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Abstract. In this paper, we improve the regret bound for online kernel
selection under bandit feedback. Previous algorithm enjoys a O((‖f‖2Hi+
1)K

1
3 T

2
3 ) expected bound for Lipschitz loss functions. We prove two

types of regret bounds improving the previous bound. For smooth loss
functions, we propose an algorithm with a O(U

2
3K−

1
3 (
∑K

i=1 LT (f∗i ))
2
3 )

expected bound where LT (f∗i ) is the cumulative losses of optimal hy-
pothesis in Hi = {f ∈ Hi : ‖f‖Hi ≤ U}. The data-dependent bound
keeps the previous worst-case bound and is smaller if most of candi-
date kernels match well with the data. For Lipschitz loss functions, we
propose an algorithm with a O(U

√
KT ln

2
3 T ) expected bound asymp-

totically improving the previous bound. We apply the two algorithms to
online kernel selection with time constraint and prove new regret bounds
matching or improving the previous O(

√
T lnK+‖f‖2Hi max{

√
T , T√

R})
expected bound where R is the time budget. Finally, we empirically ver-
ify our algorithms on online regression and classification tasks.

Keywords: Model selection · Online learning · Bandit · Kernel method.

1 Introduction

Selecting a suitable kernel function is critical for online kernel learning algo-
rithms, and is more challenge than offline kernel selection since the data are
provided sequentially and may not be i.i.d.. Such kernel selection problems are
named online kernel selection [22]. To address those challenges, many online
kernel selection algorithms reduce it to a sequential decision problem, and then
randomly select a kernel function or use a convex combination of multiple kernel
functions on the fly [19, 7, 22, 16, 11]. Let K = {κi}Ki=1 be predefined base kernels.
An adversary sequentially sends the learner instances {xt}Tt=1. The learner will
choose a sequence of hypotheses {ft}Tt=1 from the K reproducing kernel Hilbert
spaces (RKHSs) induced by kernels in K. At each round t, the learner suffers a
prediction loss `(ft(xt), yt). The goal is to minimize the regret defined as follows,

∀κi ∈ K,∀f ∈ Hi, RegT (f) =

T∑
t=1

`(ft(xt), yt)−
T∑
t=1

`(f(xt), yt). (1)

? This work was supported in part by the National Natural Science Foundation of
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Effective online kernel selection algorithms must keep sublinear regret bounds
w.r.t. the unknown optimal RKHS Hi∗ induced by κi∗ ∈ K.

Previous work reduces online kernel selection to a sequential decision prob-
lem, including (i) prediction with expert advice [4], (ii) K-armed bandit problem
[3], (iii) prediction with limited advice [15]. The online multi-kernel learning al-
gorithms [14, 5] which reduce the problem to prediction with expert advice, use a
convex combination of K hypotheses and enjoy a O(poly(‖f‖Hi)

√
T lnK) regret

bound. Combining K hypotheses induces a O(Kt) per-round time complexity
which is linear with K. To reduce the time complexity, the OKS algorithm
(Online Kernel Selection) [19] reduces the problem to an adversarial K-armed
bandit problem. OKS randomly selects a hypothesis per-round and only provides
a O(poly(‖f‖Hi)K

1
3T

2
3 )) 1 expected bound. The per-round time complexity of

OKS is O(t). The B(AO)2KS algorithm [11] reduces the problem to predict with
limited advice and randomly selects two hypotheses per-round. B(AO)2KS can
provide a Õ(poly(‖f‖Hi)

√
KT ) high-probability bound and suffers a O(t/K)

per-round time complexity. From the perspective of algorithm design, an impor-
tant question arises: does there exist some algorithm only selecting a hypothe-
sis (or under bandit feedback) improving the O(poly(‖f‖Hi)K

1
3T

2
3 )) expected

bound? The significances of answering the question include (i) explaining the
information-theoretic cost induced by only selecting a hypothesis (or observ-
ing a loss); (ii) designing better algorithms for online kernel selection with time
constraint. In this paper, we will answer the question affirmatively.

We consider Lipschitz loss functions and smooth loss functions (Assumption
1). For Lipschitz loss functions, we propose an algorithm whose expected regret
bound is O(U

√
KT ln

2
3 T ) asymptotically improving the O(poly(‖f‖Hi)K

1
3T

2
3 ))

expected bound. Our regret bound proves that selecting a or multiple hypothe-
ses will not induce significant variation on the worst-case regret bound. For
smooth loss functions, we propose an adaptive parameter tuning scheme for
OKS and prove a O(U

2
3K−

1
3 (
∑K
j=1 LT (f∗j ))

2
3 ) expected bound where LT (f∗j ) =

minf∈Hj
∑
t∈[T ] `(f(xt), yt). If most of base kernels in K match well with the

data, i.e., LT (f∗j )� T , then the data-dependent regret bound significantly im-
proves the previous worst-case bound. In the worst case, i.e., LT (f∗j ) = O(T ),
the data-dependent bound is still same with the previous bound. Our new regret
bounds answer the above question. We summary the results in Table 1.

We apply the two algorithms to online kernel selection with time constraint
where the time of kernel selection and online prediction is limited to R quanta
[9]. It was proved that any budgeted algorithm must suffer an expected re-
gret of order Ω(‖f∗i ‖Hi max{

√
T , T√

R}) and the LKMBooks algorithm enjoys a

O(
√
T lnK + ‖f‖2Hi max{

√
T , T√

R}) expected bound [9]. LKMBooks uses con-
vex combination to aggregate K hypotheses. Raker uses random features to
approximate kernel functions and also aggregates K hypotheses [16]. Raker en-
joys a Õ((

√
lnK + ‖f‖21)

√
T + ‖f‖1 T√

R ) bound where f =
∑T
t=1 αtκi(xt, ·) and

1 poly(‖f‖Hi) = ‖f‖2Hi +1. The original paper shows a O((‖f‖2Hi +1)
√
KT ) expected

regret bound. We will clarify the difference in Section 2.
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Table 1. Expected regret bounds for online kernel selection under bandit feedback. R
is the time budget. L̄T =

∑K
j=1 LT (f∗j ). ν is a parameter in the definition of smooth

loss (see Assumption 1). There is no algorithm under bandit feedback in the case of a
time budget. Thus we report the result produced under the expert advice model [9].

R Loss function Previous results Our results

No
Lipschitz loss

O
(

poly(‖f‖Hi)K
1
3 T

2
3

)
[19]

O(U
√
KT ln

2
3 T )

Smooth loss ν = 1 O(U
2
3K−

1
3 L̄

2
3
T )

Smooth loss ν = 2 O(U
2
3K−

1
3 L̄

2
3
T )

Yes
Lipschitz loss

O
(
‖f‖2Hi max{

√
T , T√

R}
)
[9]

O(U
√
KT ln

2
3 T + UT

√
lnT√
R )

Smooth loss ν = 1 Õ(U
2
3K−

1
3 L̄

2
3
T +

ULT (f∗i )√
R )

Smooth loss ν = 2 Õ(U
2
3K−

1
3 L̄

2
3
T +

U
√

TLT (f∗i )√
R )

‖f‖1 = ‖α‖1 [16]. The two algorithms reduce the problem to prediction with
expert advice, while our algorithms just use bandit feedback.

We also use random features and make a mild assumption that reduces the
time budget R to the number of features. For smooth loss functions, we prove
two data-dependent regret bounds which can improve the previous worst-case
bounds [16, 9] if there is a good kernel in K that matches well with the data.
For Lipschitz loss functions, our algorithm enjoys a similar upper bound with
LKMBooks. We also summary the results in Table 1.

2 Problem Setting

Denote by {(xt, yt)}t∈[T ] a sequence of examples, where xt ∈ X ⊆ Rd, y ∈ [−1, 1]
and [T ] = {1, 2, . . . , T}. Let κ(·, ·) : X ×X → R be a positive definite kernel and
K = {κ1, . . . , κK}. For each κi ∈ K, let Hi = {f |f : X → R} be the associated
RKHS satisfying 〈f, κi(x, ·)〉Hi = f(x), ∀f ∈ Hi. Let ‖f‖2Hi = 〈f, f〉Hi . We
assume that κi(x,x) ≤ 1, ∀κi ∈ K. Let `(·, ·) : R× R→ R be the loss function.

2.1 Online Kernel Selection under Bandit Feedback

We formulate online kernel selection as a sequential decision problem. At any
round t ∈ [T ], an adversary gives an instance xt. The learner maintains K hy-
potheses {ft,i ∈ Hi}Ki=1 and selects ft ∈ span(ft,i : i ∈ [K]), and outputs ft(xt).
Then the adversary gives yt. The learner suffers a prediction loss `(ft(xt), yt).
The learner aims to minimize the regret w.r.t. any f ∈ ∪Ki=1Hi which is defined
in (1). If the learner only computes a loss `(ft,It(xt), yt), It ∈ [K], then we call it
bandit feedback setting. The learner can also compute N ∈ {2, . . . ,K} losses, i.e.,
{`(ft,ij (xt), yt)}Nj=1, ij ∈ [K]. The OKS algorithm [19] follows the bandit feed-
back setting. The online multi-kernel learning algorithms [14, 5, 16] correspond
to N = K. The B(AO)2KS algorithm [11] corresponds to N = 2. From the per-
spective of computation, the per-round time complexity of computing N losses is
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Algorithm 1 OKS
Input: K = {κ1, . . . , κK}, δ ∈ (0, 1), η, λ
Initialization: {f1,i = 0, w1,i = 1}Ki=1, p1 = 1

K1K
1: for t=1,. . . ,T do
2: Receive xt;
3: Sample a kernel κIt where It ∼ pt;
4: Update wt+1,It = wt,It exp(−η `(ft,It (xt),yt)pt,It

);

5: Update ft+1,It = ft,It − λ
∇ft,It `(ft,It (xt),yt)

pt,It
;

6: Update qt+1 = wt+1∑K
j=1 wt+1,j

and set pt+1 = (1− δ)qt+1 + δ
K1K ;

7: end for
8: Output: qT .

N times larger than the bandit feedback setting. From the perspective of regret
bound, we aim to reveal the information-theoretic cost induced by observing a
loss (or bandit feedback) not multiple losses (or N ≥ 2).

2.2 Regret bound of OKS

We first prove that the regret bound of OKS [19] is O((‖f‖2Hi + 1)K
1
3T

2
3 ), and

then explain the technical weakness of OKS.
The pseudo-code of OKS is shown Algorithm 1. Let ∆K be the (K − 1)-

dimensional simplex. At any round t, OKS maintains pt,qt ∈ ∆K . OKS samples
ft,It where It ∼ pt, and outputs ft,It(xt). For simplicity, we define two notations,

LT (f) :=

T∑
t=1

`(f(xt), yt), L̄q1:T
:=

T∑
t=1

K∑
i=1

qt,i`(ft,i(xt), yt).

Theorem 1 ([19]). Assuming that `(ft,i(x), y) ∈ [0, `max], ∀i ∈ [K], t ∈ [T ],
and ‖∇f `(f(x), y)‖Hi ≤ G, ∀f ∈ Hi. The expected regret of OKS satisfies

∀i ∈ [K], f ∈ Hi, E
[
L̄q1:T

]
≤ LT (f) +

‖f‖2Hi
2λ

+
λKTG2

2δ
+
ηKT`2max

2(1− δ)
+

lnK

η
.

In particular, let δ ∈ (0, 1) be a constant and η, λ = Θ((KT )−
1
2 ), then the

expected regret bound is O((‖f‖2Hi + 1)
√
KT ).

Remark 1. Since It ∼ pt, the expected cumulative losses of OKS should be
E
[
L̄p1:T

]
which is different from E

[
L̄q1:T

]
as stated in Theorem 1. Since pt =

(1− δ)qt + δ
K1K , the expected regret of OKS should be redefined as follows

∀i ∈ [K], f ∈ Hi, E
[
L̄p1:T

]
− LT (f)

≤δE
[
L̄ 1
K 1

]
− δLT (f) +

‖f‖2Hi
2λ

+
λKTG2

2δ
+
ηKT`2max

2(1− δ)
+

lnK

η

≤δT`max +
‖f‖2Hi

2λ
+
λKTG2

2δ
+
ηKT`2max

2(1− δ)
+

lnK

η
.
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To minimize the upper bound, let δ = (G/`max)
2
3K

1
3T−

1
3 , λ =

√
δ/(KTG2) and

η =
√

2(1− δ) lnK/
√
KT`2max. The upper bound is O((‖f‖2Hi + 1)K

1
3T

2
3 ).

Remark 2. OKS is essentially an offline kernel selection algorithm, since it aims
to output a hypothesis following qT for test datasets (see line 8 in Algorithm
1). Thus Theorem 1 defines the expected regret using {q1, . . . ,qT }, and the
O((‖f‖2Hi + 1)

√
KT ) bound is reasonable. For online kernel selection, we focus

on the online prediction performance. Since OKS selects ft,It following pt, the
expected regret should be defined using {p1, . . . ,pT }.

We find that the dependence on O(K
1
3T

2
3 ) comes from the term λKTG2

2δ
which upper bounds the cumulative variance of gradient estimators, i.e,

λ

2
E

[
T∑
t=1

‖∇̃t,i‖2Hi

]
≤ λKTG2

2δ
, ∇̃t,i =

∇t,i
pt,i

Ii=It ,∇t,i = ∇ft,i`(ft,i(xt), yt).

Next we give a simple analysis. To start with, it can be verified that

E
[
‖∇̃t,i‖2Hi

]
= E

[
pt,i
‖∇t,i‖2Hi
p2t,i

+ (1− pt,i) · 0

]
≤ E

[
max

t=1,...,T

(
1

pt,i

)
‖∇t,i‖2Hi

]
.

Recalling that pt,i ≥ δ
K , ∀i ∈ [K], t ∈ [T ]. Summing over t = 1, . . . , T yields

T∑
t=1

E
[
‖∇̃t,i‖2Hi

]
≤ K

δ

T∑
t=1

E
[
‖∇t,i‖2Hi

]
≤ KTG2

δ
.

The regret bound of online gradient descent (this can be found in our supple-
mentary materials) depends on λ

2E
[∑T

t=1 ‖∇̃t,i‖2Hi
]
≤ λKTG2

2δ . Thus it is the

high variance of ∇̃t,i that causes the O(K
1
3T

2
3 ) regret bound.

OKS selects a hypothesis per-round, reduces the time complexity to O(t) but
damages the regret bound. It was proved selecting two hypotheses can improve
the regret bound to Õ((‖f‖2Hi + 1)

√
KT ) [11]. A natural question arises: will

selecting a hypothesis induce worse regret bound than selecting two hypotheses?
From the perspective of algorithm design, we concentrate on the question:

– does there exist some algorithm selecting a hypothesis (or under bandit
feedback) that can improve the O((‖f‖2Hi + 1)K

1
3T

2
3 )) bound?

3 Improved Regret bounds for Smooth Loss Functions

In this section, we propose the OKS++ algorithm using an adaptive parameter
tuning scheme for OKS. Specifically, we reset the value of δ, η and λ in Theorem
1 and prove data-dependent regret bounds for smooth loss functions. Such regret
bounds can improve the previous worst-case bound if most of candidate kernel
functions match well with the data. Although OKS++ just resets the value
of parameters, deriving the new regret bounds requires novel and non-trivial
analysis. To start with, we define the smooth loss functions.
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Assumption 1 (Smoothness condition) `(·, ·) is convex w.r.t. the first pa-
rameter. Denote by `′(a, b) = d `(a,b)

d a . For any f(x) and y, there is a constant
C0 > 0 such that

|`′(f(x), y)|ν ≤ C0`(f(x), y), ν ∈ {1, 2}.

Zhang et al. [21] considered online kernel learning under smooth loss func-
tions with ν = 1. The logistic loss `(f(x), y) = ln(1 + exp(−yf(x))) satisfies
Assumption 1 with ν = 1 and C0 = 1. The square loss `(f(x), y) = (f(x)− y)2

and the squared hinge loss `(f(x), y) = (max{0, 1−yf(x)})2 satisfy Assumption
1 with ν = 2 and C0 = 4.

Let U > 0 be a constant. We define K restricted hypothesis spaces. ∀i ∈ [K],
let Hi = {f ∈ Hi : ‖f‖Hi ≤ U}. Then it is natural to derive Assumption 2.

Assumption 2 ∀κi ∈ K and ∀f ∈ Hi, there exists a constant G > 0 such that
maxt∈[T ] |`′(f(xt), yt)| ≤ G.

It can be verified that many loss functions satisfy the assumption and G
may depend on U . For instance, if ` is the square loss, then G ≤ 2(U + 1).
For simplicity, denote by ct,i = `(ft,i(xt), yt) for all i ∈ [K] and t ∈ [T ]. It can
be verified that maxt,i ct,i is bounded and depends on U . Then our algorithm
updates qt using ct (see line 4 and line 6 in Algorithm 1). Since we use restricted
hypothesis spaces, our algorithm changes line 5 in Algorithm 1 as follows

ft+1,It = arg min
f∈HIt

∥∥∥∥f − (ft,It − λt,It∇ft,It `(ft,It(xt), yt)pt,It

)∥∥∥∥2
HIt

. (2)

Except for {λt,i}Ki=1, our algorithm also uses time-variant δt and ηt. We omit the
pseudo-code of OKS++ since it is similar with Algorithm 1.

Next we show the regret bound. For simplicity, let C̃t,K =
∑t
τ=1

∑K
i=1 c̃τ,i

where c̃τ,i =
cτ,i
pτ,i

IIτ=i, and L̄T =
∑K
j=1 LT (f∗j ) where LT (f∗j ) = minf∈Hj LT (f).

Theorem 2. Let ` satisfy Assumption 1 with ν = 1 and Assumption 2. Let

δt =
(GC0)

1
3 (UK)

2
3

2 max
{

(GC0)
1
3 (UK)

2
3 , 2C̃

1
3

t,K

} , ηt =

√
2 lnK√

1 +
∑t
τ=1

∑K
i=1 qτ,ic̃

2
τ,i

,

∀i ∈ [K],λt,i =
U

4
3 (max{GC0U

2K2, 8C̃t,K})−
1
6√

4/3K
1
6 (GC0)

1
3

√
1 +∆t,i

, ∆t,i =

t∑
τ=1

`(fτ,i(xτ ), yτ )

pτ,i
IIτ=i.

Then the expected regret of OKS++ satisfies, ∀i ∈ [K],

E
[
L̄p1:T

]
− LT (f∗i ) = O

(
U

2
3 (GC0)

1
3 K−

1
3 L̄

2
3

T + U
2
3 (GC0)

1
3K

1
6 L̄

1
6

TL
1
2

T (f∗i )
)
.

Let ` satisfy Assumption 1 with ν = 2. Let G = 1 in δt and λt,i. ηt keeps
unchanged. Then the expected regret of OKS++ satisfies

∀i ∈ [K], E
[
L̄p1:T

]
− LT (f∗i ) = O

(
U

2
3C

1
3
0 K

− 1
3 L̄

2
3

T + U
2
3C

1
3
0 K

1
6 L̄

1
6

TL
1
2

T (f∗i )
)
.
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The values of λt,i, δt and ηt which depend on the observed losses, are impor-
tant to obtain the data-dependent bounds. Beside, it is necessary to set different
λt,i for each i ∈ [K]. OKS sets a same λ. Thus the changes on the values of δ, η
and λ are non-trivial. Our analysis is also non-trivial. OKS++ sets time-variant
parameters and does not require prior knowledge of the nature of the data.

Now we compare our results with the regret bound in Theorem 1. The main
difference is that we replace KT with a data-dependent complexity L̄T . In the
worst case, L̄T = O(KT ) and our regret bound is O(K

1
3T

2
3 ) which is same with

the result in Theorem 1. In some benign environments, we expect that L̄T � KT
and our regret bound would be smaller. For instance, if LT (f∗i ) = o(T ) for all i ∈
[K], then our regret is o(T

2
3 ) improving the result in Theorem 1. If there are only

M < K hypothesis spaces such that LT (f∗i ) = O(T ), where M is independent
of K, then our regret bound is O((MT )

2
3K−

1
3 ). Such a result still improves the

dependence on K. A more interesting result is that, if LT (f∗i ) = O(T
3
4 ) for all

i ∈ [K], then OKS++ achieves a O(K
1
3

√
T ) regret bound which is better than

the Õ(poly(‖f‖Hi)
√
KT ) bound achieved by B(AO)2KS [11].

4 Improved Regret bound for Lipschitz Loss Functions

In this section, we consider Lipschitz loss functions and propose a new algorithm
with improved worst-case regret bound.

4.1 Algorithm

For the sake of clarity, we decompose OKS into two levels. At the outer level, it
uses a procedure similar with Exp3 [3] to update pt and qt. At the inner level,
it updates ft,It using online gradient descent. Exp3 can be derived from online
mirror descent framework with negative entropy regularizer [1], i.e.,

∇q′t+1
ψt(q

′
t+1) = ∇qtψt(qt)− c̃t, qt+1 = arg min

q∈∆K
Dψt(q,q′t+1), (3)

where ψt(p) =
∑K
i=1

1
ηpi ln pi is the negative entropy and Dψt(p,q) = ψt(p) −

ψt(q)− 〈∇ψt(q),p− q〉 is the Bregman divergence. Different regularizer yields
different algorithm. We will use ψt(p) =

∑K
i=1

−α
ηt,i

p
1
α
i , α > 1, which slightly

modifies the α-Tsallis entropy [17, 23]. We also use the increasing learning rate
scheme in [1], that is ηt,i is increasing. The reason is that if ηt,i is increasing, then
there will be a negative term in the regret bound which can be used to control the
large variance of gradient estimator, i.e., E

[∑T
t=1 ‖∇̃t,i‖2Hi

]
(see Section 2.2). If

we use the log-barrier [1] or α-Tsallis entropy with α = 2 [2, 23], then the regret
bound will increase a O(lnT ) factor. This factor can be reduced to O(ln

2
3 T ) for

α ≥ 3. We choose α = 8 for achieving a small regret bound.
At the beginning of round t, our algorithm first samples It ∼ pt and out-

puts the prediction ft,It(xt) or sign(ft,It(xt)). Next our algorithm updates ft,It
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Algorithm 2 IOKS

Input: K = {κ1, . . . , κK}, α = 8, υ = e
2

3 lnT , η
Initialization: {f1,i = 0, η1,i = η}Ki=1, q1 = p1 = 1

K1K
1: for t = 1, . . . , T do
2: Receive xt
3: Sample a kernel κIt where It ∼ pt
4: Output ŷt = ft,It(xt) or sign(ŷt)
5: Compute ft+1,It according to (2)
6: Compute c̃t,It according to (4)
7: ∀i ∈ [K], compute qt+1,i according to (5)
8: Compute pt+1 = (1− δ)qt+1 + δ

K1K
9: for i = 1, . . . ,K do

10: if 1
pt+1,i

> ρt,i then
11: ρt+1,i = 2

pt+1,i
, ηt+1,i = υηt,i

12: else
13: ρt+1,i = ρt,i, ηt+1,i = ηt,i
14: end if
15: end for
16: end for

following (2). ∀i ∈ [K], let ct,i = `(ft,i(xt), yt)/`max ∈ [0, 1]. We redefine c̃t by

if pt,It ≥ max
i
ηt,i, then c̃t,i =

ct,i
pt,i

Ii=It , otherwise c̃t,i =
ct,i · Ii=It

pt,i + maxi ηt,i
. (4)

It is worth mentioning that c̃t is essentially different from that in OKS, and aims
to ensure that (3) has a computationally efficient solution as follows

∀i ∈ [K], qt+1,i =
(
q
− 7

8
t,i + ηt,i(c̃t,i − µ∗)

)− 8
7

, (5)

where µ∗ can be solved using binary search. We show more details in the sup-
plementary materials. We name this algorithm IOKS (Improved OKS).

4.2 Regret bound

Assumption 3 (Lipschitz condition) `(·, ·) is convex w.r.t. the first param-
eter. There is a constant G1 such that ∀κi ∈ K, f ∈ Hi, ‖∇f `(f(x), y)‖Hi ≤ G1.

Theorem 3. Let ` satisfy Assumption 3. Let δ = T−
3
4 ,

η =
3`maxK

3
8

2UG1

√
T lnT

, ∀i ∈ [K], λt,i =
U

√
2
√

1 +
∑t
τ=1 ‖∇̃τ,i‖2Hi

. (6)

Let T ≥ 40. Then the expected regret of IOKS satisfies,

∀i ∈ [K], f ∈ Hi, E
[
L̄p1:T

]
− LT (f) = O

(
UG1

√
KT ln

2
3 T +

`3maxK
11
4

U2G2
1 lnT

)
.
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`max is a normalizing constant and can be computed given the loss function,
such as `max ≤ U + 1 in the case of absolute loss. Next we compare our regret
bound with previous results. On the positive side, IOKS gives a O(U

√
KT ln

2
3 T )

bound which asymptotically improves the O(K
1
3T

2
3 ) bound achieved by OKS.

On the negative side, if T is small, then
√
KT ln

2
3 T > K

1
3T

2
3 and thus IOKS

is slightly worse than OKS. B(AO)2KS [11] which selects two hypotheses per-
round, can provide a Õ(poly(‖f‖Hi)

√
KT ) bound which is same with our result.

We further compare the implementation of IOKS and OKS. It is obvious that
OKS is easier than IOKS, since IOKS uses binary search to compute qt+1 (see
(5)). The computational cost of binary search can be omitted since the main
computational cost comes from the computing of ft,It(xt) which is O(t).

5 Application to Online Kernel Selection with Time
Constraint

In practice, online algorithms must face time constraint. We assume that there
is a time budget of R quanta. Both OKS++ and IOKS suffer a O(t) per-round
time complexity, and do not satisfy the time constraint. In this section, we will
use random features [12] to approximate kernel functions and apply our two
algorithms to online kernel selection with time constraint [9].

We consider kernel function κ(x,v) that can be decomposed as follows

κ(x,v) =

∫
Ω

φκ(x, ω)φκ(v, ω)dµκ(ω), ∀x,v ∈ X (7)

where φκ : X × Ω → R is the eigenfunctions and µκ(·) is a distribution func-
tion on Ω. Let pκ(·) be the density function of µκ(·). We can approximate
the integral via Monte-Carlo sampling. We sample {ωj}Dj=1 ∼ pκ(ω) indepen-
dently and compute κ̃(x,v) = 1

D

∑D
j=1 φκ(x, ωj)φκ(v, ωj). For any f ∈ Hκ,

let f(x) =
∫
Ω
α(ω)φκ(x, ω)pκ(ω)dω. We can approximate f(x) by f̂(x) =

1
D

∑D
j=1 α(ωj)φκ(x, ωj). It can be verified that E[f̂(x)] = f(x). Such an ap-

proximation scheme also defines an explicit feature mapping denoted by z(x) =
1√
D

(φκ(x, ω1), . . . , φκ(x, ωD)). The approximation scheme is the so called ran-
dom features [12]. ∀κi ∈ K, we define two hypothesis spaces [13] as follows

Hi =

{
f(x) =

∫
Ω

α(ω)φκi(x, ω)pκi(ω)dω ||α(ω)| ≤ U
}
,

Fi =

f̂(x) =

Di∑
j=1

αjφκi(x, ωj)

∣∣∣∣|αj | ≤ U

Di

 .

We can rewrite f̂(x) = w>zi(x), where w =
√
Di(α1, . . . , αDi) ∈ RDi . Let

Wi = {w ∈ RDi |‖w‖∞ ≤ U√
Di
}. It can be verified that ‖w‖22 ≤ U2. For all κi

satisfying (7), there is a constant Bi such that |φκi(x, ωj)| ≤ Bi for all ωj ∈ Ω
and x ∈ X [10]. Thus we have |f(x)| ≤ UBi for any f ∈ Hi and f ∈ Fi.
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Next we define the time budget R and then present an assumption that
establishes a reduction from R to Di.

Definition 1 (Time Budget [9]). Let the interval of arrival time between xt
and xt+1, t = 1, . . . , T be less than R quanta. A time budget of R quanta is
the maximal time interval that any online kernel selection algorithm outputs the
prediction of xt and xt+1.

Assumption 4 For each κi ∈ K satisfying (7), there exist online leaning algo-
rithms that can run in some Fi whose maximal dimension is Di = βκiR within
a time budget of R quanta, where βκi > 0 is a constant depending on κi.

The online gradient descent algorithm (OGD) satisfies Assumption 4. The main
time cost of OGD comes from computing the feature mapping. For shift-invariant
kernels, it requires O(Did) time complexity [12]. For the Gaussian kernel, it re-
quires O(Di log(d)) time complexity [8, 20]. Thus the per-round time complexity
of OGD is linear with Di. Since the running time of algorithm is linear with the
time complexity, it natural to assume that R = Θ(Di).

5.1 Algorithm

At any round t, our algorithm evaluates a hypothesis and avoids allocating the
time budget. Thus we can construct Fi satisfying Di = βκiR. Our algorithm is
extremely simple, that is, we just need to run OKS++ or IOKS in {Fi}Ki=1. It
is worth mentioning that, learning {f̂t,i ∈ Fi}Tt=1 is equivalent to learn {wi

t ∈
Wi}Tt=1, where f̂t,i(xt) = (wi

t)
>zi(xt). We replace the update (2) with (8),

w̃i
t+1 =wi

t − λt,i∇wit
`
(
f̂t,i(xt), yt

) 1

pt,i
Ii=It ,

wi
t+1 = arg min

w∈Wi

∥∥w − w̃i
t+1

∥∥2
2
.

(8)

The solution of the projection operation in (8) is as follows,

∀j = 1, . . . , Di, w
i
t+1,j = min

{
1,

U

|w̃it+1,j |
√
Di

}
w̃it+1,j .

The time complexity of projection is O(Di) and thus can be omitted relative to
the time complexity of computing feature mapping. We separately name the two
algorithms RF-OKS++ (Random Features for OKS++) and RF-IOKS (Random
Features for IOKS). We show the pseudo-codes in the supplementary materials
due to the space limit. The pseudo-codes are similar with OKS++ and IOKS.

Remark 3. The application of random features to online kernel algorithms is
not a new idea [18, 16, 6]. Previous algorithms did not restrict hypothesis spaces,
while our algorithms consider restricted hypothesis spaces, i.e., Hi and Fi. This
is one of the differences between our algorithms and previous algorithms. The
restriction on the hypothesis spaces is necessary since we must require ‖wi

t‖2 ≤ U
for any i ∈ [K] and t ∈ [T ].
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5.2 Regret Bound

Theorem 4. Let ` satisfy Assumption 1 with ν = 1 and Assumption 2. Let δt,
ηt and {λt,i}Ki=1 follow Theorem 2. For a fixed δ ∈ (0, 1), let R satisfy Di >
32
9 C

2
0U

2B2
i ln 1

δ , ∀i ∈ [K]. Under Assumption 4, with probability at least 1 − δ,
the expected regret of RF-OKS++ satisfies

∀i ∈ [K], E
[
L̄p1:T

]
−LT (f∗i ) = O

(
C0UBi√
βκiR

LT (f∗i )

√
ln
KT

δ

+U
2
3 (GC0)

1
3 K)−

1
3 L̄

2
3

T + U
2
3 (GC0)

1
3K

1
6 L̄

1
6

TL
1
2

T (f∗i )
)
.

Let ` satisfy Assumption 1 with ν = 2. Let G = 1 in δt and λt,i. ηt keeps
unchanged. For a fixed δ ∈ (0, 1), with probability at least 1 − δ, the expected
regret of RF-OKS++ satisfies

∀i ∈ [K], E
[
L̄p1:T

]
− LT (f∗i ) = O

(
UBi

√
C0TLT (f∗i )√

βκiR

√
ln
KT

δ

+
C0U

2B2
i T

βκiR
ln
KT

δ
+ U

2
3C

1
3
0 K

− 1
3 L̄

2
3

T + U
2
3C

1
3
0 K

1
6 L̄

1
6

TL
1
2

T (f∗i )

)
.

The regret bounds depend on LT (f
∗
i )√
R or 1√

R

√
TLT (f∗i ) + T

R . The larger the
time budget is, the smaller the regret bound will be, which proves a trade-off
between regret bound and time constraint. If LT (f∗i ) � T , then RF-OKS++
can achieve a sublinear regret bound under a small time budget.

Theorem 5. Let ` satisfy Assumption 2 and Assumption 3. Let {λt,i}Ki=1, η
and δ follow Theorem 3. Under Assumption 4, with probability at least 1− δ, the
expected regret of RF-IOKS satisfies, ∀i ∈ [K],∀f ∈ Hi,

E
[
L̄p1:T

]
− LT (f) = O

(
UG1

√
KT ln

2
3 T +

`3maxK
11
4

U2G2
1

√
lnT

+
GBiUT√
βκiR

√
ln
KT

δ

)
.

The regret bound depends on T√
R which also proves a trade-off between regret

bound and time constraint. Achieving a Õ(Tα) bound requires R = Ω(T 2(1−α)),
α ∈ [ 12 , 1). The regret bounds in Theorem 4 depend on LT (f∗i ), while the regret
bound in Theorem 5 depends on T . Under a same time budgetR, if LT (f∗i )� T ,
then RF-OKS++ enjoys better regret bounds than RF-IOKS.

5.3 Comparison With Previous Results

For online kernel selection with time constraint, if the loss function is Lipschitz
continuous, then there is a Ω(‖f∗i ‖Hi max{

√
T , T√

R}) lower bound on expected
regret [9]. Theorem 5 gives a nearly optimal upper bound. LKMBooks [9] gives
a O(

√
T lnK + ‖f‖2Hi max{

√
T , T√

R}) bound in the case of K ≤ d, and thus
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is slightly better than RF-IOKS. LKMBooks selects K hypotheses per-round.
RF-IOKS just selects a hypothesis per-round and is suitable for K > d.

For smooth loss functions, the dominated terms in Theorem 4 are O(
LT (f

∗
i )√
R )

and O( 1√
R

√
TLT (f∗i )+ T

R ). If the optimal kernel κi∗ matches well with the data,

that is, LT (f∗i∗)� T , then O(
LT (f

∗
i∗ )√
R ) and O( 1√

R

√
TLT (f∗i∗)) are much smaller

than O( T√
R ). To be specific, in the case of LT (f∗i∗) = o(T ), RF-OKS++ is better

than LKMBooks within a same time budget R.
Our algorithms are similar with Raker [16] which also adopts random fea-

tures. Raker selectsK hypotheses and provides a Õ((
√

lnK+‖f‖21)
√
T+‖f‖1 T√

R )

bound, where f =
∑T
t=1 αtκi(xt, ·) and ‖f‖1 = ‖α‖1. The regret bounds of RF-

OKS++ are better, since (i) they depend on LT (f∗i ) and
∑K
j=1 LT (f∗j ) while the

regret bound of Raker depends on T ; (ii) they depend on U , while the regret
bound of Raker depends on ‖f‖1 which is hard to bound and explain.

6 Experiments

We adopt the Gaussian kernel κ(x,v) = exp(−‖x−v‖
2
2

2σ2 ) and select 6 kernel
widths σ = 2−2:1:3. We choose four classification datasets (magic04:19,020,
phishing:11,055, a9a:32,561, SUSY:20,000 ) and four regression datasets (bank:8,192,
elevators:16,599, ailerons:13,750, Hardware:28,179 ). The datasets are down-
loaded from UCI 2, LIBSVM website 3 and WEKA. The features of all datasets
are rescaled to fit in [−1, 1]. The target variables are rescaled in [0, 1] for regres-
sion and {−1, 1} for classification. We randomly permutate the instances in the
datasets 10 times and report the average results. All algorithms are implemented
with R on a Windows machine with 2.8 GHz Core(TM) i7-1165G7 CPU 4. We
separately consider online kernel selection without and with time constraint.

6.1 Online kernel selection without time constraint

We compare OKS++, IOKS with OKS and aim to verify Theorem 2 and Theo-
rem 3. We consider three loss functions: (i) the logistic loss satisfying Assumption
1 with ν = 1 and C0 = 1; (ii) the square loss satisfying Assumption 1 with ν = 2
and C0 = 4; (iii) the absolute loss which is Lipschitz continuous. We do not
compare with B(AO)2KS [11], since it is only used for the hinge loss. If ` is
logistic loss, then we use classification datasets and measure the average mistake
rate, i.e., AMR := 1

T

∑T
t=1 Iŷt 6=yt , and set U = 15. Otherwise, we use regression

datasets and measure the average loss, i.e., AL := 1
T

∑T
t=1 `(ft,It(xt), yt), and set

U = 1. The parameters of OKS++ and IOKS follow Theorem 2 and Theorem 3
where we change η = 8`maxK

3/8

UG1

√
T lnT

in Theorem 3 and set `max = 1. For OKS, we

2 http://archive.ics.uci.edu/ml/datasets.php
3 https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
4 The codes are available at https://github.com/JunfLi-TJU/OKS-Bandit
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Table 2. Online kernel selection without time constraint in the regime of logistic loss

Algorithm phishing a9a
AMR (%) Time (s) AMR (%) Time (s)

OKS 13.80 ± 0.34 17.34 ± 1.48 19.65 ± 0.12 208.84 ± 31.16
IOKS 13.25 ± 0.28 6.58 ± 0.18 17.46 ± 0.12 103.91 ± 13.89
OKS++ 7.80 ± 0.49 32.31 ± 3.98 16.57 ± 0.31 474.65 ± 117.43

Algorithm magic04 SUSY
AMR (%) Time (s) AMR (%) Time (s)

OKS 22.23 ± 0.22 6.31 ± 0.95 32.98 ± 0.66 9.97 ± 1.85
IOKS 21.50 ± 0.18 4.02 ± 0.11 31.75 ± 0.30 6.68 ± 0.15
OKS++ 17.88 ± 0.57 11.06 ± 3.08 27.84 ± 0.70 19.88 ± 5.28

Table 3. Online kernel selection without time constraint in the regime of square loss

Algorithm elevators bank
AL Time (s) AL Time (s)

OKS 0.0068 ± 0.0001 3.23 ± 0.25 0.0240 ± 0.0002 1.51 ± 0.17
IOKS 0.0077 ± 0.0001 4.08 ± 0.05 0.0252 ± 0.0002 1.57 ± 0.11
OKS++ 0.0046 ± 0.0001 12.75 ± 3.12 0.0205 ± 0.0006 4.24 ± 0.76

Algorithm ailerons Hardware
AL Time (s) AL Time (s)

OKS 0.0176 ± 0.0060 6.94 ± 0.82 0.0012 ± 0.0000 53.84 ± 1.80
IOKS 0.0351 ± 0.0003 5.59 ± 0.08 0.0010 ± 0.0001 49.36 ± 1.14
OKS++ 0.0166 ± 0.0006 22.79 ± 3.41 0.0008 ± 0.0001 114.47 ± 23.42

Table 4. Online kernel selection without time constraint in the regime of absolute loss

Algorithm elevators bank
AL Time (s) AL Time (s)

OKS 0.0507 ± 0.0001 4.76 ± 0.17 0.0961 ± 0.0009 1.55 ± 0.13
IOKS 0.0492 ± 0.0004 5.20 ± 0.54 0.0961 ± 0.0008 1.64 ± 0.20

Algorithm ailerons Hardware
AL Time (s) AL Time (s)

OKS 0.0723 ± 0.0005 8.20 ± 0.19 0.0105 ± 0.0001 56.14 ± 1.07
IOKS 0.0771 ± 0.0007 9.86 ± 0.68 0.0155 ± 0.0002 52.01 ± 3.72

set δ, λ and η according to Remark 1, where λ ∈ {1, 5, 10, 25} ·
√
δ/(KT ) and

`max = G = 1. The results are shown in Table 2, Table 3 and Table 4.
Table 2 and Table 3 prove that OKS++ performs better than OKS and IOKS

for smooth loss functions. The reason is that OKS++ adaptively tunes the pa-
rameters using the observed losses, while OKS and IOKS do not use this infor-
mation to tune the parameters. The experimental results coincide with Theorem
2. Besides IOKS performs similar with OKS, since IOKS is only asymptotically
better than OKS. If T is small, then the regret bound of OKS is smaller. The
theoretical significance of IOKS is that it proves that selecting a hypothesis does
not produce high information-theoretic cost in the worst case.
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Table 5. Online kernel selection with time constraint in the regime of logistic loss

Algorithm B-D phishing B-D a9a
AMR (%) tp ∗ 105(s) AMR (%) tp ∗ 105(s)

RF-OKS 500 14.61 ± 0.65 9.63 450 21.25 ± 0.12 11.61
LKMBooks 250 12.50 ± 1.03 9.46 220 20.06 ± 0.54 11.53
Raker 70 13.60 ± 1.00 9.35 90 24.08 ± 0.00 11.30
RF-IOKS 380 15.59 ± 0.39 9.66 380 22.99 ± 0.20 11.95
RF-OKS++ 400 9.15 ± 0.56 9.20 400 17.28 ± 0.29 11.19

Table 6. Online kernel selection with time constraint in the regime of square loss

Algorithm B-D elevators B-D Hardware
AL ∗ 102 tp ∗ 105(s) AL ∗ 102 tp ∗ 105(s)

RF-OKS 450 0.72 ± 0.02 6.47 420 0.13 ± 0.00 10.48
LKMBooks 220 0.90 ± 0.04 6.72 200 0.21 ± 0.01 10.76
Raker 40 0.70 ± 0.04 6.57 80 0.20 ± 0.00 10.25
RF-IOKS 380 0.89 ± 0.01 6.83 400 0.12 ± 0.01 10.20
RF-OKS++ 400 0.51 ± 0.02 6.45 400 0.09 ± 0.01 10.31

Table 7. Online kernel selection with time constraint in the regime of absolute loss

Algorithm B-D elevators B-D Hardware
AL tp ∗ 105 AL tp ∗ 105

RF-OKS 530 0.0515 ± 0.0004 7.13 400 0.0108 ± 0.0001 10.39
LKMBooks 230 0.0550 ± 0.0014 7.35 200 0.0203 ± 0.0020 10.41
Raker 50 0.0550 ± 0.0012 7.41 80 0.0154 ± 0.0001 10.37
RF-IOKS 400 0.0515 ± 0.0007 7.63 400 0.0164 ± 0.0002 10.97

6.2 Online kernel selection with time constraint

We compare RF-OKS++, RF-IOKS with Raker [16], LKMBooks [9] and RF-
OKS [19]. We construct RF-OKS by combining random features with OKS. The
parameter setting of Raker and LKMBooks follows original paper, except that
the learning rate of Raker is chosen from {1, 5, 10, 25} · 1/

√
T . The parameter

setting of RF-OKS++, RF-IOKS and RF-OKS is same with that of OKS++,
IOKS and OKS, respectively. We limit time budget R by fixing the number of
random features. To be specific, we choose RF-OKS++ as the baseline and set
Di = D = 400 for all i ∈ [K] satisfying the condition in Theorem 4. Let the
average per-round running time of RF-OKS++ be tp. We tune D or B of other
algorithms for ensuring the same running time with tp. The results are shown
in Table 5, Table 6 and Table 7. In Tbale 7, we use RF-IOKS as the baseline.

For smooth loss functions, RF-OKS++ still performs best under a same
time budget. The reason is also that RF-OKS++ adaptively tunes the param-
eters using the observed losses, while the other algorithms do not use the ob-
served losses. For the square loss function, Theorem 4 shows the regret bound
depends on O( 1√

R

√
TLT (f∗i )) which becomes O( T√

R ) in the worst case and
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thus is same with previous results. To explain the contradiction, we recorded
the cumulative square losses of RF-OKS++, i.e.,

∑T
t=1(ft,It(xt)− yt)2 and use

it as a proxy for LT (f∗i ). In our experiments, LT (f∗i ) ≈ 88.6 on the elevators
dataset and LT (f∗i ) ≈ 23.8 on the Hardware dataset. Thus LT (f∗i ) � T and
O( 1√

R

√
TLT (f∗i )) is actually smaller than O( T√

R ). The above results coincide
with Theorem 4.

RF-IOKS shows similar performance with the baseline algorithms, which is
consistent with Theorem 5. The regret bound of RF-IOKS is slightly worse than
that of LKMBooks and Raker, and is only asymptotically better than RF-OKS.
All of the baseline algorithms tune the stepsize in hindsight, which is impossible
in practice since the data can only be predicted once. RF-IOKS also proves that
selecting a hypothesis does not damage the regret bound much in the worst case.
More experiments are shown in the supplementary materials.

7 Conclusion

In this paper, we have proposed two algorithms for online kernel selection under
bandit feedback and improved the previous worst-case regret bound. OKS++
which is applied for smooth loss functions, adaptively tunes parameters of OKS
and achieves data-dependent regret bounds depending on the minimal cumula-
tive losses. IOKS which is applied for Lipschitz loss functions, achieves a worst-
case regret bound asymptotically better than previous result. We further apply
the two algorithms to online kernel selection with time constraint and obtain
better or similar regret bounds.

From the perspective of algorithm design, there is a trade-off between regret
bound and the amount of observed information. IOKS proves that selecting a
hypothesis or multiple hypotheses per-round will not induce significant variation
on the worst-case regret bound. OKS++ which performs well both in theory and
practice, implies that there may be differences in terms of data-dependent regret
bounds. This question is left to future work.
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