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Abstract. Volcanic eruptions are severe global threats. Forecasting these
unrests via monitoring precursory earthquakes is vital for managing the
consequent economic and social risks. Due to various contextual factors,
volcano-seismic patterns are not spatiotemporal invariant. Training a
robust model for any novel volcano-seismic situation relies on a costly,
time-consuming and subjective process of manually labeling data; using
a model trained on data from another volcano-seismic setting is typically
not a viable option. Unsupervised domain adaptation (UDA) techniques
address this issue by transferring knowledge extracted from a labeled
domain to an unlabeled one. A challenging problem is the inherent im-
balance in volcano-seismic data that degrades the efficiency of an adopted
UDA technique. Here, we propose a co-balanced UDA approach, called
Cubism, to bypass the manual annotation process for any newly moni-
tored volcano by utilizing the patterns recognized in a different volcano-
seismic dataset with labels. Employing an invertible latent space, Cubism
alternates between a co-balanced generation of semantically meaningful
inter-volcano samples and UDA. Inter-volcano samples are generated via
the mixup data augmentation technique. Due to the sensitivity of mixup
to data imbalance, Cubism introduces a novel co-balanced ratio that reg-
ulates the generation of inter-volcano samples considering the conditional
distributions of both volcanoes. To the best of our knowledge, Cubism is
the first UDA-based approach that transfers volcano-seismic knowledge
without any supervision of an unseen volcano-seismic situation. Our ex-
tensive experiments show that Cubism significantly outperforms baseline
methods and effectively provides a robust cross-volcano classifier.

Keywords: volcano-seismic event classification - unsupervised domain
adaptation - imbalanced data - mixup - flow-based generative models.

1 Introduction

Monitoring volcanic unrest is a topic of significant interest, with volcanic hazards
threatening the lives of more than 800 million people who live in the vicinity
of active volcanoes [22]. Volcanic activity originates from physical processes re-
lated to fluid and energy transportation and ranges from gas or non-explosive
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lava emissions to extremely violent explosive bursts that may last many hours.
These activities generally lead to breaks or cracks in rocks that surge seismicity
beneath a volcano before an eruption [22]. Seismological observations are of vital
importance for volcanic monitoring as they provide real-time internal data about
volcano-seismic events with a high temporal resolution [22].

Rapidly increasing volumes of recorded seismic data call for a paradigm shift
in volcano monitoring and forecasting the associated risks. While conventional
manual solutions are not practical anymore due to their time-consuming and
resource-intensive nature, advanced machine learning techniques and automated
predictive analytics can assist risk mitigation and management by annotating
seismic events in supervised [4,19] and unsupervised [3,7] manners. Unsuper-
vised approaches are prone to low performance and applications of supervised
methods are typically limited [2]. The reason is that supervised techniques suf-
fer from low generalization power due to the challenges of unifying the data
characteristics from different sources. The unification process is not trivial be-
cause of the contextual factors such as soil characteristics and source geometry
in addition to potential noise introduced during signal recording [2]. Several
methods [2,3] are proposed to generate a unified feature space for seismic events
pursuing a general purpose solution; however, their unification process is highly
subjective to signal standardization since these methods alleviate noise impact
by relying on a manual selection of intrinsic mode function (IMF) components.
This process disregards important aspects of domain shift. Note that the per-
formance of these methods still depends on availability of several large labeled
volcano-seismic datasets.

In this paper, we propose Cubism, an algorithmic method for robust contex-
tual unification and effective knowledge transfer in the volcano-seismic domain.
Cubism is an unsupervised domain adaptation (UDA) approach that effectively
alleviates the negative impact of inherent class imbalance in volcano-seismic do-
mains by introducing a novel co-balanced inter-volcano modeling. UDA imposes
domain-invariance by mitigating the shift between the data distributions of a
labeled and an unlabeled domain. Despite being a well-studied area of research,
mitigating significant domain gaps is still challenging [20]. Recently, UDA ap-
proaches [20, 26] were proposed to alleviate this gap by continuously modeling
inter-domain latent space using an emerging vicinal risk minimization technique
known as mixup training [28]. These approaches produce inter-domain sam-
ples through convex combinations of data and labels/pseudo-labels on input or
latent manifold. Yet, these methods don’t guarantee semantically meaningful
inter-domain modeling [27] and are also subject to bias in case of skewed class
distributions. Cubism addresses these two issues using a novel co-balanced mixup
in the latent space of the flow-based Gaussian mixture model (FlowGMM) [10].
As a result, our proposed solution is capable of developing a robust UDA for
volcano-seismic knowledge transfer.

Cubism employs FlowGMM because it encourages semantically meaningful
inter-domain modeling through a sequence of invertible transformations as a
characteristic of flow-based generative models [27]. In addition, FlowGmm as-
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sists with conditional mixup by providing a disentangled latent representation.
The conditional generative model learned by FlowGMM accommodates inter-
domain mixup concerning class imbalance in the labeled domain. Re-balancing
that only considers the labeled domain disregards the conditional distribution of
the unlabeled domain [25]. To address this issue, Cubism proposes co-balanced
mixup to address bias and reverse-bias utilizing pseudo-labels of the unlabeled
domain; it imposes a robust discriminative cross-volcano feature space with an
interplay between a co-balanced mixup and an adversarial UDA.

Co-balanced mixup, first generates samples from a disentangled representa-
tion learned by FlowGMM. Then, it models inter-domain space by linear inter-
polation of these generated samples and samples from the unlabeled domain,
considering the conditional skewness of both domains. Finally, for the adver-
sarial adaptation, the training data and inter-domain samples are fed to a soft
domain discriminator and a soft classifier so that the minimax game between
the discriminator and flow model mitigates the domain gap smoothly [26].

To the best of our knowledge, Cubism is the first work that proposes unsu-
pervised volcano-seismic knowledge transfer by employing unsupervised cross-
domain classification. To evaluate Cubism, we use two real-world volcano-seismic
datasets (see Sect. 3.2) from the Llaima and Deception Island volcanoes located
in Chile and Antarctica. We define two unsupervised knowledge transfer tasks
from each dataset to the other one and assess the cross-volcano classification per-
formance of Cubism and several baselines. Our experimental results confirm the
effectiveness of Cubism through a comparative study where Cubism significantly
outperforms the strongest baseline by 9.4% in terms of Fl-score.

2 Related Work

Volcano-seismic data analysis. Many works in the literature addressed the
classification task of volcano-seismic events utilizing anomaly detection or other
machine learning approaches [23,24]. Despite their promising performance for a
specific volcano-seismic situation, they fail to generalize well to a different tempo-
ral or spatial volcano-seismic domain [3,19]. Limited works tackled the problem
of designing a spatio-temporal invariant volcano-seismic recognition system. For
example, [1] proposes a Bayesian-based approach to learn the mixture of events
from two different volcanoes, or [3] trains a model on the standardized data
from several volcanoes. The mentioned efforts not only expect large labeled data
from multiple volcanoes but also do not aggregate the collected contexts into
a unified contextual representation. These problems motivate others to apply
unsupervised learning on unlabeled volcano-seismic datasets at the expense of
accuracy [3,7]. In this work, we aim for a more challenging yet rewarding task,
unsupervised knowledge transfer from a volcano with annotated data to a differ-
ent volcano with unlabeled records. One of the only related studies [19] employs
active learning to limit the number of required labeled data from a new volcanic
setting for training. However, this work does not mitigate the volcano-seismic do-
main shift; in addition, it requires labeled data from the studied volcanoes and is
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subject to class imbalance. Several existing approaches mitigate the scarcity and
imbalance in volcano-seismic datasets by applying traditional data augmentation
techniques [4] or generative models [9]. However, these approaches are subject to
underrepresented samples from low-density regions [15], and their effectiveness
are highly dependent on large labeled datasets. Our proposed solution, using
an imbalance-aware UDA technique, is the first work to effectively address the
above-mentioned issues, to the best of our knowledge.

Unsupervised domain adaptation (UDA) is a subcategory of transductive
transfer learning that generalizes a model from a labeled source to an unla-
belled target under dataset shift. UDA is extensively-studied especially in im-
age processing and computer vision, and existing methods can be categorized
into distance-based [12,20] or adversarial approaches [8,13,17]. Distance-based
methods train two separate classifiers with some shared layers for each domain.
Domain-adversarial neural network (DANN) [8] proposes adversarial UDA as a
group of methods that impose domain confusion by a minimax game between a
feature extractor and a domain discriminator. Several UDA methods [20, 26]
effectively mitigate significant domain gaps by modeling locally Lipschitz in
inter-domain space using an efficient regularization technique called mixup [28].
DM-ADA [26] is a mixup-based UDA method that learns the latent representa-
tion of both the two domains using variational auto-encoder (VAE) and jointly
mixup input and latent space for robust cross-domain classification. Despite
promising performances, these state-of-the-art methods are prone to data im-
balance issue. Limited UDA approaches address adaptation under imbalanced
settings [11]; however, their focus is on label shift that is not aligned with the
imbalance problem in volcano-seismic datasets. In this work, we propose Cubism
as an unsupervised knowledge transfer solution for the volcano-seismic domain
considering the data imbalance issue using mixup-based adversarial UDA.

3 Basic Concepts and Problem Definition

This section elaborates on the volcano-seismic domain discrepancy problem and
its empirical justification based on the characteristics of the datasets employed
in our study. Subsequently, we formally define the imbalanced cross-volcano clas-
sification problem for volcano-seismic knowledge transfer.

3.1 Volcano-seismic Domain Discrepancy

Each Volcanic hazard has its specific seismic signature. Analyzing the categorical
frequency of volcano-seismic activities is a principal step in forecasting volcanic
eruptions [22]. Technical quantification of volcanic earthquakes, known as seismic
catalog, strengthens volcanic hazards monitoring. Manual detection and labeling
of volcanic events by domain experts is not a feasible solution in the era of big
data when dealing with massive and rapidly growing volumes of seismic data.
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Fig. 1: Volcano-seismic events and their spectrograms

Existing unsupervised methods for seismic event annotation are subject to
low performance, and efficient supervised approaches rely on large and high-
quality manually labeled data. Still, the manual data annotation process is prone
to human subjectivity and lacking unified contextual factors [2,19,22]. In ad-
dition, characteristics of observed seismicities depend highly on the geophysical
properties of volcanoes and placement of sensors [18]. Despite providing high-
quality catalogs for signals from a specific station, supervised volcano-seismic
recognition (VSR) systems often fail to robustly generalize to a new situation
regarding the volcanic state, quality of sensors, environmental noise, etc. [22].

To address the above issues, we propose here to leverage the robustness of
the supervised models along with the self-dependency of unsupervised methods.
This way, we deliver a model that provides promising catalogs without labeled
data for an unseen setting. Utilizing semi-supervised approaches does not effec-
tively fulfill our purpose since these approaches assume the same distribution
for labeled and unlabeled data. Therefore, we propose to exploit unsupervised
domain adaptation techniques to generalize seismic knowledge from a cataloged
volcano-seismic setting to a non-annotated set of events from a different one.
Noteworthy, VSR systems suffer from class imbalance issue considering the na-
ture of volcanic activities. Even moderate data imbalance degrades the perfor-
mance of UDA techniques more than intra-domain learning. Lacking conditional
knowledge in unlabeled datasets, the learned cross-domain representation can be
biased to the majority classes. None of the explicit data augmentation solutions
(undersampling, oversampling, domain-specific approaches, generative models,
etc.) efficiently compensate for underrepresented data distributions [28]. Fur-
thermore, although there is an extensive body of research on UDA, just a few
recent UDA methods did address the data imbalance. Thus, we propose a novel
flow-based method, Cubism, that implicitly regularizes adversarial UDA to ad-
dress imbalanced cross-volcano classification through vicinal risk minimization.

3.2 Imbalanced Cross-Volcano Classification

Exploratory observations. In this work, we use datasets from two well-
studied active volcanoes located in Chile and Antarctica: Llaima [4] and Decep-
tion Island [3]. These datasets comprise labeled records of the two most recurrent
volcano-seismic events, long period (LP) and volcano-tectonic (VT). Due to their
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Fig. 2: Cross-volcano generalization power(L: Llaima, D: Deception Island)

geophysical origins, signals falling into the same categories share certain char-
acteristics. VT events show an impulsive start and exponential decay, whereas
LP signals are non-impulsive and decay slowly. LP events typically are more
frequent than VT ones. Despite the common characteristics of all events in the
same category, seismicity patterns belonging to different volcanoes do typically
not match. Figure 1 illustrates that signals from the Deception Island volcano
are nonidentical to signals from the Llaima volcano.

To empirically verify volcano-seismic domain discrepancy, we first train a
classifier on each dataset and then test it on the other one. As Figure 2 shows,
a model trained on one volcano-seismic dataset can successfully be generalized
to a test set extracted from the same dataset, while applying the model to an-
other volcano-seismic situation results in poor performance in terms of accuracy
and Fl-score. This means that leveraging discriminative knowledge from the la-
beled dataset for annotating the unlabeled one is not feasible without unifying
contextual factors.

Problem definition. UDA techniques alleviate the cross-domain discrepancy
between two different but related domains. We refer to volcano-seismic scenarios
with labeled samples as the source domain Dg and the ones with unlabelled
samples as the target domain D;, assuming a class imbalance in both D, and D;.
Suppose a given labelled samples S = {(z%, yf)}}¥, from D, along with unlabeled
samples T' = {(mf)}f\gl from D;. Our intended task is binary classification: Dj
and D, share the same class set (Cs = Cy = {0, 1}) with label frequencies W* =
{ws,wi} and Wt = {w,wi}. W' is unknown during training and w§ # w?,
for i € {s,t}. The objective is to learn the Cubism function that mitigates the
domain shift, and given a sample z! from Dy, it accurately predicts label y/:

Cubism(S,T) — {(yf)}f\; (1)
4 Preliminaries

This section gives an overview of two fundamental concepts our proposed method
builds on: mixup regularization and Flow Gaussian Mixture Model.
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4.1 Mixup

Mixup [28] is a simple yet effective method to regularize the training process
by modelling both intra-class and inter-class vicinity relations. Mixup provides
synthetic samples via linear interpolations of pairs of samples and their corre-
sponding labels:

™ = Az + (1= Ny 5 y™ = Ay + (1= ANy;, (2)

where (z;,y;) and (z;,y,) are randomly sampled pairs of (instance, one-hot label)
and A € [0, 1].

In the UDA problem, we can mixup (sample, label) pairs from the source do-
main with (sample, pseudo-label) pairs of the target domain and incorporate these
intermediate samples into the adaptation process. This approach improves the
efficiency of UDA techniques by modelling inter-domain vicinity relations [26].

4.2 Flow Gaussian Mixture Model (FlowGMM)

A flow-based generative model [5] is an unsupervised model that provides exact
inference and density evaluation via seeking an invertible transformation from
data space X to the latent space Z. This exact mapping from data probability
distribution Px to a tractable latent probability distribution Py is obtained via
the change of variable formula. For the sake of computational simplicity, the
latent distribution Py is usually a standard Gaussian.

FlowGMM [10] replaces the Standard Gaussian distribution in the latent
space of flow-based models with a Gaussian mixture where each component
N (ug,or) corresponds to class k in data space X. This model (Fy) provides
an exact joint likelihood Px (z,y) via modelling the exact conditional likelihood
P(z|y) using change of variable formula:

Laum = Px(zly = k) = N(Pz(Fo(z)|ur, on)) - |det(a];0£x))|7 (3)

and then p(y|x) is inferred through Bayes’ rule as follows:

N (Fo(2)|py, o) _ (4)
S N(F ()| iy 04)

Px(yle) =

5 Methodology

We propose Cubism as a robust framework for addressing the imbalanced cross-
domain binary classification. Cubism addresses bias and reverse bias in domain
alignment through an interplay between co-balanced inter-domain mizup and ad-
versarial UDA with conditional mapping. Figure 3 illustrates the Cubism frame-
work. Each training iteration comprises the following steps:

(a) Source samples are fed into a FlowGMM F' that maps the complex data
space to a latent Gaussian mixture model.



M. Keramati et al.

VT Lp Domain Adversarial Loss
n e » D —»
Source samples :--->
—> I R
-1 !
Target samples F(x) F™(2) ; i
—— ] P -
mm Pl .
Classification Loss
----------- » g —r

‘," N YO , \ — Source
\ L)/\"\’\ J ( /\JL ; ! /M >/ —— Target

(b)

P, P, P, Lo Mixed-up

e -=--- Pseudo-labeled Target

Fig. 3: The architecture of Cubism.

Target samples are fed into F, and then corresponding pseudo-labels are
assigned to target embeddings based on the learned Gaussians. Note that
Cubism estimates the class imbalance ratios in the target domain regarding
the conditional information of pseudo-labeled target embeddings and later
combines the ratios from both domains producing a set of co-balanced ratios.
Source-like samples are generated using learned Gaussians applying the co-
balanced ratios determined in the previous step.

Random Gaussian noise is injected to target samples in order to impose local
Lipschitz and robustness.

The generated source samples are linearly interpolated in the latent space
along with noisy target embeddings to produce semantically-meaningful inter-
domain samples. Invertibility of flow-based models provides a semantic pre-
serving cross-domain data augmentation.

Source, target and inter-domain samples are fed into an adversarial UDA
framework which is slightly modified with a soft domain discriminator and
soft source classifier. In addition, for a plausible conditional domain align-
ment, Cubism maps target samples that are further from the decision bound-
aries of the source classifier to their corresponding source Gaussians.

Algorithm 1 summarizes Cubism. We elaborate on different aspects of this

approach in the following sections.

5.1
Co-

Co-balanced Inter-Domain Mixup

balanced inter-domain mixup regularizes the inter-domain space in an unbi-

ased manner. Cubism synthesizes inter-domain samples by co-balanced sampling
from the source Gaussians and then mixing up the generated samples with the
target samples.

Co-balanced sampling. We train a FlowGMM model F on source data since
this conditional generative model computes the exact likelihood and maps the
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Algorithm 1: Co-balanced domain alignment

Input: S = {(a5, v}, T = {(@])})Y,
Output: Mgr({¥r, ¥y, ¥p}): Final model
1 F = (¥p) + preTrain(S);
2 W* + classFreq(9);
3 for e € EPOCH do

4 for b = {S, T} € Batchs do
5 Zg — F(Tp);
6 Ty, < softPseudoLabel(Z});
7 Ty, + NoiseInjection(T});
8 W} « classFreq(T});
9 if e>0 then
10 ‘ Wt eWt + (1 - W
11 else
12 L Wt W,
13 W < coBalancedFreq(W*, W);
14 p(*[lf’@o,lfwﬂ;
15 Z§ X Gl(po, 00), (1, 0)];
16 A ~ Beta(a, 8);
17 My, + Mixup(Z&, Ty, \);
18 Lyotar + computeLoss(Ty, Sy, My, A);
19 Mg .backpropagate(Liotal);
20 Mgr.update();

21 return Mgr

source data to a Gaussian mixture model in latent space Z through optimizing
the likelihood explained in Eq. 3: Z° = {(2°,Y?°)}, | 2° = F(z®), where Y* is
the one-hot label encoding.

Now, to address the class imbalance issue we want to generate samples from
the learned Gaussians G = [N (o, 00), N (u1,01)]. Our empirical observations
show that ignoring class imbalance in the target domain misleads the conditional
alignment. The reason is that by incorporating imbalanced information from the
source, the model gradually will be biased toward the minority class even if the
first few training steps follow a normal process. Thus, to dynamically maintain
an unbiased mixup, we sample from the set of Gaussians G considering the class
imbalance in both domains.

Class frequency W* = [w§, w$] in the source domain is directly estimated via
the labels Y = {yz}ivzl where w®; = N%;/N* and N*; is the number of source
samples from class i. However, due to the lack of labels in the target domain,
assessing class-imbalance ratios is not as straightforward as it is in the source
domain. We estimate these ratios through utilizing obtained pseudo-labels of
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the target data. For this, we first map target samples T to the latent space Z
through network F', and then, we assign soft pseudo-labels to the embedded
target samples representing their classification probability by employing the set
of learned Gaussians G. This process results in a set of softly pseudo-labeled
target samples T = {(2',Y = {§;}jef0.1})}, where y; = Px(y = j|z*) and
Px (y = j|a') is realized through Eq. 4 and 2! = F(a?).
Now, we estimate class ratios in the target domain W' = {w}, 0!} using
hard pseudo-labels Y = {gjz}f\gl where §; = argmaz Y;. For a global estimation
je{0,1}
of Wt, these weights are adapted during training by accumulating all previous
local target ratios: Wt « W' 4 (1 — €)W}/, where b is the batch number.
Cross-domain imbalance ratio W = {w;};e0,1} is obtained as follows:

wsi—i—u?t-
—_— . 5
. )

w; =

For a co-balanced sampling, we assign sampling probability p = {1 — @, 1 — w }
to the set of learned Gaussians G. Then, we use reparameterization trick [14]
to generate new source-like samples Z¢ in the latent space Z regarding the
probability set p: Z% = {(2%,9)}, | 2¢ & N1y, 04), y € {0,1}.

Manifold mixup. To bridge the inter-domain gap, we generate intermediary
instances via interpolating Z¢ and T and incorporate them to the adaptation
process along with source and target data.

Penalizing drastic changes of a classifier prediction affected by input per-
turbations (a.k.a locally Lipschitz) imposes the cluster assumption [21]. Before
mixing up source and target samples, similar to NFM [16] we model locally-
Lipschitz by injecting additive and multiplicative noises to the embedded target
samples: 2t; = (1 + 0,() - 2% + 04(?, where ¢ and (¢ are random variables
modeling the desired noise and T = {,z_ti,ﬁ}f\;tl is the set of noisy target em-
beddings.

Now, we randomly mix up generated source samples Z¢ and noisy target
samples T: 27" = \z%+(1—=A\)z!, Y™ = AY,S+(1—\)Y}, where A ~ Beta(a, ).

Due to the exact coding and decoding of F', these linear interpolations in
expressive latent space Z model perceptual mixup on the complex data manifold.
As depicted in Figure 3, by using M = {(F~1(2/),Y;™)}}Y] in addition to S
and T = {(F~1(z!),Y{!)}¥', we prepare a robust and enriched data as input of
adversarial and conditional UDA that can smoothly direct the domain alignment.

5.2 Adversarial UDA and Conditional Mapping

The adaptation phase has two main components: a holistic alignment using
adversarial UDA and a conditional alignment of target samples with high clas-
sification confidence. Holistic adaptation globally aligns the distribution of two
domains and conditional alignment enforces discriminative domain transfer.
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Holistic alignment. Inspired by mixup-based adversarial UDA [26], we modi-
fied the DANN [8] architecture to incorporate inter-domain synthetic samples in
the adaptation process. DANN is a minimax game between a domain discrimi-
nator and a feature extractor, alongside training a classifier for labeled data.

To minimize a cross-entropy loss (CE), source samples and their correspond-
ing labels are fed into a two-way classifier H:

Ly = E(w,y)NS[CE(H(G(x))v y)] (6)

Optimizing the classifier H with respect to the inter-domain samples M
in addition to the source samples encourages locally-Lipschitzness in the inter-
domain space. Therefore, inter-domain samples and their soft pseudo-labels are
fed to the classifier H to optimize the following objective:

L = E(ey)~m[CE(H(G(2)),y)]- (7)

For a holistic distribution alignment, a domain label [ is assigned to each
sample, where Ip is 1 for z ~ S, 0 for z ~ T, and \ for z ~ M.

Now, source and target samples along with their domain labels are fed to a
domain discriminator D with a classification objective as follows:

La = Eansllog D(G())] + Eqnrllog(1 — D(G(x)))]. (8)

In addition, we feed inter-domain samples and their domain labels to the domain
discriminator to model the inter-domain space:

d = Eznm[lplog D(G(z)) + (1 = Ip)log(1 — D(G(x)))]- (9)

Aiming for an adversarial UDA, we maximize domain discriminator losses by op-
timizing the parameters of the flow model F', while parameters of D are trained
via minimizing the objective functions of D. This minimax game imposes global
domain confusion; therefore, a domain invariant representation in space Z is
learned through optimizing Ly and L% alongside a minimax game for the ad-
versarial loss functions Ly and L[

Lage = mi L L™+ pL™ 4+ [ 1
Adv = i MAT p a+vLy +nL + Ly, (10)

where p, 7 and 7 are hyper-parameters to regulate the interplay of the modules
over the course of the adaptation process.

Conditional alignment. To impose a plausible conditional alignment, analo-
gous to class-aware UDA [13], we encourage more confident target samples to
be aligned with their corresponding class. First, we select a set of easy target
samples with a classification confidence higher than a threshold 7 as follows:

T, = {(xfavye)} | Cp(mzvye) >, (11)
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where CP(z%,y.) is the probability of sample z. belonging to the class y. Next,
we encourage conditional alignment by mapping easy target samples T, to their
corresponding Gaussians in space Z by optimizing Eq. 4 as follows:

L. = Px(zt|y. = k). (12)
Finally, total objective function is:

Liot = Lagy + 0L, = 717}% maz pLqg+~L} +nLY + Ly + 0L, (13)

where ¢ is the regulating factor for conditional alignment. Throughout the train-
ing, alternating between the co-balanced mixup and domain alignment for opti-
mizing Ly, effectively align the distribution of the source and target domains.
Eventually, this step-by-step process enables the classifier H to correctly classify
samples from the target domain.

6 Experiments

We assess here the effectiveness of Cubism on unsupervised volcano-seismic knowl-
edge transfer. We first elaborate on the characteristics of the datasets and the
feature extraction process. Then, after briefing implementation setup, we sub-
stantiate the efficacy of Cubism via a comprehensive analysis of our experiments.

6.1 Data Characteristics

As discussed in Sect. 3.2, we are using event records from Llaima Volcano and
Deception Island Volcano as two non-identical volcano-seismic situations. These
datasets have pairs of (records segment, event type), where each record segment
is a raw stream of seismic signals. The seismic records of Llaima Volcano were
captured between 2010 and 2016, while data from the Deception Island Volcano
incorporates seismic records belonging to two different periods: 1994-1995 and
2009-2010. Table 1 summarizes the characteristics of these datasets. Note that
both datasets suffer from data imbalance issues. To make the signals compatible,
we first standardize each record segment with respect to its maximum value and
then interpolate the data from Deception Island to match the sampling rate of
the data from the Llaima volcano. This process helps to preserve the signals’
temporal characteristics. Afterward, by zero-padding the signals, we maintain
the same dimension for all the signals. After padding, all the records are set to
6,000 samples (an interval of 60 seconds). Finally, following [4], we utilize short-
time fast Fourier transform (FFT) of 512 points to convert the raw datasets to
sets of spectrograms. The resulting images are used as input for training Cubism.

6.2 Implementation Details

For exact disentangled coding, following [10], we use a RealNVP normalizing
flow with two coupling layers, one hidden state and 128 hidden units. Both
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Table 1: Characteristics of the studied datasets

Attribute Volcano Llaima  Deception Island
Number of LP events 1310 262
Number of VT events 304 77

Sampling Frequency (Hz) 100 50

source classifier and domain discriminator comprise a backbone, dropout and two
fully connected layers with the Relu activation function. A pre-trained Resnet-18
on ImageNet is adopted as the backbone while training the downstream layers
from scratch. For training the network, we employ the Adam optimizer with a
momentum of 0.9 and a decaying learning rate initiated by 0.01. We set o and
B in Eq. 10 to 8 and 2 respectively, 7 to 0.9, £ to 0.9 and the batch size to 15.
Towards an effective interplay of components of Cubism, we arrange the values
of p, v, n and ¢ (see Eq. 13) to gradually increase with an exponential schedule

equal to (#_Lb) —1) [8], where ¢ = 10 and b is increased linearly from 0 to 1.

6.3 Empirical Analysis

We define two volcano-seismic knowledge transfer tasks from Llaima Volcano to
Deception Island Volcano and from Deception Island Volcano to Llaima Volcano,
denoted as L — D and D — L, respectively. To empirically evaluate the efficacy
of Cubism, we compare the performance of Cubism to several baselines on these
two tasks. Following is the list of comparison partners in our experiments:

— Source-Only: a pre-trained Resnet-18 plus two layers classifier for the tasks
L — D and D — L on data from Llaima volcano and Deception Island
Volcano, respectively.

— IMF-STD: an approach analogous to [2] that standardize volcano-seismic
records by using a set of six intrinsic mode function components.

— DANN [8]: adversarially aligns distributions disregarding class imbalance.

— DM-ADA [26]: a mixup-based adversarial UDA that produces inter-domain
samples in input and latent spaces of a VAE without tackling imbalanced
data issue.

— DM-ADA-Flow: a version of DM-ADA that uses flow-based generative model
instead of VAE.

— BMix-DA: a version of Cubism without addressing the data imbalance issue
in the target domain.

Cross domain classification performance. Table 2 presents the performance
of Cubism and the baselines in terms of classification accuracy, precision, recall
and Fl-score. The results are reported as the average performances over five
runs. Cubism significantly outperforms all the baselines since it robustly miti-
gates the domain gap via co-balanced inter-domain modeling. Cubism delivers a
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Table 2: Methods performance (%) for the transfer tasks of L — D and D — L
Accuracy Precision Recall F1l-score

Method L-DDsLlLpDDsLlLoDDSLlLSDD—L
Source-Only | 71.59 50.84 | 57.46 55.70 | 56.43 59.10 | 56.75 47.95
IMF-STD 81.06 71.29 | 84.46 69.27 | 59.35 81.17 | 60.45 67.36
DANN [§] 89.94 91.69 | 93.25 87.61 | 78.37 84.27 | 82.99 85.80

DM-ADA [26] | 87.86 88.03 | 92.01 90.31 | 73.83 69.39 | 78.51 74.25
DM-ADA-Flow| 88.46 90.51 | 91.36 92.35 | 75.59 75.97 | 80.11 81.04
BMix-DA 93.79 95.23 | 94.92 96.00 | 87.28 88.22 | 90.39 91.50

Cubism 94.98 96.15 | 95.70 95.75 | 89.87 91.44 | 92.38 93.41

Cubism
— Bmix-DA
— DANN
— DM-ADA-Flow
~ DM-ADA
— IMF-STD
— Source-Only

Precision

Precision

00 00 02 04 06 08 10

U7 Reaall Recall

() L—D (b) D= L

Fig. 4: Precision-Recall curve

more performant model than BMix-DA, confirming the significant contribution
of co-balanced mixup in addressing forward bias and reverse bias in the course
of training. Besides, BMix-DA outperforms DANN and DM-ADA substantiating
the significance of addressing the data imbalance issue using UDA. DM-ADA-
Flow replaces the VAE in DM-ADA with a flow-based generative model to as-
sess the effectiveness of an invertible generative model utilization. As shown in
Table 2, DM-ADA-flow outperforms DM-ADA due to delivering semantic pre-
serving mixup. Although using Mixup substantially improves the performance of
UDA approaches, in the case of data imbalance, these solutions are biased toward
the majority class. Thus, as shown in Table 2, DM-ADA has a lower performance
compared to DANN. IMF-std is outperformed by all the UDA-based methods
confirming the crucial role of UDA techniques in aligning the data distribution
of the two volcanoes. Finally, the poor performance of source-only emphasizes
the necessity of addressing the inter-volcano gap.

Furthermore, Figure 4 compares the predictive power of the classifier learned
by Cubism with the baselines using the Precision-Recall curve. Cubism consider-
ably outperforms all the baselines confirming the performance analysis above.

Feature visualization. t-SNE [6] is a widely-used approach to reduce high
dimensional data to 2D. For a visualized comparison, we mapped the deep fea-
tures learned by Source-Only, DANN, DM-ADA and Cubism to 2D space for
the transfer task L. — D employing t-SNE. Figure 5 demonstrates the t-SNE
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Fig. 5: t-SNE visualization of network activations generated by DANN, DM-ADA
and Cubism for the transfer task L — D

projections. There is a significant inter-volcano distribution gap for Source-Only
as depicted in Figure 5-a. In contrary to DANN and DM-ADA, Cubism is not
subject to class imbalance, as one can see in Figures 5b-d. In other words, Cu-
bism imposes the best conditional alignment between the two volcanic domains
compared to all baselines.

7 Conclusions

Cubism is a novel framework for unsupervised cross-volcano classification that
robustly models inter-volcano manifold in an invertible latent space. Cubism
goes one step beyond the limited assumption of conditional balance in unsu-
pervised domain adaptation methods by dynamic co-alleviation of bias and in-
evitable reverse bias. Cubism proposes co-balanced inter-volcano modeling and
delivers well-rounded mitigation of the inter-volcano gap. This approach opens
a new perspective to significantly less resource-intensive volcano-seismic knowl-
edge transfer with a promising performance. We evaluate Cubism in an extensive
comparative study on the knowledge transfer task for two well-studied volcanoes,
showing that it outperforms all the baselines by a large margin, thus establish-
ing the efficacy of this new approach. Cubism is a game changer in forecasting
volcanic hazards by substantiating a fundamental step toward low-cost min-
ing of volcano-seismic data. Our future work aims at extending Cubism to the
more complicated task of unsupervised discriminative knowledge transfer given
volcano-seismic stream data where there is no prior knowledge about the simi-
larity of class sets in volcano-seismic situations.

Acknowledgements This research has been funded by the Canadian Mountain
Network as part of the Networks of Centres of Excellence program and the
Natural Sciences and Engineering Research Council of Canada.

References

1. Bueno, A., et al.: Volcano-seismic transfer learning and uncertainty quantification
with bayesian neural networks. Trans. on Geoscience and Remote Sensing (2019)

2. Cortés, G., et al.: Practical volcano-independent recognition of seismic events: Vul-
can. ears project. Frontiers in Earth Science (2021)



16

10.

11.

12.

13.

14.
15.

16.
17.

18.

19.

20.

21.

22.

23.

24.

25.

26.
27.

28.

M. Keramati et al.

Cortés, G., et al.: Standardization of noisy volcanoseismic waveforms as a key step
toward station-independent, robust automatic recognition. SLR (2019)

Curilem, M., et al.: Using cnn to classify spectrograms of seismic events from llaima
volcano (chile). In: IJCNN (2018)

Dinh, L., et al.: Nice: Non-linear independent components estimation. arXiv (2014)
Donahue, J., et al.: Decaf: A deep convolutional activation feature for generic visual
recognition. In: ICML (2014)

Duque, A., et al.: Exploring the unsupervised classification of seismic events of
cotopaxi volcano. Journal of Volcanology and Geothermal Research (2020)
Ganin, Y., et al.: Unsupervised domain adaptation by backpropagation. In: ICML
(2015)

Grijalva, F., et al.: Eseismic-gan: A generative model for seismic events from co-
topaxi volcano. J. of Selected Topics in Applied Earth Observations and Remote
Sensing (2021)

Izmailov, P.; et al.: Semi-supervised learning with normalizing flows. In: ICML
(2020)

Jiang, X., et al.: Implicit class-conditioned domain alignment for unsupervised
domain adaptation. In: ICML (2020)

Kang, G., et al.: Contrastive adaptation network for unsupervised domain adap-
tation. In: CVPR. pp. 4893-4902 (2019)

Keramati, M., et al.: Norma: A hybrid feature alignment for class-aware unsuper-
vised domain adaptation. In: CIKM (2021)

Kingma, D.P., et al.: Auto-encoding variational bayes. In: ICLR (2014)

Lee, J., et al.: Self-diagnosing gan: Diagnosing underrepresented samples in gener-
ative adversarial networks. Neurips (2021)

Lim, S.H., et al.: Noisy feature mixup. arXiv (2021)

Madadi, Y., et al.: Deep visual unsupervised domain adaptation for classification
tasks: A survey. Iet Image Processing (2020)

Malfante, M., et al.: Machine learning for volcano-seismic signals: Challenges and
perspectives. Signal Processing Magazine (2018)

Manley, G., et al.: A deep active learning approach to the automatic classification
of volcano-seismic events. Frontiers in Earth Science (2022)

Na, J., et al.: Fixbi: Bridging domain spaces for unsupervised domain adaptation.
In: CVPR (2021)

Shu, R., et al.: A dirt-t approach to unsupervised domain adaptation. In: ICLR
(2018)

Thelen, W.A., et al.: Trends in volcano seismology: 2010 to 2020 and beyond.
Bulletin of Volcanology (2022)

Titos, M., et al.: A deep neural networks approach to automatic recognition systems
for volcano-seismic events. J. of Selected Topics in Applied Earth Observations and
Remote Sensing (2018)

Venegas, P., et al.: Combining filter-based feature selection methods and gaussian
mixture model for the classification of seismic events from cotopaxi volcano. J. of
Selected Topics in Applied Earth Observations and Remote Sensing (2019)

Wei, C., et al.: Crest: A class-rebalancing self-training framework for imbalanced
semi-supervised learning. In: CVPR (2021)

Xu, M., et al.: Adversarial domain adaptation with domain mixup. In: AAAT (2020)
Yiiksel, O.K., et al.: Semantic perturbations with normalizing flows for improved
generalization. In: ICCV (2021)

Zhang, H., et al.: mixup: Beyond empirical risk minimization. In: ICLR (2018)



