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Abstract. We study a multi-armed bandit problem with clustered arms
and a unimodal reward structure, which has applications in millimeter
wave (mmWave) communication, road navigation, etc. More specifically,
a set ofN arms are grouped together to form C clusters, and the expected
reward of arms belonging to the same cluster forms a Unimodal function
(a function is Unimodal if it has only one peak, e.g. parabola). First,
in the setting when C = 1, we propose an algorithm, SGSD (Stochas-
tic Golden Search for Discrete Arm), that has better guarantees than
the prior Unimodal bandit algorithm [Yu and Mannor, 2011]. Second,
in the setting when C ≥ 2, we develop HUUCB (Hierarchical Uni-
modal Upper Confidence Bound (UCB) algorithm), an algorithm that
utilizes the clustering structure of the arms and the Unimodal struc-
ture of the rewards. We show that the regret upper bound of our algo-
rithm grows as O(

√
CT log(T )), which can be significantly smaller than

UCB’s O(
√

NT log(T )) regret guarantee. We perform a multi-channel
mmWave communication simulation to evaluate our algorithm. Our sim-
ulation results confirm the advantage of our algorithm over the UCB
algorithm [Auer et al., 2002] and a two-level policy (TLP) proposed in
prior works [Pandey et al., 2007]. 1

1 Introduction

1.1 Motivation

The multi-armed bandit (MAB) problem [Thompson, 1933] models many real-
world scenarios where a decision maker learns to take a sequence of action (arms)
to maximize reward. Here, the decision maker is given access to an arm set, and
chooses an arm from the arm set resulting in a reward drawn from an unknown
distribution. The objective of the decision maker is to maximize its expected
cumulative reward over a time horizon of T . To this end, it faces a tradeoff
between exploration and exploitation.

In this work, we consider a multi-armed bandit problem with clustered arms,
where the arm set can be partitioned into C clusters, and each cluster’s rewards
exhibits a unimodal structure. This arises naturally in various decision problems,
as shown in the following two examples:
1 This work was partly supported by ONR YIP grant N00014-16-1-2650. The authors
would like to thank Zhiwu Guo for his help on drawing figures, and the anonymous
reviewers for their helpful comments.
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Fig. 1. Road navigation example: each route represents a cluster. The arms in each
cluster are represented by different speeds. For cluster (route) 1, it contains v1 =
60mph, v2 = 75mph, v3 = 90mph). The safety indices for speeds in route 1 are p1 =
0.9, p2 = 0.8, p3 = 0.5. The expected reward values in cluster 1 are r1 = 150, r2 = 155
and r3 = 140. For cluster (route) 2, it contains v4 = 30mph, v5 = 45mph, v6 = 60mph).
The safety indices for speeds in route 2 are p4 = 0.9, p5 = 0.8, p6 = 0.5. The expected
reward values in route 2 are r4 = 120, r5 = 125 and r6 = 110. We can see that each
cluster’s expected reward function has only one peak, which satisfies the Unimodal
property.

Example 1: Road navigation. A person driving from A to B has the option to
choose two routes: highway and local way. After choosing a route, she needs to
further choose a speed. In this example, a (route, speed) combination corresponds
to an arm, and a route corresponds to a cluster. The expected reward (Utility) is
defined as follows: rj = vj +10× pj , where vj denotes velocity for arm j and pj
denotes safety [Sun et al., 2018] for arm j. Note that, if velocity increases, safety
will decrease, and thus, each cluster’s reward structure is oftentimes Unimodal.
See Fig. 1 for a numerical example.

Example 2: Multi-channel mmWave communication. Let us consider optimal
antenna beam selection for a mmWave communication link with multiple fre-
quency channels. Theoretical analysis [Wu et al., 2019] and experimental results
[Hashemi et al., 2018] indicate that the received signal strength (RSS) function
over the beam space in the channel with a single path (or a dominant line-of-
sight path) can be characterized by a Unimodal function. Our goal is to select
the best channel and beam combination to maximize the link RSS. In this exam-
ple, the arm is the combination of frequency channel and beam, and the reward
is the signal strength. We regard the beams under each channel as a cluster.
Our goal is to select the optimal channel and beam for communication in an on-
line manner. In Fig. 2, we provide an illustration of the multi-channel mmWave
communication example.

1.2 Related work

Bandits with hierarchical structures Hierarchical bandit problem, where
the arm space is partitioned into multiple clusters, has been studied in Nguyen
and Lauw [2014], Jedor et al. [2019], Bouneffouf et al. [2019], Carlsson et al.



Hierarchical Unimodal Bandits 3

Fig. 2. Multi-channel mmWave communication example. There are two channels: f1 =
28GHz, f2 = 28GHz+100MHz (These two frequencies are based on 3GPP TS 38.101-
1/2, 38.104-1/2 [Lopez et al., 2019]). For each channel, the algorithm can select three
beams. Experimental results in Hashemi et al. [2018] show that the RSS function over
the beam space in a fixed frequency is a Unimodal function.

[2021]. These papers give regret bounds under different assumptions on the clus-
tering. Specifically, Pandey et al. [2007] proposed a Two-level Policy (TLP) al-
gorithm. It divided the arms into multiple clusters. However, their work does
not provide a theoretical analysis of the algorithm. Zhao et al. [2019] proposed a
novel Hierarchical Thompson Sampling (HTS) algorithm to solve this problem.
The beams under the same chosen channel can be regarded as a cluster of arms
in MAB. However, it does not utilize the Unimodal property in each cluster.
Bouneffouf et al. [2019] considered a two-level UCB scheme that the arm set is
pre-clustered, and the reward distributions of the arms within each cluster are
similar. However, they did not consider the Unimodal property in each cluster.
Jedor et al. [2019] introduced a MAB setting where arms are grouped in one of
three types of categories. Each type has a different ordering between clusters,
and our work does not have such assumption among the clusters. Yang et al.
[2022] considered a problem of online clustering: a set of arms can be partitioned
into various groups that are unknown. Note that the partition of cluster is time-
varying, and we study a different setting where the clusters are pre-specified.
Kumar et al. [2019] addressed the problem of hidden population sampling prob-
lem in online social platforms. They proposed a hierarchical Multi-Arm Bandit
algorithm (Decision-Tree Thompson Sampling (DT-TMP)) that uses a decision
tree coupled with a reinforcement learning search strategy to query the combina-
torial search space. However, their algorithm is based on Thompson Sampling,
and no theoretical analysis of its regret is given. Singh et al. [2020] studies a
multi-armed bandit problem with dependent arms. When an agent pulls arm i,
it not only reveals information about its own reward distribution but also reveal
all those arms that belong to the same cluster with arm i, which is not the case
in our problem. Carlsson et al. [2021] proposed a Thompson Sampling based
algorithm with clustered arms, and give a regret bound which depends on the
number of clusters. However, they do not utilize the Unimodal property as well.
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Unimodal bandit In a Unimodal bandit problem, the expected reward of arms
forms a Unimodal function. Here, specialized algorithms have been designed to
exploit the Unimodality structure, to achieve faster convergence rate (compared
to standard bandit algorithms such as UCB). Yu and Mannor [2011] is the first
work to propose an algorithm for Unimodal bandits for both continuous arm and
discrete arm settings. Combes and Proutiere [2014] proposed Optimal Sampling
for Unimodal Bandits (OSUB), and exploits the Unimodal structure under the
discrete arm setting. They provided a regret upper bound for OSUB which does
not depend on the number of arms. Zhang et al. [2021] showed that the effective
throughputs of mmWave codebooks possess the Unimodal property and proposed
a Unimodal Thompson Sampling (UTS) algorithm to deal with mmWave code-
book selection. However, both papers only consider Unimodal property without
clustered arms. Blinn et al. [2021] proposed Hierarchical Optimal Sampling of
Unimodal Bandits. The difference with our work is that they use the OSUB al-
gorithm to select an arm in each cluster, and they did not provide a theoretical
regret analysis.

1.3 Main Contributions

Our main contributions can be summarized as follows:

1. In the single-cluster setting (C = 1), we propose a new Unimodal ban-
dit algorithm, called Stochastic Golden Search with Discrete arm (SGSD),
that improves over an existing Unimodal bandit algorithm [Yu and Mannor,
2011], in that it simultaneously achieves gap-dependent and gap-independent
regret bounds. In addition, its regret bounds are competitive with UCB, and
can sometimes be much better.

2. In the multi-cluster setting (C ≥ 2), built on the SGSD, we present a UCB-
based, hierarchical Unimodal bandit algorithm, called HUUCB, to solve the
MAB with Clustered arms and a Unimodal reward structure (MAB-CU)
problem. The key insight is a new setting of reward UCB for each cluster,
taking into account the regret incurred for each cluster. We prove a gap-
independent regret bound for this algorithm, and show that they can be
better compared with the baseline strategy of UCB on the “flattened” arm
set.

3. We evaluate our algorithms experimentally in both the single-cluster setting
and the multi-cluster setting, using two different datasets (synthetic/simulated).
(a) In the single-cluster setting, our SGSD algorithm outperforms UCB.
(b) In the multi-cluster setting, our HUUCB algorithm outperforms UCB

with flatten arms, and TLP [Pandey et al., 2007].

2 Hierarchical Unimodal Bandits: Problem Setup

The problem statement is as follows: There are N arms available and each arm
j’s reward comes from a particular distribution (supported on [0, 1]) with an
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Algorithm 1 Stochastic Golden Search for discrete arm (SGSD)
1: Parameters: ε1, .... > 0:
2: Initialize xA = 0,xB = 1

φ2 , xc = 1 (φ = 1+
√
5

2 )
3: for each stage s = 1, 2, ...S, do
4: if there has more than one discrete arms j/N in [xA, xC ] then
5: Let

x′B =

{
xB − 1

φ2 (xB − xA) xB − xA > xC − xB
xB + 1

φ2 (xC − xB) otherwise,

6: Obtain the reward of each continuous point {xA, xB , x′B , xC} according
to Alg. 2, each point for 2

ε2s
log(8T ) times, and let x̂ be the point with

highest empirical mean in this stage
7: If x̂ ∈ {xA, xB} then eliminate interval (x′B , xC ] and let xC = x′B ,
8: else eliminate interval [xA, xB) and let xA = xB
9: else

10: Break
11: end if
12: Keep pulling the only discrete arm j/N in [xA, xC ]
13: end for

unknown mean µj . The arms are partitioned to C clusters, where we denote
Clusteri as the i-th cluster. In each cluster i, we assume that the expected
rewards of arm j ∈ Clusteri form a Unimodal function (a function is Unimodal
if the function has only one local maximum, e.g. a negative parabola). We assume
that every cluster have the same number of arms B, therefore, N = CB.

The Multi-armed bandit (MAB) model focuses on the essential issue of trade-
off between exploration and exploitation [Auer et al., 2002]. At each time step,
the algorithm selects one arm jt. Then a reward of this arm is independently
drawn, and observed by the algorithm. The objective of the algorithm is to
gather as much cumulative reward as possible. The expected cumulative regret
can be expressed as (Bubeck and Cesa-Bianchi [2012]):

E[R(T )] =

T∑
t=1

(µj∗ − µjt) (1)

where j∗ = argmaxj∈{1,...,N} µj is the optimal arm, T is the total number of
time steps. Note that the algorithm only observes the reward for the selected
arm, also known as the bandit feedback setting.

3 Algorithm for the Single-Cluster setting

We first study the single-cluster setting (C = 1), where the problem de-
generates to a Unimodal bandit problem [Yu and Mannor, 2011, Combes and
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Algorithm 2 Reward sampling algorithm for an arbitrary continuous point x′

1: Input: x′
2: Output: a stochastic reward of conditional mean f(x′) (Eq. (2))
3: j = bNx′c
4: set

l =

{
j with probability j + 1−Nx′

j + 1 otherwise,

5: r ← reward of pulling arm l
6: return r

Proutiere, 2014]. One drawback of prior works is that their guarantees have lim-
ited adaptivity: achieving gap-dependent and gap-independent regret bounds
require setting parameters differently. In this work, we provide an algorithm
that simultaneously enjoys gap-dependent and gap-independent regret guaran-
tees, which is useful for practical deployment. Our algorithm is built on the SGS
algorithm [Yu and Mannor, 2011], and we call it SGS for discrete arm setting
algorithm (SGSD), namely, Algorithm 1.

The high level idea of SGSD is to reduce the discrete-arm Unimodal bandits
problem to a continuous-arm Unimodal bandits, and use the SGS algorithm in
the continuous arm setting. Specifically, given a discrete-arm Unimodal bandit
problem µ1, . . . , µN , we associate every arm j to a point j/N in the [0, 1] interval
and perform linear interpolation, inducing a function

f(x) = µj · (j + 1−Nx) + µj+1 · (Nx− j), x ∈ [j/N, (j + 1)/N) (2)

over the continuous interval [0, 1], and use SGS to optimize it. Observe that f
has minimum at x∗ = j∗/N , and for x ∈ [j/N, (j + 1)/N), bandit feedback of
f(x) can be simulated by pulling arms randomly from {j, j + 1} (Algorithm 2;
see subsequent paragraphs for more details). To this end, it narrows down the
sampling interval, maintaining the invariant that with high probability, j∗/N ∈
[xA, xC ].

The SGSD algorithm proceeds as follows: first, the algorithm initialize pa-
rameters xA = 0,xB = 1

φ2 , xc = 1 (line 2 in Alg. 1, where φ = 1+
√
5

2 ). In line 4,
the algorithm checks the number of discrete arms in the range [xA, xC ]; if only
one arm j/N is in the range [xA, xC ], with high probability, it must be the case
that j = j∗, i.e. we have identified the optimal arm – in this case, the algorithm
breaks the loop and keep pulling that arm (line 12). Then, given three points
xA < xB < xC where the distance of xB to the other two points satisfy the
golden ratio. The reason we choose three point is to ensure the elimination of
a constant fraction of the sample interval that does not contain j∗/N in each
iteration. Note that xB may be closer to xA or to xC depending on the past
updating value of the SGSD algorithm. The point x′B is set in the larger interval
between xB − xA and xC − xB (The updating procedure for x′B is in Alg. 1’s
line 5). If we set xC − xA = `, the following equalities hold at any step of SGS
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algorithm: xB − xA = `
φ2 , x

′
B − xB = `

φ3 , xC − x′B = `
φ2 . Then, we eliminate

[xA, xB) or (x′B , xC), depending on whether the smallest empirical mean value
is found in set {xA, xB} or {x′B , xC} (Shown in Alg. 1’s line 7 and 8). Algorithm
1 gives the detail of the algorithm.

Note that we convert the expected rewards of discrete arms into a contin-
uous function, we need to simulate noisy values of f on {xA, xB , x′B , xC} via
queries to the discrete arms {1, . . . , N}. We use Alg. 2 to calculate such “virtual”
instantaneous rewards. Given input arm x′ ∈ [0, 1], we determine the interval
[j/N, (j+1)/N) that x′ belongs to (Alg. 2’s line 3). In each iteration, we obtain
its reward by the probabilistic sampling of the two discrete arms in x’s neigh-
borhood (where the sampling probability of each neighboring arm is shown in
line 4), such that the output reward has expectation f(x′) (Shown in Alg. 2’s
line 4 -line 5).

To analyze Algorithm 1, we make the following assumptions similar to Yu
and Mannor [2011]:

Assumption 1. (1) µ is strongly Unimodal: there exists a unique maximizer j∗
of µ1, . . . , µN

2.
(2) There exist positive constants DL and DH > 0 such that

∣∣µj − µj+1

∣∣ ≤
DH , and

∣∣µj − µj+1

∣∣ ≥ DL for all j ∈ {1, . . . , N}.

Assumption 1.(1) ensures that the continuous function has one peak value.
The valid domain of assumption 1.(2) is on both [0, vj∗ ] and [vj∗ , 1]. Note that
each neighbor is connected by linear interpolation. So, our new continuous func-
tion has the lowest slope value which is determined by linear interpolation and
DL. Then, we have the following regret bound.

Theorem 1. Under Assumption 1, the expected regret of Alg. 1, with εs =
NDLφ

−(s+3), is:

E[R(T )] ≤ O

(
min

{
DH

DL
log(8T )

√
T ,

DH

(DL)2
log(8T )

})
. (3)

The proof of the first bound in Theorem 1 is inspired by the analysis of SGS
in Yu and Mannor [2011] after linear interpolation to reduce the discrete-arm
setting to a continuous-arm setting. The second bound is inspired by the proof
of Theorem IV.4 in Yu and Mannor [2011]. From Theorem 1, we can see that
the upper bound is independent of the number of arms. However, it depends on
the problem-dependent constants (DL, DH).

We now compare this regret bound with that of the UCB algorithm Auer
et al. [2002]. UCB has a gap-independent regret bound of O(

√
TN log(T )), and

gap-dependent regret bound of O(
∑
j 6=j∗

log(T )
∆j

) (where∆j = µj∗−µj). Then, we
examine UCB’s gap-dependent bound in terms of DH . Note that, the function is
a Unimodal function, and the number of arms on either the left or the right side
of the optimal arm j∗ must be greater than N

2 . Then, the gap-dependent regret

2 Strong Unimodality means that it only has one optimal arm among the arm set.
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Algorithm 3 Hierarchical Unimodal UCB Algorithm
1: Input: DH , DL

2: For each cluster i = 1, . . . , C: ν̂i(0) = 0,Mi(0) = 0, initialize Ai, a copy of
Alg. 1.

3: For each arm j = 1, . . . , N : µ̂j(0) = 0,mj(0) = 0
4: for t = 1, 2, ...N, do
5: Play arm j = t, and update corresponding µ̂j(t),mj(t) = 1 ,
6: end for
7: for each cluster i do
8: Mi(t) =

∑
j∈Clusterj

mj(t)

9: ν̂i(t) =
∑
j∈Clusteri

mj

Mi
µ̂j(t)

10: end for
11: for stage t = N + 1, N + 2, ..., do
12: Choose the cluster

it := argmax

ν̂i(t) +
√

2 log(t)

Mi(t)
+
DH

DL

√
log(t)

Mi(t)

 , (4)

13: Resume Ait and run it for one time step, select an arm jt ∈ Clusterit , and
obtain the reward of selected arm rjt(t) at stage t

14: Update empirical mean rewards and counts for all clusters:

(ν̂i(t),Mi(t)) =


(
ν̂i(t−1)·Mi(t−1)+rjt (t)

Mi(t−1)+1 ,Mi(t− 1) + 1
)
, i = it,(

ν̂i(t− 1),Mi(t− 1)
)
, i 6= it.

15: end for

bound of UCB must be larger than
∑N/2
j=1

log(T )
jDH

= log(T )
DH

∑N/2
j=1

1
j = Ω(log(N2 ) ·

log(T )
DH

). We therefore see that the regret bound of the UCB algorithm depends on
the number of arms in both gap-independent and gap-dependent bounds, which
does not apply to SGSD.

4 Hierarchical Unimodal UCB Algorithm

We now turn to study the more challenging multi-cluster setting (C ≥ 2).
Existing works such as Two-Level Policy (TLP, Pandey et al. [2007]) approaches
this problem using the following strategy: treat each cluster as a “virtual arm”,
and view the cluster selection problem (which we call inter-cluster selection) as a
stationary MAB problem. In each step, the TLP algorithm chooses a virtual arm
first using UCB, and then an actual arm within the selected cluster using some
intra-cluster arm selection algorithm. However, due to the nonstationary nature
of the rewards within a cluster (as the intra-cluster arm selection algorithm
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may gradually converge to pulling the cluster’s optimal arm), TLP do not have
theoretical guarantees.

In contrast, in this section, we propose a Hierarchical Unimodal UCB Algo-
rithm (HUUCB) (Alg. 3) that has a provable regret guarantee. Our algorithm
design follows the “optimism in the face of uncertainty” principle: clusters are
chosen according to their optimistic upper confidence bounds on their maximum
expected rewards νi = maxj∈Clusteri µj ’s, a property not satisfied by TLP. This
ensures a sublinear regret for the cluster selection task. The algorithm proceeds
as follows: it first takes into DH , DL as inputs, which are the reward gap pa-
rameters specified in Assumption 1. Then, the initialization phase (lines 4 to 10)
begins by selecting each arm at least once to ensure Mi(t) and ν̂i(t) are up-
dated. Mi(t) is number of times that cluster i has been selected and ν̂i(t) is the
empirical mean value for the cluster i. Once the initialization is completed, the
algorithm selects the cluster that maximizes our designed UCB (Equation 4).
From the equation, we can see that the UCB for cluster i,

ν̂i(t) +

√
2 log(t)

Mi(t)
+
DH

DL

√
log(t)

Mi(t)

is the sum of three terms. The first term is the empirical mean value of theMi(t)
rewards obtained by pulling the arms in the cluster i. The second term accounts
for the concentration between the sum of the noisy rewards and the sum of their
corresponding expected rewards. The third term is new and unique to HUUCB
– it accounts for the suboptimality of the arm selection in cluster i by SGSD so
far, calculated by dividing SGSD’s regret O

(
DH

DL

√
Mi(t)

)
by Mi(t). The three

terms jointly ensures that the UCB is indeed a high-probability upper bound of
νi. In line 13, algorithm 3 selects an arm jt ∈ Clusterit using Ait after selecting
a cluster it and obtaining the reward rjt (Ait is a copy of Alg. 1 for cluster it).
Last, in line 14, the algorithm updates the chosen cluster it’s statistics, empirical
reward mean ν̂it(t) and count Mit(t). Other clusters’ statistics remain the same
as time step t− 1.

We have the following regret guarantee of Algorithm 3:

Theorem 2. If each cluster satisfies Assumption 1, the regret of Hierarchical
Unimodal UCB is upper bounded by,

E[R(T )] ≤ O
(
DH

DL

√
2CT log(T )

)
, (5)

where C is the number of clusters.

Outline of the proof for Theorem 2: First, we define the event

E =

|ν̂i(t)− νi| ≤
√

2 log(T )

Mi(t)
+
DH

DL

√
log(T )

Mi(t)
,∀i, t

 .

Without loss of generality, assume that Cluster1 contains the globally optimal
arm. The high-level idea of the proof is as follows:
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(1) We bound the regret incurred when the algorithm chooses cluster i 6= 1
when the event E holds.

(2) We bound the probability of the event E does not happen using Azuma’s
inequality.

(3) Lastly, we bound the regret incurred when the algorithm chooses optimal
cluster Cluster1 but selects a sub-optimal arm using Theorem 1. The detailed
proof is in Appendix.

Remark: Theorem 2 shows that the regret bound depends on the number of
clusters (instead of the number of arms) because we incorporate the SGSD algo-
rithm. Compared to the “flattened” UCB algorithm with a total of N = CB arms
(B is the number of arms in each cluster), whose regret is O(

√
TCB log(T )),

when DH

DL
�
√
B, HUUCB has a much better regret.

Alternatively, we can also apply a general bandit model selection algorithm
over SGSD for the MAB-CU problem. Specifically, we regard each cluster i’s
algorithm as a base algorithm defined in [Abbasi-Yadkori et al., 2020, Cutkosky
et al., 2021]. In our problem, C is the number of the base algorithm. Then, we
define Ri(T ) as the regret upper bound for cluster i, represented as

Ri(T ) ≤ O
(
DH

DL
log(T )

√
T

)
≤ const1di log(T )

√
T , (6)

where const1 is a positive constant independent of T and i, di = DH

DL
. According

to Theorem 2.1 in [Abbasi-Yadkori et al., 2020], the regret is upper bounded by,

E[R(T )] ≤ Cmax
i
Ri(T ) ≤ Cconst1di log(T )

√
T , (7)

Comparing (5) and (7), we can see that our result is better than their result
(Our result’s C term (number of cluster) is in the square root). According to
Theorem 1 in [Cutkosky et al., 2021], the regret is upper bounded by,

E[R(T )] ≤ O
(√

CT + (C
1
2 (
DH

DL
)2 +

DH

DL
+ C

1
2 ) log(T )T

1
2

)
, (8)

Comparing (5) and (8), we can see that our result is better than their result
(Our result’s log(T ) term is in the square root).

5 Experiments

We aim to answer the following questions through experiments:

1. Can SGSD outperform other algorithms in Unimodal bandit environments?
2. Can HUUCB outperform other hierarchical bandit algorithms (such as TLP)

in MAB-CU environments? Meanwhile, we intend to validate whether the
simulation result conforms to our theoretical analysis – specifically, does
HUUCB’s new DH

DL

√
const
Mi(t)

bonus term help in cluster selection?
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To answer these questions, we consider two sets of experiments:

1. Learning in a synthetic Unimodal bandit setting, taken from Combes and
Proutiere [2014]. First, we consider N = 17 arms with Bernoulli rewards
which µ = [0.1, 0.2...0.9, 0.8...0.1] and the rewards are Unimodal. Then, we
consider N = 129, and the expected rewards form a triangular shape as in
the previous example N = 17 (µ is between [0.1, 0.9]). We evaluate three al-
gorithms: our SGSD algorithm, UCB [Auer et al., 2002], and OSUB [Combes
and Proutiere, 2014].

2. Bandit learning in the MAB-CU setting. We use a simulated environment of
multi-channel mmWave communication. We perform our simulations using
MATLAB. Recall from Section 1.1 that in this application, an arm is a com-
bination of channel and beam (chosen by the transmitter), and the reward is
the received signal strength (RSS) at the receiver. We regard the beams un-
der the same channel as a cluster. We fix the transmitter (i.e., base station)
at location [0,0], and we randomly generate four receiver locations from a
disk area with a radius of 10 meters. The base station is equipped with a
uniform linear array (ULA) with four antennas, which are separated by a
half wavelength. For the wireless channel model, we assume that there ei-
ther exists only one line-of-sight (LOS) path or one non-line-of-sight (NLOS)
path if the LOS path is blocked. We obtain the RSS under channel i and
beam j in each time step using Monte-Carlo simulations, following the free-
space signal propagation model: RSSij = αiP

TXGRXj GTXj ( λi

4πd )
2 [Molisch,

2012], where αi is the random path fading amplitude under channel i (since
there’s a dominant LoS path, αi is assumed to follow the Rician distribu-
tion [Samimi et al., 2016]), GRXj and GTXj are the gains of the receive and
transmit antennas for beam j (in the directions of angle-of-arrival (AoA)
and angle-of-departure (AoD)), respectively, λi is the wavelength for chan-
nel i (j ∈ Clusteri), d is the distance between transmitter and receiver,
and PTX is the transmit power. Note that, the AoA, AoD, distance d, and
fading αi are all unknown to the transmitter during the bandit algorithm
execution. We denote RSSij as the reward for beam j under channel i. The
system is assumed to operate at 28GHz center carrier frequency (based on
the 3GPP TS 38.101-1/2 standard Lopez et al. [2019]), has a bandwidth of
100 MHz, and uses 16-QAM modulation. We consider two scenarios: 1) two
channels (clusters): [28 ∼ 28.1, 28.1 ∼ 28.2] GHz, 2) five channels (clusters):
[27.8 ∼ 27.9, 27.9 ∼ 28, 28 ∼ 28.1, 28.1 ∼ 28.2, 28.2 ∼ 28.3] GHz. For each
channel, there are a total of 16 beams and we only consider TX beam selec-
tion (each beam’s width is 5 degrees and the step between adjacent beams’
angles is 10 degrees.).
We evaluate the following algorithms: (1) our HUUCB algorithm; (2) UCB
algorithm [Auer et al., 2002] and (3) Instantiations of the Two-level Policy
framework (TLP) of Pandey et al. [2007] using different base algorithms for
intra-cluster arm selection. In each step, the TLP algorithm chooses a cluster
first, and then an actual arm within the cluster is selected. The key difference
between algorithms under TLP framework and our HUUCB algorithm is
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Fig. 3. Comparison between UCB and SGSD algorithm under Unimodal setting
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Fig. 4. Comparison of cumulative regret among HUUCB and existing algorithms

that, TLP uses an aggressive confidence bound for selecting clusters, which
does not follow the “optimism in the face of uncertainty” principle, and does
not have theoretical guarantees. We consider TLP composed with three base
algorithms: first, UCB, which does not utilize the Unimodal property in each
cluster; second, SGSD, our Alg. 1; third, OSUB [Combes and Proutiere, 2014]
– we call the resulting algorithms TLP-UCB, TLP-SGSD, and TLP-OSUB
respectively.

5.1 Simulation Result

Fig. 3 shows the cumulative regret of our SGSD algorithm in the above-mentioned
synthetic Unimodal bandit setting. Regrets are calculated averaging over 100 in-
dependent runs. SGSD significantly outperforms the UCB algorithm. This is
because the UCB algorithm does not utilize the Unimodal property. Meanwhile,
the SGSD algorithm has better performance than the OSUB algorithm. We
speculate that SGSD’s improved performance is due to its use of DH and DL,
in contrast to OSUB.

Fig. 4(a) shows the cumulative regret of the joint beam and frequency selec-
tion with 5 clusters, and Fig. 4(b) shows the same result with 2 clusters. Regrets
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are calculated averaging over 20 independent runs. From Fig. 4(a) and 4(b), we
can see that HUUCB has lower regret than the UCB and TLP-UCB algorithm.
This result is consistent with our expectation since the Unimodal property in
each cluster can help the algorithm converge faster. Meanwhile, we can see that
our HUUCB algorithm has a similar performance as TLP-SGSD and TLP-OSUB
algorithms, and has the best performance in the 2-cluster setting.

To further examine the advantage of our proposed algorithm over the base-
line, we analyze the inter-cluster and intra-cluster cumulative regret of all algo-
rithms. Intra-cluster cumulative regret is the regret that the algorithm chooses
an arm that is not the optimal arm in the currently chosen cluster; formally,
Rintra(T ) =

∑T
t=1(νit − µjt). Inter-cluster cumulative regret is the regret that

the algorithm chooses a suboptimal cluster, i.e. the cluster that does not contain
the optimal arm; formally Rinter(T ) =

∑T
t=1(µj∗ − νit). It can be seen that the

regret can be decomposed as: R(T ) = Rintra(T )+Rinter(T ). From Fig. 5, we can
see that UCB and TLP-UCB algorithms incur both large inter-cluster cumula-
tive regret and intra-cluster cumulative regret. This is because both algorithms
do not fully utilize Unimodal and Hierarchical properties. Meanwhile, we can
see that HUUCB has comparable performance to TLP-SGSD. In the 2-cluster
setting, HUUCB has better inter-cluster regret than TLP-SGSD - this may be
due to the setting of the extra bonus term in HUUCB.

6 Conclusion

In this paper, we combine the ideas of the Hierarchical bandit and Unimodal
bandit algorithms and propose a novel Hierarchical Unimodal UCB algorithm.
First, we adapt the Stochastic Golden Search (SGS) algorithm into discrete
arm settings (called SGSD), and we derive a regret bound for SGSD. Then,
we propose a novel HUUCB algorithm that is based on the SGSD algorithm.
Simulation result shows that our HUUCB algorithm outperforms TLP-UCB,
using one benchmark dataset. For future work, we plan to derive a gap-dependent
log(T )-style regret bound for the HUUCB algorithm and validate the regret
bound in various simulation scenarios.
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