 and η > 0,

inf
f∈Fm∗−1

inf
x1 6=x2:‖x1−x2‖6η

|f(x1)− f∗(x2)| ≥ ∆

However, note that the above assumption is quite strong – any (random) arbi-
trary algorithm can perform model selection (with the knowledge of η and ∆)6

in the following way: first choose action x1. Using ‖x1−x2‖ 6 η, choose x2. Pick
any function f belonging to some class Fm in the nested family and evaluate
|f(x1)− yt(x2)|, which is a good proxy for |f(x1)− f∗(x2)|. The algorithm con-
tinues to pick different f ∈ Fm. With the knowledge of ∆, depending on how
big Fm is, the algorithm would be able to identify whether Fm is realizable or
not. Continuing it for all hypothesis classes, it would identify the correct class
Fm∗ . Hence, for structured f∗, the problem of model selection with separation
is not interesting and we do not consider that setup in this paper.

4 Here the roles of x1 and x2 are interchangeable without loss of generality.
5 We assume that the action set X is compact and continuous, and so such action pairs

(x1, x2) always exist, i.e., given any x1 ∈ X , an action x2 such that D∗(x1, x2) 6 η
always exists.

6 This can be found using standard trick like doubling.
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Separability for Linear f∗: If f∗ is linear, the separability assumption is not
necessary for model selection. In this setting, f∗ is parameterized by some prop-
erties of the parameter, such as sparsity and norm, denotes the nested function
classes. [12,15] addresses the linear bandit model selection problem without the
separability assumption.

2.2 Algorithm: Adaptive Bandit Learning (ABL)

In this section, we provide a novel model selection algorithm (Algorithm 2)
that, over multiple epochs, successively refine the estimate of the true model
class Fm∗ where the unknown function f∗ lies. At each epoch, we run a fresh
instance of a base bandit algorithm for the estimated function class, which we
call Bandit Learning. Note that our model selection algorithm works with any
provable bandit learning algorithm, and is agnostic to the particular choice of
such base algorithm. In what follows, we present a generic description of the
base algorithm and then specialize to a special case.

The Base Algorithm Bandit Learning (Algorithm 1), in its general form, takes a
function class F and a confidence level δ ∈ (0, 1] as its inputs. At each time t, it
maintains a (high-probability) confidence set Ct(F , δ) for the unknown function
f∗, and chooses the most optimistic action with respect to this confidence set,

xt ∈ argmax
x∈X

max
f∈Ct(F,δ)

f(x) . (1)

The confidence set Ct(F , δ) is constructed using all the data {xs, ys}s<t gath-
ered in the past. First, a regularized least square estimate of f∗ is computed as
f̂t ∈ argminf∈F Lt−1(f), where Lt(f) :=

∑t
s=1 (ys − f(xs))

2
is the cumulative

squared prediction error. The confidence set Ct(F , δ) is then defined as the set
of all functions f ∈ F satisfying

t−1∑
s=1

(
f(xs)− f̂t(xs)

)2
≤ βt(F , δ) , (2)

where βt(F , δ) is an appropriately chosen confidence parameter. We now special-
ize to the bandit learning algorithm of [26] by setting the confidence parameter

βt(F , δ) := 8σ2 log (2N (F , 1/T, ‖·‖∞) /δ) + 2
(

8 +
√

8σ2 log (8t(t+ 1)/δ)
)
,

whereN (F , α, ‖·‖∞) is the (α, ‖·‖∞)-covering number7 of F , one can ensure that
f∗ lies in the confidence set Ct(F , δ) at all time instant t ≥ 1 with probability at
least 1 − δ. The theoretical guarantees presented in the paper are also for this
particular choice of base algorithm.

7 For any α > 0, we call Fα an (α, ‖·‖∞) cover of the function class F if for any f ∈ F
there exists an f ′ in Fα such that ‖f ′ − f‖∞ := supx∈X |f ′(x)− f(x)| ≤ α.
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Algorithm 1 Bandit Learning

1: Input: Function class F , confidence level δ ∈ (0, 1]
2: for time t = 1, 2, 3, . . . do
3: Compute an estimate f̂t of f∗

4: Construct confidence set Ct(F , δ) using (2)
5: Choose an action xt using (1)
6: Observe reward yt
7: end for

Algorithm 2 Adaptive Bandit Learning (ABL)

1: Input: Nested function classes F1 ⊂ F2 ⊂ . . . ⊂ FM , confidence level
δ ∈ (0, 1], threshold γi > 0

2: for epochs i = 1, 2 . . . do
3: Model Selection:
4: Compute elapsed time τi−1 =

∑i−1
j=1 tj

5: for function classes m = 1, 2 . . . ,M do
6: Compute the minimum average squared prediction error using (3)
7: end for
8: Choose index m(i) = min{m ∈ [M ] : T

(i)
m ≤ γi}

9: Model Learning:

10: Set epoch length ti = 2i, confidence level δi = δ/2i

11: Run Bandit Learning (Algorithm 1) over a time horizon ti with function
class Fm(i) and confidence level δi as its inputs

12: end for

Our Approach–Adaptive Bandit Learning (ABL): The description of our model
selection algorithm is given in Algorithm 2. We consider doubling epochs – at
each epoch i ≥ 1, the base algorithm is run over time horizon ti = 2i. At the
beginning of i-th epoch, using all the data of the previous epochs, we employ
a model selection module as follows. First, we compute, for each class Fm, the
minimum average squared prediction error (via an offline regression oracle)

T (i)
m = min

f∈Fm

1

τi−1

τi−1∑
s=1

(ys − f(xs))
2
, (3)

where τi−1 :=
∑i−1
j=1 tj denotes the total time elapsed before epoch i. Finally,

we compare T
(i)
m to a pre-calculated threshold γ, and pick the function class

for which T
(i)
m falls below such threshold (with smallest m, see Algorithm 2).

After selecting the function class, we run the base algorithm for this class with
confidence level δi = δ/2i. We call the complete procedure Adaptive Bandit
Learning (ABL).
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2.3 Performance Guarantee of ABL

We now provide model selection and regret guarantees of ABL (Algorithm 2),
when the base algorithm is chosen as [26]. Though the results to be presented
in this section are quite general, they do not apply to any arbitrary function
classes. In what follows, we will make the following boundedness assumption.

Assumption 3 (Bounded functions) We assume that f(x) ∈ [0, 1] ∀ x ∈ X
and f ∈ Fm (∀ m ∈ [M ]).8

It is worth noting that this same assumption is also required in the standard
setting, i.e., when the true model class is known (Fm∗ = F).

We denote by logN (Fm) = log (N (Fm, 1/T, ‖·‖∞)) the metric entropy (with
scale 1/T ) of the class Fm. We have the following guarantee for ABL.

Lemma 1 (Model selection of ABL). Fix a δ ∈ (0, 1] and λ > 0. Suppose,

Assumptions 1, 2 and 3 hold and we set the threshold γi = T
(i)
M + C1, for a

sufficiently small constant C1. Then, with probability at least 1 − O(Mδ), ABL

identifies the correct model class Fm∗ from epoch i ≥ i∗ when the time elapsed
before epoch i∗ satisfies

τi∗−1 ≥ Cσ4(log T ) max

{
log(1/δ)

(∆
2

2 − 4η)2
, log

(
N (FM )

δ

)}
,

provided ∆ > 2
√

2η, where C > 1 is a sufficiently large universal constant.

Remark 1 (Dependence on the biggest class). Note that we choose a threshold
that depends on the epoch number and the test statistic of the biggest class.
Here we crucially exploit the fact that the biggest class always contains the true
model class and use this to design the threshold.

We characterize the complexity of each function class Fm by its eluder di-
mension, first introduced by [26] in the standard setting.

Definition 1 (Eluder dimension). The ε-eluder dimension dimE(Fm, ε) of
a function class F is the length of the longest sequence {xi}ni=1 ⊆ X of input
points such that for some ε′ ≥ ε and for each i ∈ {2, . . . , n},

sup
f1,f2∈F

(f1 − f2)(xi)
∣∣ √√√√i−1∑

j=1

(f1 − f2)2(xi) ≤ ε′
 > ε′ .

Define F∗ = Fm∗ . Denote by dE(F∗) = dimE (F∗, 1/T ), the (1/T )-eluder dimen-
sion of the (realizable) function class F∗, where T is the time horizon. Then,
armed with Lemma 1, we obtain the following regret bound for ABL.

8 We can extent the range to [0, c] without loss of generality.
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Theorem 1 (Cumulative regret of ABL). Suppose the condition of Lemma 1
holds. Then, for any δ ∈ (0, 1], the regret of ABL for horizon T is

RT ≤ O

(
σ4(log T ) max

{
log(1/δ)

(∆
2

2 − 4η)2
, log

(
N (FM )

δ

)})

+O
(
dE(F∗) log T + c

√
TdE(F∗) log(N (F∗)/δ) log2(T/δ)

)
,

with probability at least9 1−O(Mδ).

Remark 2 (Cost of model selection). We retain the regret bound of [26] in the
standard setting, and the first term in the regret bound captures the cost of
model selection – the cost suffered before accumulating enough samples to infer
the correct model class (with high probability). It has weak (logarithmic) depen-
dence on horizon T and hence considered as a minor term, in the setting where
T is large. Hence, model selection is essentially free upto log factors. Let us now
have a close look at this term. It depends on the metric entropy of the biggest
model class FM . This stems from the fact that the thresholds {γi}i≥1 depend
on the test statistic of FM (see Remark 1). We believe that, without additional
assumptions, one can’t get rid of this (minor) dependence on the complexity of
the biggest class.

The second term is the major one (
√
T dependence on total number of steps),

which essentially is the cost of learning the true kernel f∗. Since in this phase, we
basically run the base algorithm for the correct model class, our regret guarantee
matches to that of an oracle with the apriori knowledge of the correct class.
Note that if we simply run a non model-adaptive algorithm for this problem, the
regret would be Õ(H

√
TdE(FM ) logN (FM )), where dE(FM ) denotes the eluder

dimension of the largest model class FM . In contrast, by successively testing and
thresholding, our algorithm adapts to the complexity of the smallest function
class containing the true model class.

Remark 3 (Requires no knowledge of (∆, η)). Our algorithm ABL doesn’t require
the knowledge of ∆ and η. Rather, it automatically adapts to these parameters,
and the dependence is reflected in the regret expression. The separation ∆ im-
plies how complex the job of model selection is. If the separation is small, it is
difficult for ABL to separate out the model classes. Hence, it requires additional
exploration, and as a result the regret increases. Another interesting fact of The-
orem 1 is that it does not require any minimum separation across model classes.
This is in sharp contrast with existing results in statistics (see, e.g. [5,34]). Even
if ∆ is quite small, Theorem 1 gives a model selection guarantee. Now, the cost
of separation appears anyways in the minor term, and hence in the long run, it
does not effect the overall performance of the algorithm.

9 One can choose δ = 1/poly(M) to obtain a high-probability bound which only adds
an extra logM factor.
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3 Model Selection in Markov Decision Processes

An (episodic) MDP is denoted byM(S,A, H, P ∗, r), where S is the state space,
A is the action space (both possibly infinite), H is the length of each episode,
P ∗ : S×A → ∆(S) is an (unknown) transition kernel (a function mapping state-
action pairs to signed distribution over the state space) and r : S × A → [0, 1]
is a (known) reward function. In episodic MDPs, a (deterministic) policy π is
given by a collection of H functions (π1, . . . , πH), where each πh : S → A maps
a state s to an action a. In each episode, an initial state s1 is first picked by the
environment (assumed to be fixed and history independent). Then, at each step
h ∈ [H], the agent observes the state sh, picks an action ah according to πh,
receives a reward r(sh, ah), and then transitions to the next state sh+1, which
is drawn from the conditional distribution P ∗(·|sh, ah). The episode ends when
the terminal state sH+1 is reached. For each state-action pair (s, a) ∈ S × A
and step h ∈ [H], we define action values Qπh(s, a) and and state values V πh (s)
corresponding to a policy π as

Qπh(s, a)=r(s, a)+E
[∑H

h′=h+1
r(sh′ ,πh′(sh′))|sh=s, ah=a

]
, V πh (s)=Qπh

(
s, πh(s)

)
,

where the expectation is with respect to the randomness of the transition distri-
bution P ∗. It is not hard to see that Qπh and V πh satisfy the Bellman equations:

Qπh(s, a) = r(s, a) + (P ∗V πh+1)(s, a) , ∀h ∈ [H], with V πH+1(s) = 0 for all s ∈ S.

A policy π∗ is said to be optimal if it maximizes the value for all states s and
step h simultaneously, and the corresponding optimal value function is denoted
by V ∗h (s) = supπ V

π
h (s) for all h ∈ [H], where the supremum is over all (non-

stationary) policies. The agent interacts with the environment for K episodes
to learn the unknown transition kernel P ∗ and thus, in turn, the optimal policy
π∗. At each episode k ≥ 1, the agent chooses a policy πk := (πk1 , . . . , π

k
H) and

a trajectory (skh, a
k
h, r(s

k
h, a

k
h), skh+1)h∈[H] is generated. The performance of the

learning agent is measured by the cumulative (pseudo) regret accumulated over
K episodes, defined as

R(T ) :=
∑K

k=1

[
V ∗1 (sk1)− V π

k

1 (sk1)
]
,

where T = KH is total steps in K episodes.
In this work, we consider general MDPs without any structural assumption

on the unknown transition kernel P ∗. In the standard setting [4], it is assumed
that P ∗ belongs to a known family of transition models P. Here, in contrast
to the standard setting, we do not have the knowledge of P. Instead, we are
given M nested families of transition kernels P1 ⊂ P2 ⊂ . . . ⊂ PM . The smallest
such family where the true transition kernel P ∗ lies is denoted by Pm∗ , where
m∗ ∈ [M ]. However, we do not know the index m∗, and our goal is to propose
adaptive algorithms such that the regret depends on the complexity of the family
Pm∗ . We assume a similar separability condition on these nested model classes.



12 Avishek Ghosh?(�) and Sayak Ray Chowdhury?

Assumption 4 (Local Separability) There exist constants ∆ > 0 and η > 0
such that for any function V : S → R,

inf
P∈Pm∗−1

inf
D∗((s1,a1),(s2,a2))6η

|PV (s1, a1)− P ∗V (s2, a2)| ≥ ∆,

where (s1, a1) 6= (s2, a2) and D∗((s1, a1), (s2, a2)) = |P ∗V (s1, a1)−P ∗V (s2, a2)|.

This assumption ensures that expected values under the true model is well-
separated from those under models from non-realizable classes for two distinct
state-action pairs for which values are close under true model. Once again, we
need state and action spaces to be compact and continuous to guarantee such
pairs always exist. Note that the assumption might appear to break down for
any constant function V . However, we will be invoking this assumption with
the value functions computed by the learning algorithm (see (4)). For reward
functions that vary sufficiently across states and actions, and transition kernels
that admit densities, the chance of getting hit by constant value functions is
admissibly low. In case the rewards are constant, every policy would anyway
incur zero regret rendering the learning problem trivial. The value functions
appear in the separability assumption in the first place since we are interested in
minimizing the regret. Instead, if one cares only about learning the true model,
then separability of transition kernels under some suitable notion of distance
(e.g., the KL-divergence) might suffice. Note that in [16,19], the regret is defined
in terms of the regression function and hence the separability is assumed on
the regression function itself. Model selection without separability is kept as an
interesting future work.

3.1 Algorithm: Adaptive Reinforcement Learning (ARL)

In this section, we provide a novel model selection algorithm ARL (Algorithm 2)
that use successive refinements over epochs. We use UCRL-VTR algorithm of [4] as
our base algorithm, and add a model selection module at the beginning of each
epoch. In other words, over multiple epochs, we successively refine our estimates
of the proper model class where the true transition kernel P ∗ lies.

The Base Algorithm: UCRL-VTR, in its general form, takes a family of transition
models P and a confidence level δ ∈ (0, 1] as its input. At each episode k,
it maintains a (high-probability) confidence set Bk−1 ⊂ P for the unknown
model P ∗ and use it for optimistic planning. First, it finds the transition kernel
Pk = argmaxP∈Bk−1

V ∗P,1(sk1), where V ∗P,h denote the optimal value function of an
MDP with transition kernel P at step h. UCRL-VTR then computes, at each step
h, the optimal value function V kh := V ∗Pk,h

under the kernel Pk using dynamic

programming. Specifically, starting with V kH+1(s, a) = 0 for all pairs (s, a), it
defines for all steps h = H down to 1,

Qkh(s, a) = r(s, a) + (PkV
k
h+1)(s, a), V kh (s) = maxa∈AQ

k
h(s, a). (4)
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Then, at each step h, UCRL-VTR takes the action that maximizes the Q-function
estimate, i,e. it chooses akh = argmaxa∈AQ

k
h(skh, a). Now, the confidence set

is updated using all the data gathered in the episode. First, UCRL-VTR com-
putes an estimate of P ∗ by employing a non-linear value-targeted regression
model with data

(
sjh, a

j
h, V

j
h+1(sjh+1)

)
j∈[k],h∈[H]

. Note that E[V kh+1(skh+1)|Gkh−1] =

(P ∗V kh+1)(skh, a
k
h), where Gkh−1 denotes the σ-field summarizing the information

available just before skh+1 is observed. This naturally leads to the estimate

P̂k = argminP∈P Lk(P ), where

Lk(P ) :=
∑k

j=1

∑H

h=1

(
V jh+1(sjh+1)−(PV jh+1)(sjh, a

j
h)
)2
. (5)

The confidence set Bk is then updated by enumerating the set of all transition

kernels P ∈ P satisfying
∑k
j=1

∑H
h=1

(
(PV jh+1)(sjh, a

j
h)−(P̂kV

j
h+1)(sjh, a

j
h)
)2
≤

βk(δ) with the confidence width being defined as βk(δ) :=8H2log

(
2N(P, 1

kH ,‖·‖∞,1)
δ

)
+

4H2

(
2+

√
2 log

(
4kH(kH+1)

δ

))
, where N (P, ·, ·) denotes the covering number of

the family P. 10 Then, one can show that P ∗ lies in the confidence set Bk in all
episodes k with probability at least 1 − δ. Here, we consider a slight different
expression of βk(δ) as compared to [4], but the proof essentially follows the same
technique. Please refer to Appendix B for further details.

Our Approach: We consider doubling epochs - at each epoch i ≥ 1, UCRL-VTR
is run for ki = 2i episodes. At the beginning of i-th epoch, using all the data of
previous epochs, we add a model selection module as follows. First, we compute,

for each family Pm, the transition kernel P̂
(i)
m , that minimizes the empirical loss

Lτi−1
(P ) over all P ∈ Pm (see (5)), where τi−1 :=

∑k−1
j=1 kj denotes the total

number of episodes completed before epoch i. Next, we compute the average

empirical loss T
(i)
m := 1

τi−1H
Lτi−1(P̂

(i)
m ) for the model P̂

(i)
m . Finally, we compare

T
(i)
m to a pre-calculated threshold γi, and pick the transition family for which T

(i)
m

falls below such threshold (with smallest m, see Algorithm 3). After selecting
the family, we run UCRL-VTR for this family with confidence level δi = δ

2i , where
δ ∈ (0, 1] is a parameter of the algorithm.

3.2 Performance Guarantee of ARL

First, we present our main result which states that the model selection procedure
of ARL (Algorithm 3) succeeds with high probability after a certain number of
epochs. To this end, we denote by logN (Pm) = log(N (Pm, 1/T, ‖·‖∞,1)) the
metric entropy (with scale 1/T ) of the family Pm. We also use the shorthand
notation P∗ = Pm∗ .
10 For any α > 0, Pα is an (α, ‖·‖∞,1) cover of P if for any P ∈ P there exists an P ′

in Pα such that ‖P ′ − P‖∞,1 := sups,a
∫
S |P

′(s′|s, a)− P (s′|s, a)|ds′ ≤ α.
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Algorithm 3 Adaptive Reinforcement Learning – ARL

1: Input: Parameter δ, function classes P1 ⊂ P2 ⊂ . . . ⊂ PM , thresholds
{γi}i≥1

2: for epochs i = 1, 2 . . . do
3: Set τi−1 =

∑i−1
j=1 kj

4: for function classes m = 1, 2 . . . ,M do

5: Compute P̂
(i)
m = argminP∈Pm

∑τi−1

k=1

∑H
h=1

(
V kh+1(skh+1)−(PV kh+1)(skh, a

k
h)
)2

6: Compute T
(i)
m = 1

τi−1H

∑τi−1

k=1

∑H
h=1

(
V kh+1(skh+1)−(P̂

(i)
m V kh+1)(skh, a

k
h)
)2

7: end for
8: Set m(i) = min{m ∈ [M ] : T

(i)
m ≤ γi}, ki = 2i and δi = δ/2i

9: Run UCRL-VTR for the family Pm(i) for ki episodes with confidence level δi
10: end for

Lemma 2 (Model selection of ARL). Fix a δ ∈ (0, 1] and suppose Assump-

tion 2 holds. Suppose the thresholds are set as γi = T
(i)
M +C2, for some sufficiently

small constant C2. Then, with probability at least 1−O(Mδ), ARL identifies the
correct model class Pm∗ from epoch i > i∗, where epoch length of i∗ satisfies

2i
∗
> C ′ logK max

{
H3

( 1
2∆

2 − 2Hη)2
log(2/δ), 4H log

(
N (PM )

δ

)}
,

provided ∆ > 2
√
Hη, for a sufficiently large universal constant C ′ > 1.

Regret Bound: In order to present our regret bound, we define, for each model
model class Pm, a collection of functions Mm := {f : S ×A× Vm → R} such
that any f ∈ Mm satisfies f(s, a, V ) = (PV )(s, a) for some P ∈ Pm and V ∈
Vm, where Vm := {V ∗P,h : P ∈ Pm, h ∈ [H]} denotes the set of optimal value
functions under the transition family Pm. By one-to-one correspondence, we
have M1 ⊂ M2 ⊂ . . . ⊂ MM , and the complexities of these function classes
determine the learning complexity of the RL problem under consideration. We
characterize the complexity of each function class Mm by its eluder dimension,
which is defined similarly as Definition 1. (We take domain of function classMm

to be S ×A× Vm.)
We define M∗ = Mm∗ , and denote by dE(M∗) = dimE (M∗, 1/T ), the

(1/T )-eluder dimension of the (realizable) function class M∗, where T is the
time horizon. Then, armed with Lemma 2, we obtain the following regret bound.

Theorem 2 (Cumulative regret of ARL). Suppose the conditions of Lemma 2
hold. Then, for any δ∈(0, 1], running ARL for K episodes yields a regret bound

R(T ) = O

(
logK max

{
H4 log(1/δ)

(∆
2

2 − 2Hη)2
, H2 log

(
N (PM )

δ

)})
+O

(
H2dE(M∗) logK +H

√
TdE(M∗) log(N (P∗)/δ) logK log(T/δ)

)
.

with probability at least 1−O(Mδ).
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Similar to Theorem 1, the first term in the regret bound captures the cost
of model selection, having weak (logarithmic) dependence on the number of
episodes K and hence considered as a minor term, in the setting where K is
large. Hence, model selection is essentially free upto log factors. The second
term is the major one (

√
T dependence on total number of steps), which essen-

tially is the cost of learning the true kernel P ∗. Since in this phase, we basically
run UCRL-VTR for the correct model class, our regret guarantee matches to that
of an oracle with the apriori knowledge of the correct class. ARL doesnot require
the knowledge of (∆, η) and it adapts to the complexity of the problem.

4 Conclusion

We address the problem of model selection for MAB and MDP and propose
algorithms that obtains regret similar to an oracle who knows the true model
class apriori. Our algorithms leverage the separability conditions crucially, and
removing them is kept as a future work.
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