
Edge but not Least: Cross-View Graph Pooling

Xiaowei Zhou1,3, Jie Yin2�, and Ivor W. Tsang1,4

1 Australian Artificial Intelligence Institute (AAII), University of Technology Sydney,
NSW 2007, Australia

Xiaowei.Zhou@student.uts.edu.au, ivor.tsang@uts.edu.au
2 Discipline of Business Analytics, The University of Sydney, NSW 2006, Australia

jie.yin@sydney.edu.au
3 Data61, CSIRO, NSW 2015, Australia

4 Center for Frontier AI Research A*STAR, Singapore

Abstract. Graph neural networks have emerged as a powerful repre-
sentation learning model for undertaking various graph prediction tasks.
Various graph pooling methods have been developed to coarsen an in-
put graph into a succinct graph-level representation through aggregat-
ing node embeddings obtained via graph convolution. However, because
most graph pooling methods are heavily node-centric, they fail to fully
leverage the crucial information contained in graph structure. This paper
presents a cross-view graph pooling method (Co-Pooling) that explicitly
exploits crucial graph substructures for learning graph representations.
Co-Pooling is designed to fuse the pooled representations from both node
view and edge view. Through cross-view interaction, edge-view pooling
and node-view pooling mutually reinforce each other to learn informa-
tive graph representations. Extensive experiments on one synthetic and
15 real-world graph datasets validate the effectiveness of our Co-Pooling
method. Our results and analysis show that (1) our method is able to
yield promising results over graphs with various types of node attributes,
and (2) our method can achieve superior performance over state-of-the-
art pooling methods on graph classification and regression tasks.

Keywords: Graph Pooling · Graph Representation Learning.

1 Introduction

With widespread digitization occurring in various domains, a significant portion
of data takes the form of graphs, such as social networks, chemical molecular
graphs, and financial transaction networks. As such, learning effective graph
representations plays a crucial role in a variety of tasks, such as drug discovery,
molecule property prediction, and traffic forecast, etc. Recently, graph neural
networks (GNNs) have emerged as state-of-the-art models for graph represen-
tation learning, including graph convolutional network (GCN) [9], graph atten-
tion network (GAT) [20], graph isomorphism network (GIN) [22], and Graph-
SAGE [8]. Most of these GNN models rely on message passing to learn the em-
bedding of each node by aggregating and transforming the features of its neigh-

2 X. Zhou et al.

 50

 60

 70

 80

SAGPool ASAP DiffPool HGPSL

P
re

d
ic

ti
o

n
 a

c
c
u

ra
c
y
 (

%
) Edge Dropping Ratio

0%
20%
40%
60%
80%

100%

(a)

 50

 60

 70

 80

SAGPool ASAP DiffPool HGPSL

P
re

d
ic

ti
o

n
 a

c
c
u

ra
c
y
 (

%
) Edge Adding Ratio

0%
20%
40%
60%
80%

100%

(b)

Fig. 1: Classification accuracy on PROTEINS with different edge ratios. Accu-
racy does not significantly drop when different ratios of edges are (a) randomly
dropped from original graphs, or (b) randomly added from no-edge graphs.

bouring nodes. To obtain the representation of the entire graph, node embed-
dings are aggregated via a readout function or graph pooling methods [26,24,15,25].
Graph pooling methods coarsen an input graph into a compact vector-based rep-
resentation for the entire graph, which is then used for graph prediction tasks,
such as graph classification or graph regression.

To learn expressive graph representations, various graph pooling methods
have been proposed in recent years. Sampling based methods (e.g., SAGPool [10],
ASAP [15], HGPSL [26]) calculate an importance score for each node and then
select the top K important nodes to generate an induced subgraph. For exam-
ple, SAGPool [10] selects nodes by learning importance scores via a self-attention
mechanism. HGPSL [26] samples important nodes and uses an additional struc-
ture learning mechanism to learn new graph connectivity for the sampled nodes.
Clustering based methods, like differentiable graph pooling (DiffPool) [24], learn
an assignment matrix to cluster nodes into several super-nodes level by level.
Then, a hierarchy of the induced subgraphs can be generated for representing
the whole graph. Nonetheless, we argue that the existing pooling methods focus
primarily on aggregating node-level information, so they fail to exploit key graph
substructures for learning graph-level representations. The loss of information
present in the global graph structure would hinder message passing in subsequent
layers and consequently jeopardize the graph representation expressiveness.

To verify our argument, we select four state-of-the-art pooling methods: SAG-
Pool [10], ASAP [15], DiffPool [24], and HGPSL [26] and analyze the influence
of changing graph topological structure on the graph classification accuracy. We
use PROTEINS, a macromolecule dataset containing rich structural informa-
tion, as a case study, where we change graph topological structure by randomly
dropping and adding edges with different ratios. As shown in Fig. 1, we find that
the random edge manipulation does not cause a significant drop in the graph
classification accuracy. Surprisingly, when there are no edges at all, i.e., dropping
100% edges in Fig. 1(a) and adding 0% edges (no edges) in Fig. 1(b), the classifi-
cation accuracy still retains at the same level as other edge ratios. In particular,
for HGPSL (which implicitly uses edge information), the classification accuracy
is the highest when all edges are removed. Our empirical studies indicate that

Edge but not Least: Cross-View Graph Pooling 3

Generalized

PageRank

Node Scores

Graph before pooling Graph after pooling
Proximity weight

Calculate node

scores

Edge-View Pooling

Node-View Pooling

Preserved Triangle

Graph before pooling

Top important nodes

Top important edges

Graph after pooling

(a) (b)

Fig. 2: (a) Examples of substructure (triangle) preserved by Co-Pooling. (b)
Overview of our proposed Co-Pooling framework. Co-Pooling is composed of
two complementary components – edge-view pooling and node-view pooling –
that reinforce each other to better learn informative graph-level representations.

current graph pooling methods are heavily node-centric and lack the ability to
fully leverage the crucial information contained in graph structure.

To fill this research gap, we propose a novel cross-view graph pooling method
(Co-Pooling) that explicitly exploits graph substructures for learning graph-level
representations. Our main motivations are twofold. First, we would like to cap-
ture crucial graph substructures through explicitly pruning unimportant edges in
the graph. Key substructures, such as functional groups (e.g., triangles, rings) in
molecular networks, or cliques in protein-protein interaction networks and social
networks, have been widely recognised as a crucial source for graph prediction
tasks [13]. For example, in molecular chemistry, certain patterns of atoms (e.g.,
triangles) are considered highly indicative for predicting certain molecule’s prop-
erties [17]. As illustrated in Fig. 2(a), we need to preserve circular connectivity
among three nodes in order to capture a triangle substructure. The crux is that,
if graph pooling operates in a node-centric way or on the pairwise adjacency
matrix, such higher-order, triangle circular connectivity cannot be properly re-
served. Thus, we propose to preserve key substructures through learning higher-
order proximity weights, which are then used to prune unimportant edges for
substructure extraction. Second, apart from structural information, real-world
graphs often have various types of node properties, such as one-hot attributes,
real-valued attributes, or even no attributes (see Table 2). Hence, it is highly
desirable for our pooling method to fuse useful information from both edge and
node views and to make the best of node-level attributes when available.

Co-Pooling is composed of two key components: edge-view pooling and node-
view pooling. Fig. 2(b) shows the overview of Co-Pooling. Edge-view pooling
aims to preserve crucial graph substructures, which are informative for subse-
quent graph prediction tasks. This is achieved by capturing high-order structural
and attribute proximity via generalized PageRank and then pruning the edges
with lower proximity weights. For node-view pooling, an importance score is cal-
culated for each node, and top-ranked important nodes are selected for pooling.
The learning of graph pooling from the edge and node views mutually reinforces
each other through exchanging proximity weights and the selected important

4 X. Zhou et al.

nodes. The final pooled graph is obtained by fusing graph representations learned
from these two views. Through cross-view interaction, Co-Pooling enables edge-
view pooling and node-view pooling to complement each other towards learning
expressive graph representations. Our contributions are summarised as follows:

– We investigate the ineffectiveness of the existing node-centric graph pooling
methods in fully leveraging graph structure.

– We propose a novel graph pooling method (Co-Pooling) to learn graph rep-
resentations by fusing the pooled graph from both node view and edge view.
Co-Pooling has the ability to preserve crucial graph substructures and to
handle different types of graphs (node-labeled/attributed/plain graphs).

– We validate the effectiveness of Co-Pooling in graph classification and regres-
sion tasks across one synthetic and 15 real-world graph datasets, demonstrat-
ing its competitive performance over state-of-the-art pooling methods.

2 Related Work

Graph pooling is a key component of GNNs for learning a vector representation
of an input graph. The existing graph pooling methods can be divided into two
categories: sampling based pooling and clustering based pooling.

Sampling based pooling methods generate a smaller induced graph by select-
ing the top important nodes according to certain importance scores of nodes.
SortPooling [27] ranks the nodes according to node embeddings learned from
graph convolution and stacks the embeddings of selected nodes as graph repre-
sentation. SAGPool [10] uses a self-attention mechanism to calculate an impor-
tance score for each node and then chooses top-ranked nodes to induce the pooled
graph. Ranjan et al. [15] propose adaptive structure aware pooling (ASAP) that
updates node embeddings by aggregating the features of nodes in a local region
and then calculates a fitness score for each node to select the top-k nodes. Gao
et al. [7] propose neighborhood information gain as a criterion to select top im-
portant nodes and then constructs a coarsened graph from selected nodes. The
above mentioned methods, however, do not fully leverage the crucial informa-
tion contained in graph structure in the pooling process. HGPSL [26] takes one
step forward to learn new connections between the selected nodes, but fails to
capture crucial substructures contained in the original graph.

Clustering based pooling methods learn an assignment matrix to cluster
nodes into super-nodes. DiffPool [24] learns a differentiable soft cluster assign-
ment, which is used to group nodes into several clusters in the subsequent layer.
HaarPooling [21] relies on compressive Haar transform filters to generate the in-
duced graph of smaller size. HAP [11] uses master-orthogonal attention to learn
a soft assignment to cluster nodes. SUGAR [18] samples several subgraphs from
the input graph and clusters the top important subgraphs into super-nodes via
reinforcement learning. However, it is highly dependent on the sampling strategy
used to obtain useful subgraph candidates.

Most of current graph pooling methods operate on a single node view; they
are unable to fully leverage crucial graph structure. Although preliminary at-

Edge but not Least: Cross-View Graph Pooling 5

tempts (e.g., EdgePool [3] and EdgeCut [5]) have been made to pool the input
graph from an edge view, these methods simply rely on local connectivity to cal-
culate pairwise edge scores. In contrast, our edge-view pooling leverages higher-
order structural and attribute proximity to measure the importance of edges,
which is fed to further guide the selection of important nodes for node-view
pooling. To the best of our knowledge, we are the first to propose a cross-view
graph pooling method, which enables pooling to fuse useful information from
both edge and node views towards learning informative graph representations.

3 Methodology

In this section, we first introduce preliminaries and notations, and then present
the details of our proposed cross-view pooling method.

3.1 Preliminaries and Notations

Suppose we are given m input graphs G = {G(0), G(1), · · · , G(m)} and their
corresponding targets Y = {y(0), y(1), · · · , y(m)}. For graph classification, y(i) is a
discrete class label; for graph regression, y(i) is a continuous target variable y(i) ∈
R. An arbitrary graph G(g) is represented as (V(g), E(g),X(g)). For simplicity,
(V(g), E(g),X(g)) is also noted as (V, E ,X), where V is the node set and E is the
edge set. X ∈ Rn×d denotes the node attribute matrix, where n = |V| is the
number of nodes and d is the dimension of node attributes; A is the adjacent
matrix, if there is an edge between node i and j, Aij = 1; otherwise Aij = 0.
Â = A + I denotes the adjacent matrix with self-loops.

In this work, we use graph convolution network (GCN) as our backbone to
learn representations for graphs. The graph convolution operation is defined as:

H = D̂−1/2ÂD̂−1/2XΘ (1)

where H ∈ Rn×f is node embedding after convolution, f is the dimension of node
embedding; D̂ii =

∑
j=0

Âij is diagonal degree matrix; Θ is a learnable parameter.

After node embeddings are learned, graph pooling aims to generate a vector
representation for the whole graph. To facilitate downstream graph prediction
tasks, the learned graph representation is expected to preserve the information
conveyed by both graph structure and node attributes.

3.2 Cross-View Graph Pooling: Co-Pooling

The key idea of Co-Pooling is to preserve crucial “signals" that are beneficial
to downstream graph prediction tasks. Unlike previous studies that dominantly
focus on node-level information, we take both node and edge views to preserve
crucial substructures reflected by graph structure and node attributes. To this
end, we propose to perform graph pooling from both edge and node views.

6 X. Zhou et al.

As shown in Fig. 2(b), our proposed Co-Pooling framework consists of two
complementary components: edge-view pooling and node-view pooling. Edge-
view pooling prunes unimportant edges to capture meaningful substructures
(e.g., triangles). Node-view pooling, on the other hand, further selects top-ranked
important nodes. Through cross-view interaction, edge-view pooling and node-
view pooling reinforce each other to induce informative graph representations.

Edge-View Pooling The key objective of edge-view pooling is to preserve
crucial substructures contained in the original graph. Extracting useful sub-
structures requires to incorporate high-order structural and node attribute in-
formation. Thus, we propose to use generalized PageRank (GPR) [2] to jointly
optimize node attribute and topological information extraction.

To be specific, we first update node embeddings via GPR to capture the
information from multi-hop neighbours. As shown in Eq. (2), node embeddings
are updated by multiplying a GPR weight βt at each step t. When t = 0, we
have H0 = H; when t > 0, we have Ht = D̂−1/2ÂD̂−1/2Ht−1. Through GPR,
node embeddings propagate T steps, and the GPR weight βt is learned at each
step. Thus, the contribution of each propagation step towards node embeddings
can be learned adaptively. The GPR operation of T steps helps incorporate the
information from multi-hop neighbours to learn expressive node embeddings.

O =
∑T

t=0
βtH

t. (2)

After updating node embeddings via GPR, we calculate pairwise proximity
weights that reflect high-order structural and attribute proximity between nodes.
This process can be illustrated using Eq. (3), where Oi and Oj are the updated
embeddings of node i and node j by GPR. We first transform node embeddings
Oi and Oj via a linear transformation parameterized with W. Then, the trans-
formed embeddings are concatenated and fed to another linear transformation
with learnable parameters a. Finally, the proximity weight Pij between node i
and node j is obtained via a Sigmoid function. To preserve the original adjacency
of graphs, we multiply the proximity weight with the adjacent matrix A.

Pij = σ(aT [WOi‖WOj])�Aij , (3)

where Pij is the proximity weight between node i and node j; σ is Sigmoid func-
tion; ‖ represents the concatenation operation; a and W are learnable param-
eters; � represents matrix element-wise multiplication; Aij = 1 or 0 indicates
whether or not there is an edge connecting node i and node j.

According to the proximity weight Pij of each node pair, we can obtain the
proximity matrix P for all node pairs. For undirected graphs, we average the
proximity weights at symmetric positions by Psym = (P̂ + P̂T)/2.

For a specific prediction task, the edges constituting discriminative substruc-
tures are expected to have higher proximity weights. Conversely, less important
edges would have lower proximity weights. Thus, we prune unimportant edges

Edge but not Least: Cross-View Graph Pooling 7

with low proximity weights during edge-view pooling. For a given edge preserv-
ing ratio γ, we have the pruned proximity matrix Pprune = Topγ(Psym), where
Topγ() is the operation that preserves the top γ percentage of edges with high
proximity weights. Accordingly, we update the adjacent matrix to reflect the re-
moval of edges. The pruned proximity matrix signifies certain crucial substruc-
tures preserved by pruning unimportant edges. The pruned proximity matrix is
further fed to node-view pooling to guide the selection of important nodes.

Node-View Pooling For node-view pooling, the aim is to select the top K im-
portant nodes for coarsening the input graph. To better exploit the connectivity
between nodes, we take the pruned proximity matrix from edge-view pooling to
compute an importance score for each node, given by

s = D̂−1/2
pruneP̂pruneD̂

−1/2
pruneH1T , (4)

where s is the score vector for all nodes; D̂prune is the diagonal degree matrix of
P̂prune, P̂prune = Pprune + I; and 1T is a vector with all entries as one.

Based on node importance scores, we select the top K = n× ε nodes, where
ε is the node pooling ratio. For selected nodes, we can obtain their indices and
corresponding node embeddings.

Edge-Node View Interaction To enable edge-view pooling and node-view
pooling to reinforce each other, Co-Pooling exchanges the pruned proximity
matrix and the indices of selected nodes, which serve as the mediator for the
interaction between two views.

For node-view pooling, the pruned proximity matrix from edge-view pooling
is used to calculate the important score for each node. The pruned proximity
matrix better reflects higher-order structural and attribute proximity between
nodes, thus providing a better measure than the original adjacent matrix to
quantify the importance of nodes contained in certain substructures. After ob-
taining the node scores, we select the top-K important nodes as the pooled
graph, i.e., H(indices, :), where (indices, :) indicates index selection operation.

For edge-view pooling, the indices of selected nodes obtained from node-view
pooling are used to aggregate node embeddings from neighborhoods based on
the pruned proximity matrix. The node selection process in node-view pooling is
useful for further extracting meaningful substructures, as less important nodes
are removed. The pooled representation from edge-view pooling is obtained as
Pprune(indices, :)H.

Lastly, the pooled representations from node-view pooling and edge-view
pooling are fused to form the final graph representation as:

Z = W[Pprune(indices, :)H‖H(indices, :)] (5)

where W is a learnable parameter of linear transformation; ‖ indicates the con-
catenation operator; and Z is the graph representation after pooling. Through
edge-node view interaction, Co-Pooling enables edge-view pooling and node-view
pooling to complement each other for learning informative graph representations.

8 X. Zhou et al.

4 Experiments

We evaluate the performance of Co-Pooling on three graph prediction tasks,
including substructure counting, graph classification, and graph regression. For
substructure counting (Section 4.1), we empirically assess the performance of
Co-Pooling in preserving important substructures. For graph classification, we
compare Co-Pooling against several state-of-the-art pooling methods under two
settings: attribute-complete graphs (Section 4.2) and attribute-incomplete graphs
(Section 4.3). Furthermore, we compare Co-Pooling against baseline pooling
methods on graph regression (Section 4.5). The source code of Co-Pooling is
available at: https://github.com/zhouxiaowei1120/Co-Pooling.

Baselines. As our focus is upon designing new graph pooling methods, we com-
pare Co-Pooling with five state-of-the-art graph pooling methods rather than
specially designed GNNs for graph classification. These baseline methods in-
clude: SAGPool [10], ASAP [15], DiffPool [24], HGPSL [26], and EdgePool [3].
When training DiffPool, we use the auxiliary link prediction loss function with
entropy regularization as in the original paper. For comparison, all graph pooling
methods are built on top of the same GCN architecture for downstream tasks.

4.1 Substructure Counting on Random Graphs

To verify the capacity of Co-Pooling in preserving graph substructures, we con-
sider a substructure counting task, with the aim to count the number of triangles
contained in random graphs.

Dataset. For substructure counting task, we use the synthetic Syn-triangle
dataset [1], consisting of 5,000 Erdös-Renyi random graphs. Each graph contains
10 nodes and p = 0.3 is the probability that an edge exists. Akin to [1], we use
30%-20%-50% graphs as training-validation-test sets.

Table 1: Normalized MSE for sub-
structure counting on Syn-triangle.

Methods Syn-triangle

SAGPool 0.849±0.061
ASAP 0.701±0.140
DiffPool 0.762±0.194
HGPSL 0.878±0.079
EdgePool 0.704±0.009
Co-Pooling 0.448±0.046

Experimental Setup. For training a re-
gression model on Syn-triangle, we use
GCN as the backbone and inject two pool-
ing layers before an MLP layer. Adam op-
timizer with learning rate decay is used to
train the model. The optimization stops if
the validation loss doesn’t decrease after
50 epochs. Following [1], we use L2 loss
function and set the initial learning rate
and weight decay as 0.02 and 0.001, re-
spectively. The GPR operation step T is
set as 3. We train the regression model
with four different random seeds. The re-
sults are measured by mean square error
(MSE) on the test data divided by the
variance of the ground truth counts.

https://github.com/zhouxiaowei1120/Co-Pooling

Edge but not Least: Cross-View Graph Pooling 9

(d) Graph after pooling(c) Graph before pooling(a) Graph before pooling (b) Graph after pooling

Removed edges
The first pooling operation The second pooling operation

0

1

0.4658

2

0.4633
0.4633 3
0.4599

8 0.4631 7 6

0.4
65
5
4

0.465

5

0.
45
88

0.4616

0.46
5

9
0

1

0.4658

2

0.4633

0.4633

3

4

0.4655

6
 0.465 5

1

0.9895

2

0.9897
0.9897

3

4

0.9814

6
 0.9826 5

0

1
0.9895

2

0.9897
0.9897

3

4
0

Fig. 3: Illustration of the pooled graphs by Co-Pooling.

Results. The MSE results on triangle counting are given in Table 1. As can be
seen, Co-Pooling outperforms all baseline methods, yielding markedly smaller
errors than the second best performer ASAP. This empirically verifies that Co-
Pooling is able to preserve crucial substructures during the pooling process.

Fig. 3 gives an example to illustrate two pooling operations of Co-Pooling.
For a given graph, the proximity weights of edges and the pooled graphs are
shown in the figure. During the first pooling operation, four edges with lower
proximity weights (marked in red ellipse) are removed, and afterwards, nodes
7, 8, and 9 with lower importance scores are further removed to generate the
pooled graph. It is clear to find that the triangle substructure is preserved after
the first pooling layer (see Fig. 3(b)). A similar process can be observed during
the second pooling operation, where the triangle substructure is also preserved in
the pooled graph (see Fig. 3(d)), which is highly indicative for triangle counting.

4.2 Graph Classification on Attribute-Complete Graphs

Datasets. We undertake graph classification on a total of 13 benchmark graph
datasets with various attribute properties, including three attributed graph datasets
with real-valued node attributes, five labeled graph datasets with only one-hot
node attributes, and five plain graph datasets without node attributes. The de-
tailed statistics about these datasets are listed in Table 2.

– BZR-A [19] is a dataset of chemical compounds for classifying biological
activities. The node attributes are 3D coordinates of compound structures.

– AIDS-A [16] is composed of graphs representing molecular compounds. It
contains two classes of graphs, which are against HIV or not.

– FRANKENSTEIN [14] consists of molecules as mutagens or non-mutagens
for binary classification. The node attributes are 780-dimensional MNIST
image vectors of pixel intensities, representing chemical atom symbols.

– D&D [12] and PROTEINS [12] include macromolecules as graph datasets
in bioinformatics, which are for enzyme and non-enzyme classification task.

– NCI1 [12] andNCI109 [12] contain chemical compounds as small molecules,
which are used for anticancer activity classification task.

10 X. Zhou et al.

Table 2: Details of graph datasets for graph classification evaluation.
Dataset # Graphs # Classes Avg. |V | Avg. |E| Node Attributes Type

BZR-A 405 2 35.75 38.36 Real-valued Attributed
AIDS-A 2,000 2 15.69 16.20 Real-valued Attributed

FRANKENSTEIN 4,337 2 16.90 17.88 Real-valued Attributed

PROTEINS 1,113 2 39.06 72.82 Node label Labeled
D&D 1,178 2 284.32 715.66 Node label Labeled
NCI1 4,110 2 29.87 32.30 Node label Labeled

NCI109 4,127 2 29.68 32.13 Node label Labeled
MSRC_21 563 20 77.52 198.32 Node label Labeled

COLLAB 5,000 3 74.49 2457.78 None Plain
IMDB-B 1,000 2 19.77 96.53 None Plain
IMDB-M 1,500 3 13.00 65.94 None Plain

REDDIT-B 2,000 2 429.63 497.75 None Plain
REDDIT-M 11,929 11 391.41 456.89 None Plain

– MSRC_21 [12] is a graph dataset constructed by semantic images. Each
image is represented as a conditional Markov random field graph. Nodes in
a graph represent the segmented superpixels in an image. If the segmented
superpixels are adjacent, the corresponding nodes are connected. Each node
is assigned a semantic label as node attribute.

– COLLAB [23] is a collection of scientific collaboration graphs, where the
task is to classify the graphs into different research fields.

– IMDB-B [23] and IMDB-M [23] are two datasets for classifying graphs
into movie genres. Each graph is an ego-network for each actor/actress.

– REDDIT-B and REDDIT-M [23] are two datasets generated from online
discussions. Each graph represents a discussion thread where nodes indicate
different users. If one user responds to another one, there is an edge between
them. The task is to classify which section each discussion belongs to.

Baselines. Apart from other graph pooling baselines, we also compare with two
ablated variants of Co-Pooling: Co-Pooling w/o GPR that removes generalized
PageRank and Co-Pooling w/o NV that removes node-view pooling.

Experimental Setup. For all datasets, we use the same GNN architecture for
a fair comparison. The GNN consists of three GCN layers, two pooling layers
(constructed by different pooling methods), and three linear transformation lay-
ers. A softmax layer is then connected after the last linear transformation layer.
Note that, the input to the first linear transformation layer is the concatenated
features after each pooling layer.

Akin to prior work [24], we perform 10-fold cross-validation to train the GNN
model. We randomly partition each dataset into training, validation, and test
sets using a 80%-10%-10% split. We use Adam optimizer with early stopping;
the optimization stops if the validation loss does not improve after 50 epochs.

Edge but not Least: Cross-View Graph Pooling 11

Table 3: Graph classification accuracy on 13 graph datasets.

Dataset SAGPool ASAP DiffPool HGPSL EdgePool Co-Pooling Co-Pooling Co-Pooling(w/o GPR) (w/o NV)

BZR-A 82.95±4.91 83.70±6.00 83.93±4.41 83.23±6.51 83.43±6.00 81.00±5.82 81.69±5.80 85.67±5.29
AIDS-A 98.85±0.78 99.00±0.74 99.40±0.58 99.10±0.66 99.05±0.69 98.85±0.71 98.90±0.58 99.45±0.42
FRANK 60.94±2.90 66.73±2.76 65.08±1.50 62.19±1.74 62.99±2.21 64.01±1.70 67.00±2.37 64.15±1.34
D&D 76.91±3.42 77.84±3.41 78.01±2.70 77.33±4.22 76.66±2.05 75.81±3.81 77.00±5.04 77.85±2.21

PROTEINS 73.68±4.63 74.85±5.18 75.11±2.95 74.13±4.12 77.01±5.41 73.68±2.33 76.28±5.09 76.19±4.13
NCI1 71.51±4.51 76.59±1.71 74.14±1.43 73.48±2.42 78.39±2.43 77.25±2.11 79.15±2.04 78.66±1.48

NCI109 69.69±3.27 74.73±3.48 72.04±1.43 72.30±2.18 77.01±2.39 75.60±1.46 78.07±1.77 77.08±2.03
MSRC_21 90.22±2.82 90.41±3.91 90.41±3.58 88.97±4.78 90.05±3.02 91.64±2.79 91.29±3.70 92.54±2.63
COLLAB 70.58±2.31 72.84±1.84 72.18±1.68 74.20±2.72 - 74.82±2.10 68.90±5.59 77.30±2.29
IMDB-B 60.90±2.34 65.50±2.80 58.27±5.92 62.50±3.50 60.30±5.08 70.40±3.85 70.80±3.60 72.10±4.44
IMDB-M 39.80±3.39 45.93±4.03 40.00±4.52 40.53±4.88 44.27±4.50 47.60±4.55 44.80±3.94 49.07±3.28

REDDIT-B 83.55±4.53 - 84.61±2.42 - 88.35±2.31 88.90±2.00 88.00±4.69 89.35±1.25
REDDIT-M 40.56±3.30 - 41.21±1.96 - - 46.84±2.26 49.02±1.56 46.85±2.62

“-" means the results can not be obtained in an acceptable time, i.e. 24h.

The maximum epoch number is set as 300. Following [10], we use grid search
to obtain optimal hyperparameters for each method. The ranges of different
hyperparameters are set as follows: learning rate in {0.005, 0.0005, 0.001}, weight
decay in {0.0001 0.001}, node pooling ratio in {0.5, 0.25}, hidden size in {128,
64}, dropout ratio in {0, 0.5}, and edge preserving ratio γ in {0.3, 0.6, 1.0}. Akin
to [2], step T of GPR is set to 10. To implement the convolution operation on
plain graphs without node attributes, we follow the implementation of DiffPool
to pad each node with a constant vector, i.e. an all-one vector of 10 dimensions.

Comparison with State-of-the-art. Table 3 shows graph classification ac-
curacy of all methods averaged over 10-fold cross-validation on 13 datasets. For
a fair comparison, all baseline methods and our method are trained using the
same training strategy. As we can observe, among all methods, our Co-Pooling
method achieves the best performance on all datasets except on D&D and PRO-
TEIN, where Co-Pooling achieves the second best performance. In particular,
Co-Pooling significantly improves the best baseline method by 6.6%, 3.14%,
7.81%, 2.13%, and 1.74% on IMDB-B, IMDB-M, REDDIT-M, MSRC_21, and
BZR-A, respectively. This proves the effectiveness of Co-Pooling in predicting
different types of graphs with various attribute properties. It is worth noting
that Co-Pooling achieves the best performance on all five datasets without node
attributes. This shows the superiority of our method to complement node-view
pooling with edge-view pooling, when node attributes are not informative.

When comparing different variants of our method, Co-Pooling consistently
outperforms Co-Pooling w/o GPR on all datasets. This shows the importance

12 X. Zhou et al.

 0

 20

 40

 60

 80

 100

SAGPool ASAP DiffPool HGPSL EdgePool Co-
Pooling

 w/o GPR

Co-
Pooling
 w/o NV

Co-Pooling

Incomplete Rario:

C
la

s
s
if

ic
a
ti

o
n

 a
c
c
u

ra
c
y
 (

%
) 0% 10% 20% 30% 40% 50%

(a)

 90

 92

 94

 96

 98

 100

SAGPool ASAP DiffPool HGPSL EdgePool Co-
Pooling

 w/o GPR

Co-
Pooling
 w/o NV

Co-Pooling

Incomplete Rario:

 (b)

Fig. 4: Graph classification accuracy on (a) labeled graph dataset (MSRC_21)
and (b)attributed graph dataset (AIDS-A) under attribute-incomplete settings.

of using generalized PageRank to capture higher-order structural information.
Co-Pooling yields higher accuracy than Co-Pooling w/o NV on most (8/13) of
the datasets. This demonstrates the effectiveness of Co-Pooling in combining two
complementary views. In particular, its performance gains on attributed graphs
with real-valued node attributes are more significant than those on labeled graphs
with one-hot attributes. This is because real-valued node attributes provide more
accurate information to select important nodes for node-view pooling as opposed
to one-hot attributes. This in turn reinforces edge-view pooling more effectively
for learning the final graph representations.

4.3 Graph Classification on Attribute-Incomplete Graphs

Next, we compare the performance of our method and all baselines on attribute-
incomplete graphs. For attribute-incomplete graphs, a portion of nodes has com-
pletely missing attributes. This set of experiments is used to evaluate the effec-
tiveness of our method in real-world scenarios, where attribute information for
some nodes is inaccessible due to privacy or legal constraints.

Experimental Setup. We perform experiments on attributed graph dataset
(AIDS-A) and labeled graph dataset (MSRC_21) as a case study. For each graph
from the two datasets, we randomly select different ratios of nodes and remove
their original node attributes, while keeping the rest of nodes unchanged. We
define the ratio of nodes with all their attributes removed as the incomplete
ratio. For example, if we remove all attributes for 10% of nodes, the incomplete
ratio is 10%. The resulting attribute-incomplete graph datasets are randomly
divided into training set (80%), validation set (10%), and test set (10%). We
train the GNN model with different pooling methods on training set. The GNN
model architecture and the best hyperparameters are the same as in Section 4.2.
We report graph classification accuracy averaged over 10-fold cross-validation.

Comparison with State-of-the-art. Fig. 4 (a) compares the classification
accuracy of all methods on attribute-incomplete MSRC_21 datasets. For all
baseline methods, the classification accuracy drops significantly as the incom-
plete ratio increases from 0% to 50%. In contrast, the accuracy of Co-Pooling
and its variants decreases at a much lower rate. Especially for DiffPool, HGPSL,

Edge but not Least: Cross-View Graph Pooling 13

 72

 73

 74

 75

 76

 77

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
la

ss
ifi

ca
tio

n
Ac

cu
ra

cy
 (%

)

Edge Preserving Ratio

(a) PROTEINS

 73

 74

 75

 76

 77

 78

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
la

ss
ifi

ca
tio

n
Ac

cu
ra

cy
 (%

)

Edge Preserving Ratio

(b) D&D

 78

 80

 82

 84

 86

 88

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
la

ss
ifi

ca
tio

n
Ac

cu
ra

cy
 (%

)

Edge Preserving Ratio

(c) BZR-A

 97.5

 98

 98.5

 99

 99.5

 100

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
la

ss
ifi

ca
tio

n
Ac

cu
ra

cy
 (%

)

Edge Preserving Ratio

(d) AIDS-A

 54

 58

 62

 66

 70

 74

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
la

ss
ifi

ca
tio

n
Ac

cu
ra

cy
 (%

)

Edge Preserving Ratio

(e) IMDB-B

 38

 40

 42

 44

 46

 48

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
la

ss
ifi

ca
tio

n
Ac

cu
ra

cy
 (%

)

Edge Preserving Ratio

(f) REDDIT-M

Fig. 5: Graph classification accuracy with different edge preserving ratios (γ).

and EdgePool, the classification accuracy drops by 3.73%, 12.33%, and 4.61%, re-
spectively, although only 10% nodes have their attributes missing. With the 10%
incomplete ratio, Co-Pooling and its variants can still achieve at least 77.93% ac-
curacy. Compared with the best baseline method ASAP, Co-Pooling achieves an
average of 8.62% accuracy increase on attribute-incomplete MSRC_21 datasets
with different incomplete ratios (from 0% to 50%).

Fig. 4(b) compares graph classification accuracy of all methods on attribute-
incomplete AIDS-A datasets. We can see that, for SAGPool, DiffPool, and Edge-
Pool, the classification accuracy drops by 3.25%, 5.45%, and 3.2%, respectively,
when the incomplete ratio increases from 0% to 50%. On the contrary, the accu-
racy of Co-Pooling and its variants drops by around 1.15% only. Our methods
beat ASAP with all incomplete ratios. Compared with HGPSL, our methods
achieve better performance with 0%, 10%, 20%, and 40% incomplete ratios,
with higher average accuracy on all attribute-incomplete AIDS-A datasets.

The comparisons on attribute-incomplete graph datasets demonstrate the
effectiveness of our method in handling graphs with missing node attributes. This
further testifies the complementary advantage of our method by fusing node-view
and edge-view pooling, especially when node attributes are less informative.

4.4 Parameter Sensitivity

The Co-Pooling method has the edge preserving ratio (γ) as an important pa-
rameter to determine the percentages of edges preserved during edge-view pool-
ing. To investigate the effect of the edge preserving ratio (i.e., γ) on the graph

14 X. Zhou et al.

classification accuracy of Co-Pooling, we conduct empirical studies on six rep-
resentative graph datasets, including two labeled graph datasets, two attributed
graph datasets, and two plain graph datasets. On each dataset, we train the
GNN model with an edge preserving ratio ranging from 10% to 100%. All other
hyperparameters are set as the best values obtained in Section 4.2. We also use
the same GNN model architecture and training strategy as in Section 4.2. We
report the average classification accuracy on 10-fold cross-validation.

Fig. 5 plots the change in classification accuracy with respect to γ on the
six datasets. On the two labeled graph datasets (PROTEINS and D&D), we find
that keeping all edges (γ = 1.0) is not the best choice for graph classification.
As shown in Fig. 5 (a) and (b), Co-Pooling achieves the highest classification
accuracy when γ = 0.7 on PROTEIN, and γ = 0.6 on D&D, respectively. A
similar phenomenon can also be observed on the two attributed graphs (BZR-
A and AIDS-A). As shown in Fig. 5 (c) and (d), Co-Pooling yields the best
performance when γ is set to 0.6 on the two datasets. The results on the four
datasets indicate that not all edges are useful for graph classification when graphs
have informative node attributes. Again, this confirms the effectiveness of our
method in preserving crucial edge information through edge-view pooling and
using this knowledge to further guide node-view pooling. On the other hand,
on the two plain graph datasets (IMDB-B and REDDIT-M), keeping all edges
renders the highest classification accuracy. As shown in Fig. 5 (e) and (f), Co-
Pooling achieves the best performance on both graphs when keeping all edges
(γ = 1.0). This is what we have expected, because when graphs have no node
attributes, preserving all graph structures would best benefit graph classification.

4.5 Graph Regression

Lastly, we carry out experiments to evaluate the efficacy of our method on the
graph regression task. We compare Co-Pooling with the same state-of-the-art
pooling methods on the following two graph datasets:

– ZINC [12] contains 250,000 molecules. The task is to regress the properties
of molecules. We focus on predicting one specific graph property, contained
solubility. Following the setting in [4], we use 10,000 graphs from ZINC for
training, 1,000 graphs for validation, and 1,000 graphs for testing.

– QM9 [12] is a graph dataset consisting of 13,000 molecules with 19 regression
targets. We focus on regressing dipole moment µ, one of 19 molecular proper-
ties. All 13,000 molecules are randomly divided into training-validation-test
sets using a 80%-10%-10% split.

For training a regression model on each dataset, we use the same GNN ar-
chitecture and training strategy as in Section 4.1. Following [4], we use L1 loss
to train each model. The initial learning rate and weight decay are set as 0.001
and 0.0001, respectively. We train regression models with four different random
seeds and report the average mean absolute error (MAE) on the test set.

Edge but not Least: Cross-View Graph Pooling 15

Table 4: MAE results of graph regression on ZINC and QM9. Lower is better.
Methods ZINC QM9

GCN+SAGPool 0.378±0.031 0.545±0.010
GCN+ASAP 0.372±0.026 0.500±0.017
GCN+DiffPool 1.641±0.026 1.331±0.014
GCN+HGPSL 1.326±0.096 1.035±0.049
GCN+EdgePool 0.382±0.030 0.489±0.022

GCN+Co-Pooling (ours) 0.340±0.036 0.439±0.009

We compare our Co-Pooling method with SAGPool, ASAP, DiffPool, HG-
PSL, and EdgePool on the two datasets. As shown in Table 4, Co-Pooling consis-
tently yields lower error than other baseline methods. Particularly, Co-Pooling
outperforms DiffPool and HGPSL by a large margin on both datasets. These
results indicate that our method effectively learns a better graph-level represen-
tation by fusing edge-view pooling and node-view pooling, leading to competitive
performance on graph regression tasks as well.

5 Conclusion

We proposed a new graph pooling method (Co-Pooling) for learning graph-level
representations. We argued that most of current graph pooling methods are
highly node-centric and fail to leverage crucial graph substructures, which are
beneficial to various prediction tasks. Our proposed Co-Pooling method fuses
the pooled graph information from two views. From the edge view, generalized
PageRank is used to aggregate valuable structural information from multi-hop
neighbours. The proximity weights between node pairs are then calculated to
prune less important edges. From the node view, the node importance scores
are computed through the proximity matrix to select the top important nodes.
Through cross-view interaction, edge-view pooling and node-view pooling com-
plement each other to effectively learn informative graph representations. Ex-
tensive experiments on 16 graph datasets demonstrate the superior performance
of Co-Pooling on both graph classification and regression tasks.

Acknowledgements Xiaowei Zhou is supported by a Data61 PhD Scholarship
from CSIRO. Ivor W. Tsang is supported by the Center for Frontier AI research,
A*STAR, and ARC under grants DP200101328. This work is partially supported
by the USYD-Data61 Collaborative Research Project grant.

References

1. Chen, Z., Chen, L., Villar, S., Bruna, J.: Can graph neural networks count sub-
structures? NeurIPS 33, 10383–10395 (2020)

16 X. Zhou et al.

2. Chien, E., Peng, J., Li, P., Milenkovic, O.: Adaptive universal generalized pagerank
graph neural network. ICLR (2021)

3. Diehl, F.: Edge contraction pooling for graph neural networks. arXiv preprint
arXiv:1905.10990 (2019)

4. Dwivedi, V.P., Joshi, C.K., Laurent, T., Bengio, Y., Bresson, X.: Benchmarking
graph neural networks. arXiv preprint arXiv:2003.00982 (2020)

5. Galland, A., marc lelarge: Graph pooling by edge cut (2021)
6. Gao, H., Ji, S.: Graph u-nets. ICML. pp. 2083–2092. PMLR (2019)
7. Gao, X., Dai, W., Li, C., Xiong, H. & Frossard, P. iPool–Information-Based Pooling

in Hierarchical Graph Neural Networks. IEEE TNNLS. pp. 1-13 (2021)
8. Hamilton, W.L., Ying, R., Leskovec, J.: Inductive representation learning on large

graphs. NIPS. pp. 1025–1035 (2017)
9. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional

networks. ICLR (2017)
10. Lee, J., Lee, I. & Kang, J. Self-attention graph pooling. ICML. pp. 3734-3743

(2019)
11. Liu, N., Jian, S., Li, D., Zhang, Y., Lai, Z. & Xu, H. Hierarchical Adaptive Pooling

by Capturing High-order Dependency for Graph Representation Learning. IEEE
TKDE. pp. 1-1 (2021)

12. Morris, C., Kriege, N., Bause, F., Kersting, K., Mutzel, P. & Neumann,
M. Tudataset: A collection of benchmark datasets for learning with graphs.
ArXiv:2007.08663. (2020)

13. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D. & Alon, U. Net-
work motifs: simple building blocks of complex networks. Science. 298, 824-827
(2002)

14. Orsini, F., Frasconi, P., De Raedt, L.: Graph invariant kernels. IJCAI pp. 3756-3762
(2015)

15. Ranjan, E., Sanyal, S., Talukdar, P.: Asap: Adaptive structure aware pooling for
learning hierarchical graph representations. AAAI. pp. 5470–5477 (2020)

16. Riesen, K., Bunke, H.: IAM graph database repository for graph based pattern
recognition and machine learning. IAPR Workshops on SPR and SSPR. pp.287–
297. Springer (2008)

17. Shang, J., Wang, Y., Chen, M., Dai, J., Zhou, X., Kuttner, J., Hilt, G., Shao, X.,
Gottfried, J.M., Wu, K.: Assembling molecular sierpiński triangle fractals. Nature
chemistry 7(5), 389–393 (2015)

18. Sun, Q., Li, J., Peng, H., Wu, J., Ning, Y., Yu, P.S., He, L.: Sugar: Subgraph
neural network with reinforcement pooling and self-supervised mutual information
mechanism. Proceedings of the Web Conference 2021. pp.2081–2091 (2021)

19. Sutherland, J.J., O’brien, L.A., Weaver, D.F.: Spline-fitting with a genetic algo-
rithm: A method for developing classification structure-activity relationships. Jour-
nal of chemical information and computer sciences 43(6), 1906–1915 (2003)

20. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph
attention networks. ICLR (2018)

21. Wang, Y.G., Li, M., Ma, Z., Montufar, G., Zhuang, X., Fan, Y.: Haar graph pooling.
ICML. pp. 9952–9962. (2020)

22. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks?
ICLR (2019)

23. Yanardag, P., Vishwanathan, S.: Deep graph kernels. SIGKDD pp. 1365-1374
(2015)

Edge but not Least: Cross-View Graph Pooling 17

24. Ying, R., You, J., Morris, C., Ren, X., Hamilton, W.L., Leskovec, J.: Hierarchi-
cal graph representation learning with differentiable pooling. NIPS pp. 4805-4815
(2018)

25. Yuan, H., Ji, S.: Structpool: Structured graph pooling via conditional random
fields. ICLR (2020)

26. Zhang, Z., Bu, J., Ester, M., Zhang, J., Yao, C., Yu, Z., Wang, C.: Hierarchical
graph pooling with structure learning. arXiv preprint arXiv:1911.05954 (2019)

27. Zhang, M., Cui, Z., Neumann, M. & Chen, Y. An end-to-end deep learning archi-
tecture for graph classification. AAAI pp. 4438-4445 (2018)

	Edge but not Least: Cross-View Graph Pooling

