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Abstract. Trigger (interesting events) detection is crucial to high-energy
and nuclear physics experiments because it improves data acquisition ef-
ficiency. It also plays a vital role in facilitating the downstream offline
data analysis process. The sPHENIX detector, located at the Relativis-
tic Heavy Ion Collider in Brookhaven National Laboratory, is one of the
largest nuclear physics experiments on a world scale and is optimized
to detect physics processes involving charm and beauty quarks. These
particles are produced in collisions involving two proton beams, two gold
nuclei beams, or a combination of the two and give critical insights into
the formation of the early universe. This paper presents a model ar-
chitecture for trigger detection with geometric information from two fast
silicon detectors. Transverse momentum is introduced as an intermediate
feature from physics heuristics. We also prove its importance through our
training experiments. Each event consists of tracks and can be viewed as
a graph. A bipartite graph neural network is integrated with the atten-
tion mechanism to design a binary classification model. Compared with
the state-of-the-art algorithm for trigger detection, our model is parsi-
monious and increases the accuracy and the AUC score by more than
15%.

Keywords: Graph Neural Networks - Event Detection - Physics-Aware
Machine Learning.

1 Introduction

sPHENIX is a high-energy nuclear physics experiment under construction at
Brookhaven National Laboratory and situated on the Relativistic Heavy Ion
Collider (RHIC). The goal of sSPHENIX is to probe the initial moments after
the Big Bang by studying quark-gluon plasma, a state of matter where atomic
nuclei melt under extremely hot and dense conditions.
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sPhenix Trigger Detector along the beam pipe

Fig. 1: sSPHENIX Track Detector and Trigger Design.

The sPHENIX detector shown in Figure 1 consists of several subdetectors
for collecting a wide range of patterns of physics events. The two subsystems
closest to the collision point are of most interest to this study. They are the
MAPS vertex detector (MVTX) and intermediate tracker (INTT). The MVTX
detector provides vertexing and tracking with high precision, while the INTT
provides tracking with a resolution capable of determining the individual beam
crossings at RHIC. sPHENIX also uses an outer calorimetry system to measure
the energy of particles in the detector at a low speed of 15 kHz, limited by the
readout electronics. As the collision rate for protons at RHIC is approximately
2 MHz, the calorimeter system does not work with the online setting and is not
considered in this paper.

Heavy Flavor decays that we attempt to detect exhibit several prominent
characteristics with a wide value range that overlaps with background events.
The complex pattern and non-trivial decision boundary between heavy flavor de-
lay and background events provide an ideal playground to apply ML techniques.
The particles of interest decay on short time scales, typically a few nanoseconds
or less. These particles may travel several millimeters at the speed of light before
they decay. Physicists often extrapolate Particle tracks in the detector space to
determine whether the tracks coincide with the beam collision point.

A tremendous volume of data is produced during collider experiments, but
only a tiny fraction of the data needs to be selected due to the rarity of the
targeted events. For example, an event that includes a charm quark typically
occurs once for every 50 background events [1,21] while a beauty quark occurs
once for roughly 1000 background events [2]. Collider experiments require a
trigger system to reduce data in real-time and resolve the big data problem that
is impractical for any data processing facility [11]. The triggers make decisions
to keep or discard an event in situ and significantly reduce the data volume that
needs to be retained for physics experiments. Our paper brings forth significant
impacts to physics experiments by shifting many offline analysis tasks into an
online setting and significantly shortening the latency between experiment and
scientific discovery.
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Before experiments start, we rely on simulation data to train and test our
model. The simulated data is expected to match real data at a high level and
has been extensively validated from previous physics experiments.

Contributions

— In this paper, we design a highly effective graph pooling/distributing mech-
anism for graph-level classification and prediction.

— Our model does not demand any pre-existing graph topology. Instead, it
employs a set transformer to combine local and global features into each
network node, enables effective knowledge exchange among network nodes,
and supports local and global-scale graph learning.

— We incorporate well-known physics analysis into the multi-task neural net-
work architecture and explicitly inference a crucial physics property in nu-
clear physics experiments, i.e., transverse momentum. This physics-driven
learning improves our model accuracy and AUC score (Area Under Curve)
by about 15%.

2 Related Work

The domain of experimental physics has a history of utilizing Machine Learning
(ML) in physics-related tasks like particle identification, event selection, and re-
construction. Neural Networks have been used in these experiments [3,35,16] at
first and were replaced by Boosted Decision Trees [40]. Recently Neural Networks
and their modern implementation of Deep Learning (DL) regain their popular-
ity in physics because of their superior ability to automatically learn effective
features for many tasks and their outstanding performance [26].

Convolutional Neural Network (CNN) [25] is the most commonly used ar-
chitecture with DL in the field of particle physics. It has proven its success in
many tasks such as jet identification [9,20,23], particle identification [12,19,24],
energy regression [12,15,36], and fast simulation [12,31,33]. The majority of CNN
architecture models take a fixed-grid input tensor to represent the detector of
an array of sensors. More efforts attempt to explore other alternative DL archi-
tectures for a better representation of physics: Recurrent Neural Network [14],
recursive networks [28], Graph Neural Network (GNN) [37], and DeepSets [24]
for the particle jet identification tasks. GNN is also applied to the classification
tasks in neutrino physics [13]. Garnet [36] is distance-weighted graph network
that can efficiently detect irregular pattern of sparse data. Transformer model
architecture [43] shows its success in many applications [10,17,39]. Taking the
data cloud as a set, Set Transformer [27] utilizes attention mechanism to learn
interactions between elements with EdgeConv that is permutation equivariant
and fits the set property.

Our previous works using ML to solve the same trigger detection problem
appear in [45,44]. Beyond these efforts, no other studies are addressing the same
issue. Jet taggers address a similar situation of tagging tracks with particles.
Nevertheless, Jet taggers rely on the different physics properties collected from
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Fig. 2: An Example of Trigger Event. In trigger events, particles decay into two or
more different particles soon after the collision. Lines represent the trajectories
of the particles. Green ones come from the center of the collision. Blue, red, and
orange tracks start from the position where the decay happens.

calorimeter detectors and they are interested in different target particles. Jet
tagger belongs to offline analysis, and the readout speed from the calorimeter
is much slower than the event rate, invalidating their applications in the online
use case. Several ML methods for top tagging are discussed in [22]. We gain
insights from the model design of existing tagging algorithms, especially those
supporting the particle cloud [36,37,38]. Our final goal is to apply the algorithm
to an online data-driven trigger system in an end-to-end fashion [29,44].

3 Problem Definition

Figure 2 schematically illustrates the trigger problem. The input of the physics
event consists of a set of tracks and is represented as a matrix X € R"*¢, where
n is the total number of tracks, and d is the dimensionality of the features of each
track. Tracks are treated as vertices in a graph. The goal is to determine whether
this graph corresponds to a trigger event and triggers the data acquisition system
to retain the readouts from the entire detector for future studies.

The commonly adopted GNN-based trigger prediction model attempts to
perform end-to-end prediction from the raw hits that are the coordinates of the
detector pixels where a particle traverses the detector. This domain-agnostic ap-
proach does not offer any insight into why an event becomes a trigger and results
in inferior performance. Domain scientists require physics-aware reasoning and
interpretation by explicitly incorporating physics models and properties. Since
collecting advanced physics properties by detector requires sophisticated detec-
tors and incurs considerable latency compared to the fast geometric detector, it
is not feasible to use advanced physics properties in an online data acquisition
environment. To incorporate the advanced physics properties, we must regress
them onto the available geometric data. Our ultimate goal is to predict trig-
gers while retaining the interpretability and rationality of intermediate tasks by
replicating offline physics analysis workflows.
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Fig.3: The left figure shows that a positively charged particle will undergo a
circular motion clockwise with a radius R in the uniform magnetic field B along
the +z direction. The right figure shows an example track with a fitted circle.
The black cross markers represent five hits on the example track; the red dashed
curve approximate a particle track and is the fitted circle with a radius R.

4 Transverse Momentum Estimation

Transverse momentum, as part of the kinematics of particles, is crucial for study-
ing particle dynamics in high-energy and nuclear physics experiments. The trans-
verse momentum of a charged particle can be estimated with the knowledge of
the magnetic field where it travels and the radius of its curved path in the
magnetic field. The magnetic field in the sPhenix detector is fixed and can be
precomputed; once we redefine the triggering task on the graph of tracks instead
of hits, this transverse momentum is accessible for individual tracks and corre-
lated with the radius of the particle’s curved path (tracks) calculated using the
geometry information of the hits on the track.

4.1 Physics Relation between Transverse Momentum and Track
Curvature

In particle collider experiments, we typically choose the cylindrical coordinates
to describe the particle momentum % = (pr, p.) for simplicity. It is conventional
to choose the beam direction as the z-axis. Here, pr is called the transverse
momentum, an analog of track radius R in the cylindrical coordinates in the
transverse direction. p, is called the longitudinal momentum, an analog of z in
the cylindrical coordinates in the transverse direction.

The sPHENIX experiment uses a solenoid magnet with the field aligning with
the beam direction in the z-axis. The left figure in Figure 3 shows a positively
charged particle moving clockwise under a magnetic field.

For a charged particle with charge g traveling across the magnetic field, a
Lorentz force acts on the charged particle. In our case, B, defined as the magnetic
field strength of the sSPHENIX solenoidial magnet, is along the z direction. The
Lorentz force maximizes in the transverse direction. The velocity vector ¥ is
decomposed like the momentum ¥ = (vr, v,). When the charge of a particle is e,
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combined with the equation for circular motion, the magnitude of the Lorentz
force that points radially inward, is given by:

02
F = m% = evrB.

The momentum is given by pr = mvr. Hence, we get
pr = eBR. (1)

All particles tracked in the detector have a unit charge of one electron volt (eV)
and so, if we change units so that the momentum is measured in GeV /c where
c is the speed of light, then equation 1 becomes

pr = 03BR, (2)

where the magnetic field is measured in Tesla (T). The detailed derivation is
beyond this paper. Equation 2 shows that the crucial physics property of particle
momentum is proportional to the track radius and guides us to integrate this
physics insight into the ML-based detection.

4.2 Track Curvature Fitting

A track consists of a list of hits tracking particles traversing detector layers.
The transverse momentum is highly correlated with the detected curvature of
particle tracks. We fit a circle to those hits to approximate the momentum and
calculate its radius. Here, regarding the direction of the magnetic field, we only
need to consider the x-axis and y-axis. The image on the right in Figure 3 shows
an example track with its fitted circle.

A circle is represented by the following formula: 22 +y% + 12 + B2y + B3 = 0.
Given a track of kp hits T' = {(x1,v1), (T2, ¥2); -, (Tky, Yy ) }» We define a linear
system that consists of kr equations for these hits and attempt to derive the
circle’s coefficients 3 = [31, 82, 83]1. To get the best circle approximation, we
use the least-squares (LS) optimization to solve the linear regression equation
and extract the 3 coefficients:

B=(ATA)LATB.

rr Y1 1
1 .
Here A = $2 v , B =[-22 -y} —23 93, .., —xiT — yiT]T. With the
Lkr Yko 1

optimized coefficients for the fitted circle, the circle radius is as follows:

R:%,/ﬂ%ﬁg—wg. (3)
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4.3 Momentum Estimation

The momentum can be calculated by Equation 2 using the estimated radius.
However, this has the drawback that at least three hits are required for the
track to estimate the radius. We propose the second method based on a feed-
forward (FF) neural network to predict the transverse momentum of the given
track and its LS-estimated radius R. We compare the estimation accuracy in
Section 6.2 and evavalue their effect on trigger detection in Section 6.3.

5 Bipartite Graph Networks with Set Transformer for
Trigger Detection

To resolve the trigger detection problem, we attempt to label events based on
their entire tracks. The previous work [45] builds an affinity matrix of tracks
and forms a graph where each node represents a track. Given a track graph, our
algorithm first applies GNN to learn local embeddings and uses various pooling
methods to aggregate and label the event. In this paper, we discard the common
practice of building the fine-scale affinity matrix (graph) among hits and directly
apply physical analysis to guide our neural network architecture. Determining
whether an event is a trigger event involves three types of interactions:

1. Local track-to-track interactions, such as determining whether two tracks
share the same origin vertex.

2. Track-to-global interactions, such as determining the collision vertex of the
event and potential secondary vertices of decaying.

3. Global-to-track interactions, such as comparing each track’s origin with the
collision vertex of the event.

To incorporate various interactions, our neural network model uses set atten-
tion mechanisms to facilitate local track-to-track information flow, accumulate
track information into aggregators to facilitate local track-to-global information
flow, and updating the track embeddings based on the aggregators to facili-
tate global-to-local information flow. Thereby, the bipartite GNN architecture
performs the local track-to-global and global-to-local information flow.

Our model consists of several Set Encoder with Bipartite Aggregator (SEBA)
Blocks. The SEBA Blocks update our track embeddings and exchange informa-
tion between tracks. SEBA Blocks contain a Set Attention Block, a Bipartite
Aggregation module, and a Feed-Forward (FF) network for transformation, as
shown in Figure 5. After several SEBA Blocks, we use some aggregation functions
as the readout functions to obtain the global representation for the whole set
and feed the representation into a FF network to get the final output. Figure 4
shows the entire architecture of our model.

5.1 Set Attention Blocks

We use the Set Attention Blocks designed by Lee in [27]. The module applies a
self-attention mechanism to every element in the input set to enable the model
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Fig. 4: Bipartite Graph Networks with Set Transformer Model Architectures.
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Fig.5: Set Encoder with Bipartite Aggregator (SEBA) Blocks.

to encode pairwise- or higher-order interactions between the elements in the set.
From the physics perspective, physicists often need to analyze the interactions
between tracks and which tracks are from the same origin points. The self-
attention mechanism neatly follows this physics practice.

Set Attention Blocks use Multi-head attention that Vaswani introduced orig-
inally in [43]. It packs a set of queries into a matrix Q. The keys and values are
also stacked into matrices K and V.

For a single attention function, We compute the matrix of outputs as:

T

. Q
Attention(Q, K, V') = softmax(
Vg

Multi-head attention projects each of the Q, K, V matrices onto h different
matrices separately, and applies an attention function to each of these h projec-
tions. The multiple heads allow the model to jointly attend to information from
different representations subspaces at different positions.

W

Multihead(Q, K, V) = Concat(Oy, ..., 0, )W,

where O; = Attention(QWiQ,K WE VW}Y) and WiQ, WE WY WO are learn-
able parameters.

Given the matrix X € R™*?¢ which represents a set of d-dimensional vectors.
Set Attention Blocks applies a multi-head attention function with Q = K =
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V = X and serves as a mapping function using the following equation:
SAB(X) = LayerNorm(H + rFF(H)),

where H = LayerNorm (X + Multihead(X, X, X)), rF'F is a row-wise FF layer
applied to the input matrix and LayerNorm is the layer normalization [§].

5.2 Bipartite Aggregation

The idea of bipartite aggregation comes from GarNet architecture in [36]. Gar-
Net is a distance-weighted graph network that partitions nodes into two groups:
regular nodes of input elements and k aggregators, with both groups sharing the
same node space. The original GarNet uses FF networks to measure the ‘dis-
tance’ between the input elements and these aggregators and aggregates informa-
tion from elements to aggregators using a distance-weighted potential function.
Instead of using the potential function and physical positions to interpret the
relationship between track nodes and aggregators, we use the neural network to
learn the affinity scores dynamically among network nodes.

The trigger decision is a graph-level prediction and requires local and global
pooling. Experiments in [30] show that sophisticated pooling algorithms have
no significant advantages over simple global pooling. The problem arises from
the one-way rigid pooling mechanism that aggregates limited, sometimes biased
information from the lower layer to the higher layer while ignoring the reverse
information flow for distributing the aggregator information back to the low-level
graph nodes for adjustment and adaptation. We propose an iterative message
passing between two sides of networks, i.e., two-way gathering (from track nodes
to aggregators)/scattering (from aggregators to track nodes) operations to re-
solve the missing link and inflexibility caused by the standard pooling algorithm.

Figure 6 shows a complete bipartite graph that consists of two type of nodes:
track nodes X = {Zy, ..., #,} and aggregators A = {dy, ..., dx}. Our track graph
uses aggregators to gather/disseminate information, where each track node is
connected to each aggregator. The aggregators in our problem setting are closely
related to two physics notions: the primary vertex where a physics event of
collision happens and the secondary vertices where particles decay.

Each aggregator gathers information from all elements via the edges. The
embedding of the edge between the ith element and the jth aggregator is

gij = sijfi,where S = O’(FFagg(X))

In the above equation, E = {e;;} € R*kxd represents the message from track
nodes to aggregators, and S = {s;;} € RKX’“ is the score matrix between track
nodes and aggregations nodes. FF,z, is a feed-forward neural network that as-
signs k weights to each element in X. The FF,,, acts as a gate function to the
k aggregators, with each output weigh s;; determining node 4’s contribution to
the j-th aggregators, and o is an activation function. After all information flows
through the neural network gates in FF,q,, each aggregator performs a readout
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Fig. 6: Bipartite Graph formed by Elements and Aggregators.

function on its gathered node information from tracks. We define the aggregator
function as follows:

A = readout(E), where A € R**%4.

In our model, we concatenate the result of the mean and maximum readout
functions and assign them to each aggregator.

Given the fixed number of aggregators, once we aggregate the information
from elements to aggregators, we treat the k aggregators as a global graph em-
bedding vector g € R**2?. Then we concatenate this global vector with each
track node vector to implement the by-pass connection in Figure 5 and then
apply another feed-forward network to update each node vector. This by-pass
design allows us to scale the network stack into deep layers for complex event
detections.

z;, = FFNode(Concat(z;, g))

The bipartite aggregators first extract the local information to a global vec-
tor. Then the global information is fed back to each element by concatenation. It
generates an information cycle from local to global, then back to local. Consid-
ering also the Set Attention Block that allows the pairwise information exchange
between elements, by repeating our SEBA block several times, the intra-set re-
lationship is well explored by our model.

6 Experiment Results

6.1 Dataset and Experiment Settings

Our experiment utilizes a simulation dataset®. We simulate the physics pro-
cess with the PYTHIA8.3 package [41] and the GEANT4 simulation toolkit [5,7].
PYTHIAS is a software package simulating QCD processes in small collisions sys-
tems and has been widely validated at many colliders [6,32,42]. GEANT4 is a
package that simulates the passage of particles and radiation through matter.

® Some example data files can be found at https://github.com/sPHENIX-
Collaboration/HFMLTrigger.
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Table 1: Performance of Momentum Regression Models. MLP-n indicates an
MLP with 4 layers and hidden dimensions of size n. Denote Pearson’s R as P’s
R and Spearman’s R as S’s R.

All tracks Tracks with at least 3 hits
Method R*> PsR SsR R* PsR SsR
LS -116.18 0.0997 0.9376 -117.40 0.0999 0.9618
MLP-8 0.9071 0.9524 0.9534 0.9071 0.9524  0.9534

MLP-256 0.9100 0.9540 0.9564 0.9100 0.9540 0.9564

For this project, only the three-layer MVTX and two-layer INTT detectors are
simulated because they are the only detectors capable of operation fast enough
to achieve the goal of extremely high speed online data analysis and decision
making. It has been extensively validated from previous physics experiments
that a high-level agreement exists between the simulation data and real data [4].
Our model will be used to filter data in the real experiment that will start taking
data in February 2023. The simulation data supporting the findings of this study
are available from the corresponding author upon reasonable request®.

The input vector for each track consists of coordinates of five hits in each
detector layer, the length of each track segment, the angle between segments
sequentially, and the total length of the track. The number of tracks per event
varies from several to dozens. The coordinates of the geometric center of all the
hits in the graph are calculated as complementary features to ease the down-
stream learning task. We also use the LS-estimated radius as another feature.
All of the experiments, unless otherwise noted, use 1,000,000 training samples,
400, 000 validation samples, and 400, 000 test samples. All models use the same
pre-split training, validation, and test data sets, to ensure no information leakage
and fair comparison. We adopt the Adam optimizer with a decayed learning rate
from le — 4 to 1le — 5 in 50 epochs for all the training experiments. Experiments
are run on various GPU architectures, including NVIDIA Titan RTX, A5000,
and A6000. All baselines and our model are implemented using PyTorch [34]
and PyTorch Geometric [18]. The code is publicly available on GitHub. 7.

6.2 Transverse Momentum Estimation

We compare two methods for estimating the transverse momentum. The trans-
verse momentum pr is linearly proportional to the radius of a track R, as shown
in Equation 2. Here, we use a constant magnetic field with B = 1.4 T in our
dataset settings. We estimate the radius R using the LS fitting described in Sec-
tion 4. If there are not enough hits to estimate the radius using LS fitting, we
set the estimated radius to be zero.

6 Please contact yu.sun@sunriseaitech.com for data access.
" https://github.com/Sunrise-AI-Tech/ECML2022-TriggerDetectionFor TheSPHENIX
ExperimentViaBipartiteGraphNetworksWithSet Transformer


mailto:yu.sun@sunriseaitech.com
https://github.com/Sunrise-AI-Tech/ECML2022-TriggerDetectionForTheSPHENIXExperimentViaBipartiteGraphNetworksWithSetTransformer
https://github.com/Sunrise-AI-Tech/ECML2022-TriggerDetectionForTheSPHENIXExperimentViaBipartiteGraphNetworksWithSetTransformer
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Table 2: Comparison to Baseline Models with Estimated Radius.

with LS-radius without radius
Model #Parameters Accuracy AUC #Parameters Accuracy AUC
Set Transformer 300,802 84.17% 90.61% 300,418 69.80% 76.25%
GarNet 284,210 90.14% 96.56% 284,066 75.06% 82.03%
PN+SAGPool 780,934 86.25% 92.91% 780,678 69.22% 77.18%
BGN-ST 355,042 92.18% 97.68% 354,786 76.45% 83.61%

We make several observations on the py estimation results in Table 1. The LS
estimated pr achieves a high degree of correlation with the true py as measured
by Spearman’s R. However, the low value of Pearson’s R and the highly negative
coefficient value of determination indicate a poor linear correlation between the
two. We hypothesize that this is due to outliers because some tracks occasionally
produce an impossibly large estimated pp. Using an MLP on the track to refine
the LS pr results seems to be highly effective, with all three correlation coeffi-
cients indicating that the models are highly predictive of the true pr even with
a small neural network. Noticeably, however, for tracks with at least three hits,
the LS method outperforms the MLP method for Spearman’s R. This might
explain similar performance on triggering when using the LS-estimated pr and
the MLP-estimated pp shown in Table 3.

6.3 Trigger Detection

Baselines. We compare our model with the ParticleNet(PN)+SAGPool method
proposed in [45]. We also use Set Transformer and GarNet as our baselines be-
cause they are also well-suited to the problem of classifying a set of tracks. For
Set Transformer, we use hidden dimension of 128 and four attention heads. For
GarNet, we set hidden dimension of 64 and sixteen aggregators. For BGN-ST,
we also use hidden dimension of 64 and sixteen aggregators. We use two-layer
neural network architecture for all three models. The PN+SAGPool model has
two stages. The first stage uses PN to generate an affinity matrix and track em-
beddings. Three edge-convolutional layers are used, with the hidden dimensions
of 64, 128, and 64, respectively. All three edge-convolutional layers use 15 nearest
neighbors when updating the node embeddings. The second stage includes the
Sagpool layer aggregating the embeddings to perform trigger prediction. Sagpool
uses three hierarchical pooling layers with a pooling ratio of 0.75.

Table 2 compares the performance between BGN-ST and the baseline mod-
els. From Table 2, we observe that BGN-ST outperforms all other methods by a
significant margin. It usually takes no more than one day to train the Set Trans-
former, GarNet and BGN-ST on a single GPU card. The baseline PN4+SAGPool
has more parameters than ours. It takes two to three days to train the baseline
model PN-+SAGPool.

Effect of Transverse Momentum Estimation. Table 2 shows the performance
comparison between different models with or without radius. From the table, we
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Table 3: Comparison of BGN-ST with LS-Estimated Radius and MLP-Refined
Radius. A three-layer model with sixteen aggregators is used in the experiment.

LS MLP
Hidden dim Accuracy AUC Accuracy AUC
32 91.52% 97.33% 91.48% 97.31%
64 92.18% 97.68% 92.23% 97.73%

128 92.44% 97.82% 92.49% 97.86%

Table 4: Hyperparameter Grid Search for BGN-ST

Hyperparameter Range
Hidden dim 32, 64, 128, 256
#Aggregators 8, 16, 32
#Layers 2,3
Activations ReLU, Tanh, Potential, Softmax

observe both accuracy and AUC jump by 15% when the radius is added to all
these four models under the same model setting.

Effect of Refining Transverse Momentum Estimate with an MLP. From Table 3,
it is clear that further refining the momentum with an MLP trained to predict
the momentum from the track and the LS-estimated radius does not yield any
tangible improvement in the model performance. This applies to both the smaller
and larger models.

Ablation Study of Hyperparameters. We perform a grid search on hyperparam-
eters in Table 4 to find the best setting for trigger detection with BGN-ST.

We compare activation functions for aggregators in Table 4 in a two-layer
BGN-ST with 64 hidden dimensions and 16 aggregators. The table shows that
Softmax has the highest accuracy and AUC score among all choices.

We also undertook some other ablation studies. Figure 7 shows the accuracy
comparison for different hidden dimensions, the number of aggregators, and lay-
ers. A larger model tends to perform better, but the number of parameters also
increases exponentially. Our best performance is using a three-layer model with
256 hidden dimensions and 32 aggregators. The best accuracy for the test dataset
is 92.52%, and the best AUC score is 97.86%.

7 Conclusions

This paper details a novel Bipartite GNN architecture with a set transformer
that uses the set attention mechanism to enhance the tracking with event features
and ease the modeling of particle interactions in physics. Our model architecture
benefits the pairwise interactions between tracks and allows a two-way scattering
and gathering for effective information exchange and adaptive graph pooling.
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Table 5: Ablation Study of Activations

Activation Accuracy AUC
ReLU 90.74% 96.87%
Tanh 90.19% 96.58%
Potential 90.41% 96.75%
Softmax 92.18% 97.68%

Test Accuracy with 16 Aggregators Test Accuracy with 3 Layers

024 @ 2laygers -@- 8 Aggregators
7| &= 31aygers - 16 Aggregators
32 Aggregators

92.2

Accuracy (%)
©
N
°

©
®

©
o

> = > T > = > P
Hidden Dimension Hidden Dimension

Fig. 7: Accuracy performance in respect to hidden dimension for two/three-layer

models and different number of aggregators.

We empirically validate that BGN-ST outperforms all selected state-of-the-art
methods. The paper adopts the physics-aware concept and introduces explicit
physics properties such as transverse momentum. As a result, we improve the
model accuracy and AUC score by about 15%.
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