
AutoMap: Automatic Medical Code Mapping for
Clinical Prediction Model Deployment

Zhenbang Wu1, Cao Xiao2, Lucas M. Glass3, David M. Liebovitz4, and
Jimeng Sun1�

1 University of Illinois at Urbana-Champaign, {zw12,jimeng}@illinois.edu
2 Amplitude, danica.xiao@amplitude.com

3 IQVIA, lucas.glass@iqvia.com
4 Northwestern University, david.liebovitz@nm.org

Abstract. Given a deep learning model trained on data from a source
hospital, how to deploy the model to a target hospital automatically?
How to accommodate heterogeneous medical coding systems across dif-
ferent hospitals? Standard approaches rely on existing medical code map-
ping tools, which have several practical limitations.
To tackle this problem, we propose AutoMap to automatically map the
medical codes across different EHR systems in a coarse-to-fine manner:
(1) Ontology-level Alignment: We leverage the ontology structure to
learn a coarse alignment between the source and target medical coding
systems; (2) Code-level Refinement: We refine the alignment at a
fine-grained code level for the downstream tasks using a teacher-student
framework.
We evaluate AutoMap using several deep learning models with two real-
world EHR datasets: eICU and MIMIC-III. Results show that AutoMap

achieves relative improvements up to 3.9% (AUC-ROC) and 8.7% (AUC-
PR) for mortality prediction, and up to 4.7% (AUC-ROC) and 3.7% (F1)
for length-of-stay estimation. Further, we show that AutoMap can provide
accurate mapping across coding systems. Lastly, we demonstrate that
AutoMap can adapt to two challenging scenarios: (1) mapping between
completely different coding systems and (2) between completely different
hospitals.

Keywords: Medical code mapping · Clinical prediction model deploy-
ment · Electronic health records

1 Introduction

Deep learning models have been widely used in clinical predictive modeling with
electronic health record (EHR) data [33]. These models often leverage medical
codes as an important data source summarizing patients’ health status [5, 7, 14].
However, in real-world clinical practice, a variety of different coding systems
are used across hospital EHR systems [3]. As a result, models trained on data
from a source hospital are often hard to adapt to a target hospital where other
coding systems are used. A method that can accommodate different medical

2 Z. Wu et al.

coding systems across hospitals for easy model deployment is highly
desirable. Standard approaches rely on existing medical code mapping tools (e.g.,
Unified Medical Language System (UMLS) [4]), which have significant practical
limitations due to the following challenges:

– Rare coding systems. Existing commercial and free code mapping tools
are only available for a few widely used coding systems (e.g., ICD-9, ICD-
10 and SNOMED CT) [32]. Hospitals using rare or private coding systems
cannot benefit from these tools.

– Limited labeled data. While large hospitals may fine-tune the pre-trained
models to adapt to their coding systems, small hospitals with limited labeled
data often fail to do so.

– No access to source data. Even worse, the source data usually cannot be
shared with the target hospital due to privacy and legal concern.

In this paper, we propose AutoMap for automatic medical code mapping across
different hospitals EHR systems. AutoMap constructs appropriate target embed-
dings unsupervisedly based on the target EHR data and maps the target embed-
dings to the source embeddings, so that the deep learning model trained on the
source data can be seamlessly deployed to the target data without any manual
code mapping. More specifically, AutoMap learns the mapping across different
coding systems in a coarse-to-fine manner:

– Embedding. The medical code embeddings will be constructed from the
target EHR data unsupervisedly.

– Ontology-level Alignment. We leverage the ontology structure to map
medical coding groups via iterative self-supervised learning. In this step, we
obtain a coarse mapping from groups of target embeddings to the groups of
source embeddings.

– Code-level Refinement. We refine the coarse mapping at a fine-grained
code level via a teacher-student framework. It utilizes a discriminator (teacher
A) to align two coding systems at the code level, and the backbone model
(teacher B) to optimize the mapping based on the final prediction.

We evaluate AutoMap using multiple backbone deep learning models on two
real-world EHR datasets: eICU [25] and MIMIC-III [13]. Results show that with
a limited set of labeled data, AutoMap achieves relative improvements up to 3.9%
on AUC-ROC score and 8.7% on AUC-PR score for mortality prediction; and up
to 4.7% on AUC-ROC score and 3.7% on F1 score for length-of-stay estimation.
Further, we evaluate the mapping accuracy of AutoMap and show that AutoMap
improves the best baseline method by 8.2% in similarity score and 11.3% on
hit@10 score. Lastly, we demonstrate that AutoMap can still achieve acceptable
results under two challenging scenarios: (1) mapping between completely dif-
ferent coding systems: the model is trained on diagnosis codes and deployed on
medication codes; (2) mapping between completely different hospitals: the model
is trained and deployed in hospitals from different regions.

It is important to note that we do not argue to completely replace existing
code mapping tools. Instead, the main contribution of AutoMap is to evaluate

AutoMap: Automatic Medical Code Mapping 3

the potential of a novel approach to automatically learn the code
mapping from clinical data, which provides a new direction to support model
deployment across different medical coding systems, and complements existing
code mapping tools.

2 Related Work

Medical Code Mapping Tools. There exists a variety of commercial and
free tools for mapping across different EHR ecosystems. UMLS [4] provides the
mapping among ICD-9, ICD-10 and SNOMED CT. Observational Medical Out-
comes Partnership (OMOP) [12] and Fast Healthcare Interoperability Resources
(FHIR) [20] define the standards for representing clinical data in a consistent
format. Relying on these tools, some recent works try to support model deploy-
ment across hospitals by transforming the EHR data into a standard format [26,
31]. However, creating such tools requires a lot of domain knowledge and human
labor [32]. These mapping tools are only available for widely-used coding sys-
tems and can be easily outdated due to code updates. To address this, AutoMap
proposes to learn the code mapping from clinical data, which complements ex-
isting code mapping tools.

Cross-lingual Word Mapping. Our medical code mapping problem has
some similarity to the cross-lingual research. Cross-lingual word mapping meth-
ods work by mapping the word embeddings in two languages to a shared space
using translation pairs [1], shared tokens [29], adversarial learning [9], or the
nearest neighbors of similarity distributions [2]. Inspired by [2], AutoMap also
leverages the similarity distributions [22] to align medical codes. However, there
are significant differences between EHR and natural languages: (1) medical codes
often reside in a concept hierarchy; (2) medical codes are often noisier. To address
this, instead of directly mapping medical codes, AutoMap adopts a coarse-to-fine
method by first performing ontology-level alignment and then code-level refine-
ment.

3 Preliminaries

We first define a few key concepts, and then present our setting in Def. 6. Detailed
notations can be found in the appendix.

Definition 1 (EHR Dataset). In EHR data, a patient has a sequence of visits:

Vp = [v
(1)
p , v

(2)
p , . . . , v

(np)
p], where np is the number of visits of patient p. For model

training, each patient has a label yp (e.g., mortality or length-of-stay). We will
drop the subscript p whenever it is unambiguous. Each visit of a patient is repre-
sented by its corresponding medical codes, specified by v(i) = {c1, c2, . . . , cm(i)},
where m(i) is the total number of codes of the i-th visit. Each medical code
c ∈ {0, 1}|C| is a one-hot vector (i.e., ‖c‖1 = 1), where C denotes the set of
all medical codes in the dataset.

4 Z. Wu et al.

Fig. 1. AutoMap supports model deployment by automatically mapping the medical
code embeddings across different coding systems in a coarse-to-fine manner: (0) Em-
bedding that initializes the target code embedding matrix; (1) Ontology-level Align-
ment that leverages the ontology structure to learn the coarse ontology mapping; (2)
Code-level Refinement that refines the mapping at the fine-grained code level for the
downstream task with a teacher-student framework.

Our setting involves two datasets: a source dataset ∗S for pre-training the
backbone model but unavailable during deployment, and a mostly unlabeled
target dataset ∗T for deploying the model. The two datasets can have completely
different medical codes. We also utilize separate medical ontology structures for
source and target medical codes.

Definition 2 (Medical Ontology). A medical ontology O specifies the hier-
archy of medical codes in the form of a parent-child relationship. Formally, an
ontology O is a directed acyclic graph whose nodes are C ∪ C. Here, C is the
set of medical codes (often leaf nodes in the ontology), and C is the set of other
intermediate codes (i.e., non-leaf nodes) representing more general concepts.

For simplicity, we define a function ancestor(c, l) : {0, 1}|C| × Z → {0, 1}|C|,
which maps a given medical code c ∈ {0, 1}|C| to its l-th level ancestor code (i.e.,
category). For example, in Fig. 1, the root node is the 0-th level ancestor code
of all leaf codes.

Definition 3 (Medical Code Embedding). To fully utilize the code semantic
information, it is a common practice to convert the medical code from one-hot
vector c ∈ {0, 1}|C| to a dense embedding vector e ∈ Rd [5, 14], where d is the
embedding dimensionality. This can be done via an embedding matrix E ∈ R|C|×d,
where each row corresponds to the embedding for a medical code. The embedding
can be computed as e = E>c.

We denote the embedding matrices for source and target datasets as ES

and ET , respectively. The source embedding ES is provided with the trained
backbone model as the input. And the target embedding ET will be learned
using the target dataset. In this work, to deploy the backbone model, we will
learn to map the target medical codes to the source.

Definition 4 (Code Embedding Mapping). We define the mapping from
the embedding space of one medical coding system to another as φ(E) : Rd → Rd.

AutoMap: Automatic Medical Code Mapping 5

We will learn the embedding mapping φ(·) that maps the target embedding
to the source via φ(ET).

Definition 5 (Backbone Deep Learning Model). The backbone deep learn-
ing model F (·) takes EHR sequences and the corresponding medical code embed-
dings as the input and then outputs the prediction: ŷ = F ([v(i)]ni=1, φ(E)), where
ŷ is the corresponding predictions for label y. The backbone model F (·) is pre-
trained on source dataset ∗S and deployed on target dataset ∗T with a different
coding system. Note that the embedding mapping φ(·) degenerates to the identity
function if the backbone model F (·) is trained and deployed on the same coding
system.

Definition 6 (Predictive Model Deployment). Given a backbone model
F (·) and source code embedding matrix ES, a mostly unlabeled target dataset
∗T in a different coding system, and the medical ontologies OS ,OT for both cod-
ing systems, the goal is to optimize the mapping φ(·) on the target dataset ∗T ,
as given by Eq. (1),

arg min
φ(·)

L(F (·),ES , ∗T,OS ,OT , φ(·)), (1)

where L(·) denotes the designated loss function. The prediction on the target
dataset can be obtained via F (VT , φ(ET)), where VT is a sequence of visits from
the target dataset ∗T , and φ(ET) is the transformed target embeddings.

In our setting, we can only access the source code embedding ES and ontology
OS instead of the source data ∗S. This is more realistic in deployment setting
since the source data often cannot be shared due to legal and privacy concern.
In contrast, the source embedding matrix ES can be more easily provided along
with the backbone model F (·), and the code ontologies are usually publicly
accessible. We also assume that the target dataset ∗T is mostly unlabeled, since
the target site may often be some small hospital.

4 AutoMap Method

We propose AutoMap for automatic code mapping across different hospitals EHR
systems. The mapping will be done in a coarse-to-fine manner, enabled by the
adaptation process shown in Fig. 1. Embedding (step 0) first initializes the tar-
get code embedding matrix ET . Ontology-level alignment (step 1) then derives
the initial coarse mapping φ(·) via iterative self-supervised learning. Code-level
refinement (step 2) further fine-tunes the mapping φ(·) at the code level using a
teacher-student framework.

4.1 Step 0: Embedding

As mentioned in Def. 3, we first convert the target medical codes from one-
hot vector cT ∈ {0, 1}|C| to a corresponding dense embedding vector eT ∈ Rd.

6 Z. Wu et al.

We use GloVe [24] to learn the target code embedding matrix ET via a global
co-occurrence matrix of medical codes. Other unsupervised learning algorithms
such as Med2Vec [7] and Word2Vec [21] can also be used. We employ GloVe
because of its computational efficiency. After this, we parameterize φ(·) by a
mapping matrix W ∈ Rd×d. The mapping matrix W can be used to transform
the target code embedding via ETW.

4.2 Step 1: Ontology-level Alignment

In this step, we will first learn a coarse mapping W at the ontology level. This
first step is essential because direct code level mapping is difficult and unneces-
sary: (1) It is difficult due to the large number of medical codes; (2) It is also
unnecessary since many codes have similar clinical meanings. Therefore, we fol-
low a common practice to first group similar codes using code ontology [7, 5, 28]
and learn the mapping on groups instead of leaf-level codes. For example, ICD-9
code 438.11 “late effects of cerebrovascular disease, aphasia” corresponds to five
ICD-10 codes (I69.020, I69.120, I69.220, I69.320, I69.920). While it is hard to
directly align the ICD-9 code to each of these five ICD-10 codes, we can first
coarsely map the ICD-9 code to I00-I99 “diseases of the circulatory system”,
and then gradually refine the mapping to I60-I99 “cerebrovascular diseases”, I69
“cerebrovascular diseases”, and eventually the five-leaf codes. By leveraging the
medical ontology, we can use more general medical concepts as “anchor points”
to better align two coding systems.

Next, we introduce the building blocks of the iterative self-supervised learning
(i.e., ontology grouping, unsupervised seed induction, Procrustes refinement),
and then present the ontology-level alignment algorithm.

Ontology Grouping At a given hierarchy level l, we group the codes according

to their l-th level ontology categories. Specifically, the i-th group G(l)i consists of
all the leaf medical codes whose l-th level category is ci, as in Eq. (2),

G(l)i = {cj | ancestor(cj , l) = ci, cj ∈ C}, (2)

where ci ∈ C is the corresponding l-th level category code. We will drop the
superscript (l) whenever it is unambiguous. To obtain the group embedding
gi, we first calculate the mean group embedding gi by averaging all the code
embeddings in that group, as in Eq. (3a); then, we represent the group embedding
as the closest code embedding, as in Eq. (3b),

gi = mean{ej | cj ∈ Gi}, (3a)

gi = argmin
ej

{ejg>i | cj ∈ C}, (3b)

where ej is the embedding vector for the code cj , and ejg
>
i ∈ R calculates the

distance between the code cj and the mean group embedding gi. Intuitively, gi
can be viewed as the “median” group embedding. We select the top-k groups

AutoMap: Automatic Medical Code Mapping 7

based on the group size, since we want to first learn a coarse mapping while
including too many groups may introduce too much granular information. As a
result, we have GT ,GS ∈ Rk×d for target and source groups, where each row
corresponds to an embedding vector for a particular group. We present with the
same k to reduce clutter, though it can be different for source and target groups.

We note that when the ontology is not available, AutoMap can still apply
by using a clustering algorithm (e.g., k-Means) to group the medical codes.
Specifically, we provide additional experiments on this setting in the appendix.

Unsupervised Seed Induction Given the l-th level source and target coding
groups GS and GT , we can initialize a coarse alignment in a fully unsupervised
way. More specifically, we first calculate the similarity matrices, as in Eq. (4),

MT = GTG>T ; MS = GSG>S , (4)

where MT ,MS ∈ Rk×k. Each row in the similarity matrices MT ,MS repre-
sents the similarities of the corresponding group to all the other groups. Under
the ideal case where the embedding spaces between different coding systems are
isometric5, one can permute the rows and columns of MT to obtain MS . We
introduce the following heuristics to find the optimal permutation (i.e., a map-
ping dictionary) of this NP-hard problem. We perform row-wise sort on MT

and MS (i.e., elements in each row are sorted based only on the order in that
particular row), as in Eq. (5a). Under the isometric assumption, codes with the
same meaning will have exactly the same row vector in M̃T and M̃S , suggesting
that we can find the mapping dictionary D ∈ Rk×k via nearest neighbor search
over row vectors in M̃T , as shown in Eq. (5b),

M̃T = sorted(MT); M̃S = sorted(MS), (5a)

D[i, j] =

{
1, if j = argmax((M̃T · M̃>

S)[i, :])

0, otherwise,
(5b)

where · denotes matrix multiplication.

Procrustes Optimization At a given hierarchy level l, we optimize the in-
ducted mapping dictionary D by iterating the following two steps.

1. The mapping W ∈ Rd×d is obtained by maximizing the similarities for the
current dictionary D, as given by Eq. (6a). This optimization problem is
known as the Procrustes problem [27] and has a closed form solution, as in
Eq. (6b),

argmin
W
‖D� (GTW︸ ︷︷ ︸

transformed target embedding

G>S)‖1, (6a)

W = UV>, where UΣVT = SVD(G>TDGS), (6b)

5 In practice, the isometry requirement will not hold exactly, but it can be assumed to
hold approximately, or the problem of mapping two code embedding spaces without
supervision would be impossible.

8 Z. Wu et al.

where � denotes Hadamard product, and SVD denotes Singular Value De-
composition.

2. A new dictionary D is induced, as in Eq. (7),

D[i, j] =

{
1, if j = argmax((GTWG>S)[i, :])

0, otherwise.
(7)

Iterative Self-supervised Learning We now introduce the self-supervised
learning strategy, which maps the two coding systems at multiple resolutions
iteratively. Starting from a coarse hierarchy level l, we obtain the l-th level
medical coding groups GS and GT with Eq. (2, 3). Then we induct the l-th
level seed mapping dictionary D(l) with Eq. (4, 5). Next, we merge the current
and previous level mapping dictionaries, as D(l) = D(l) + D(l−1). Lastly, we
optimize the merged mapping dictionary D(l) using Eq. (6, 7). We gradually
increase l (going down in the ontology) during iterative self-supervised learning
until we reach the leaf level to learn the mapping at multiple resolutions. We
note that source and target codes can use different grouping level l. We present
with the same l to reduce clutter.

In this way, we learn a coarse mapping matrix W between two medical coding
systems at the ontology level. This step is inspired by [2]. However, instead
of directly mapping medical codes, AutoMap leverages the ontology structure
and iteratively maps medical coding groups in a coarse-to-fine manner, allowing
AutoMap to better align coding systems with different granularities.

4.3 Step 2: Code-level Refinement

While we have performed step 1 (ontology-level alignment) to initialize the map-
ping, the mapping is still too coarse and need further refining. Moreover, there
is no guarantee of the performance for the downstream tasks (i.e., mortality pre-
diction and length-of-stay estimation). Thus, it is preferred to further fine-tune
the mapping at the code level for downstream tasks.

To do this, we propose a teacher-student framework, where the discriminator
D(·) (teacher A) refines the mapping matrix W (student) via adversarial learn-
ing; and the backbone model F (·) (teacher B) optimizes the mapping matrix W
(student) based on the final prediction task. Below we describe the framework
in detail.

Teacher A: Discriminator We leverage the adversarial learning framework by
introducing a discriminator D(·), parameterized by a multi-layer neural network.
Specifically, the discriminator D(·) tries to classify whether the embeddings are
from the target (label 0) or source (label 1) embedding distributions. Formally,
discriminator D(·) aims at minimizing the discriminator adversarial loss, as in
Eq. (8),

LD = − log(D(eS))− log(D(1− eTW)), (8)

AutoMap: Automatic Medical Code Mapping 9

where eS (eT) represents the source (target) code embedding sampled randomly
from the code embedding matrix ES (ET), and W maps the target embedding
to the source embedding space via eTW.

The mapping matrix W acts as the generator and tries to deceive the dis-
criminator D(·). Formally, we try to minimize the generator adversarial loss, as
in Eq. 9,

LG = − log(D(eTW)). (9)

Theoretically, the discriminator D(·) and mapping matrix W learn to align two
coding systems as an adversarial game. Since the minimization happens at the
distribution level, we do not require code mapping pairs to supervise training.

Teacher B: Backbone Here, the backbone model F (·) is leveraged to opti-
mize the ultimate prediction performance based on the transformed target code
embeddings. Formally, we aim at minimizing the following classification loss

Lcls(F ([v(i)]ni=1,ETW),yT), (10)

where the transformed target code embeddings ETW are used to encode patient
visits [v(i)]ni=1.

In summary, the mapping matrix W is fine-tuned by minimizing the com-
bined loss

LW = Lcls + αLG, (11)

where α is a hyper-parameter. The pseudo-code can be found in the appendix.

5 Experiment

5.1 Experimental Setting

We will briefly introduce the experimental settings. Detailed information can be
found in the appendix. The code of AutoMap is publicly available6.

Data We evaluate the performance of AutoMap extensively with two publicly
accessible datasets: eICU [25] and MIMIC-III [13]. eICU [25] is a multi-center
database with intensive care unit (ICU) records for over 200K admissions to over
200 hospitals across the United States. MIMIC-III [13] is a single-center database
containing 53K ICU records from Beth Israel Deaconess Medical Center.

Baselines We compare AutoMap with multiple baseline methods ranging from
simple methods such as Direct Training and Transfer Learning, standard
method leveraging Mapping Tools, to cross-lingual translation methods like
MUSE [9] and VecMap [2]. We also conduct an ablation study of our AutoMap
with Step 1 Only, Step 1 Only + Random Ontology, and Step 2 Only.

6 https://github.com/zzachw/AutoMap

10 Z. Wu et al.

Backbone Models As AutoMap is a general framework that can apply to dif-
ferent backbone models, we incorporate AutoMap with the following backbone
deep learning models: MLP, RNN, RETAIN [5], GCT [8], BEHRT [14].

Table 1. Results with limited labeled data (100 patients) in the target site. Dataset is
eICU [25]. The average scores of two mapping directions between ICD-9 and ICD-10
codes are reported. * indicates that AutoMap achieves significant improvement over the
best baseline method (i.e., p-value is smaller than 0.05). Experiment results show that
AutoMap can adapt different backbone models to the target site with limited labeled
data.

Backbone Method
Mortality Length-of-Stay

AUC-PR AUC-ROC F1 AUC-ROC

MLP

Full-Label 0.2819 0.6531 0.5033 0.2819
Direct Training 0.2524 0.6191 0.2835 0.5345
Transfer Learning 0.2551 0.6240 0.4584 0.6095
MUSE 0.2506 0.6276 0.4905 0.6240
VecMap 0.2820 0.6502 0.4947 0.6341
AutoMap 0.2934* 0.6631* 0.4952 0.6350

RNN

Full-Label 0.2818 0.6539 0.5030 0.2818
Direct Training 0.2074 0.5547 0.1222 0.4427
Transfer Learning 0.2536 0.6234 0.4662 0.6166
MUSE 0.2455 0.6260 0.4933 0.6367
VecMap 0.2780 0.6488 0.5019 0.6416
AutoMap 0.2875* 0.6627* 0.4996 0.6487*

RETAIN

Full-Label 0.2648 0.6190 0.4447 0.2648
Direct Training 0.2031 0.5466 0.1222 0.4427
Transfer Learning 0.2269 0.5732 0.4455 0.5395
MUSE 0.2374 0.5838 0.4217 0.5831
VecMap 0.2744 0.6315 0.4264 0.5963
AutoMap 0.2835* 0.6528* 0.4779* 0.6007*

GCT

Full-Label 0.2814 0.6533 0.4986 0.2814
Direct Training 0.1836 0.5402 0.2680 0.4865
Transfer Learning 0.2103 0.5967 0.4748 0.5718
MUSE 0.2242 0.6016 0.4866 0.6129
VecMap 0.2491 0.6291 0.4863 0.6085
AutoMap 0.2707* 0.6539* 0.4940* 0.6363*

BEHRT

Full-Label 0.2652 0.6673 0.3657 0.2652
Direct Training 0.1740 0.5438 0.3063 0.4730
Transfer Learning 0.2320 0.6190 0.3291 0.5609
MUSE 0.2155 0.6040 0.3493 0.5869
VecMap 0.2786 0.6740 0.3612 0.6044
AutoMap 0.2712 0.6737 0.3744* 0.6328*

AutoMap: Automatic Medical Code Mapping 11

Table 2. Results for the scenario where the backbone model is trained on diagnosis
code and deployed on medication codes. Dataset is MIMIC-III [13]. Experiment results
show that AutoMap can adapt to target data coded in a completely different system.

Method
Mortality Length-of-Stay
AUC-PR F1

Full-Label 0.7149 0.3057

Direct Training 0.4701 0.3158
Transfer Learning 0.5642 0.2999
MUSE 0.4905 0.3022
VecMap 0.3553 0.3014
AutoMap 0.5902* 0.3022

5.2 Q1: Target Data with Limited Labels

We first evaluate AutoMap in a common setting where the target site has limited
labeled data (100 patients). For reference, we also report the performance of the
model trained with the fully-labeled target data, as “Full-Label” in the table.
This can be viewed as an “upper bound” of the model performance. Descriptions
of the metrics can be found in the appendix. Results can be found in in Tab. 1.

First, we find that the two simple baselines: direct training and transfer learn-
ing methods do not work very well. In most cases, they are much worse compared
to the full-label performance. This is expected as the amount of labeled data is
insufficient to train or fine-tune the backbone models. Next, code-level mapping
methods MUSE [9] and VecMap [2] achieve some improvements, but they are
not stable. In some cases, they perform even worse than the two simple baselines.
This may because ICD-9 and ICD-10 have different degrees of specificity (e.g.,
10K codes in ICD-9 v.s. 68K codes in ICD-10), and directly mapping them at
code level does not work very well. Finally, we observe that AutoMap achieves sig-
nificant improvement over the baseline and can match the full-label performance
in most cases. Specifically, AutoMap achieves up to 8.7% relative improvement on
AUC-PR score for mortality prediction; for length-of-stay estimation, AutoMap
achieves up to and 3.7% relative improvement on F1 score. This demonstrates
the effectiveness of coarse-to-fine mapping and the versatility of AutoMap.

5.3 Q2: Completely Different Codes

We then evaluate AutoMap in the challenging case where we train the backbone
model on diagnosis code (ICD-9) and deploy it on medication codes (NDC). Due
to the limited space, for the rest of the experiments, we only report AUC-PR
for mortality and F1 for length-of-stay with backbone model BEHRT [14] using
100 labeled patients in the target data. Results can be found in in Tab. 2.

First, we note that since these two coding systems are so different, no existing
mapping tools is available. For mortality prediction, as shown in Tab. 2, the code-
level mapping methods perform even worse than direct training and transfer

12 Z. Wu et al.

Table 3. Results for the scenario where the backbone model is trained and deployed
in hospitals from different regions. Dataset is eICU [25]. Experiment results show that
AutoMap can adapt to target hospitals from a completely region.

Method
Mortality Length-of-Stay
AUC-PR F1

Full-Label 0.2578 0.4560

Direct Training 0.1434 0.4334
Transfer Learning 0.1860 0.3924
MUSE 0.1314 0.3988
VecMap 0.1305 0.3801
AutoMap 0.1990* 0.4290

learning. This may due to the large gap between these two coding systems. On
the contrary, AutoMap can still give acceptable results, outperforming all baseline
methods with 4.6%−66.1% statistically significant improvements. This shows the
superiority of AutoMap’s coarse-to-fine mapping strategy. For the length-of-stay
estimation task, all five methods perform pretty similar to full-label performance.
This may indicate that medication codes are not so informational for length-of-
stay estimation.

5.4 Q3: Completely Different Hospitals

We next challenge AutoMap under the scenario where we train the backbone
model in hospitals from Midwest region (with ICD-9 code) and deploy it in
hospitals from South region (with ICD-10 code). Results can be found in in
Tab. 3.

For mortality prediction, mapping based methods (MUSE [9] and VecMap [2])
achieve the worst results. This is expected as methods from cross-lingual word
mapping do not consider the domain gap between different regions. This also
explains why transfer learning perform slightly better (as its training scheme
can accommodate some domain gap). Benefit from the refinement step, AutoMap
achieves the best result with 7.0% − 52.5% statistically significant relative im-
provements. This shows that AutoMap can adapt to hospitals from different
regions. For length-of-stay estimation, all pre-training based methods perform
worse than direct training. This may indicate that different hospitals have dif-
ferent decision rules on ICU length-of-stay. As a result, transferring knowledge
from other hospitals may not help. Despite this, AutoMap still achieves the best
results among all pre-training based methods.

5.5 Q4: Mapping Accuracy

We further evaluate the accuracy of the learnt mapping. The ICD code map-
ping in the eICU [25] dataset is used as the ground truth. As shown in Tab. 4,
VecMap [2] and AutoMap achieve much better performance than MUSE [9].

AutoMap: Automatic Medical Code Mapping 13

Table 4. Accuracy of mapping
for diagnosis codes (ICD-9 and
ICD-10). Dataset is eICU [25].
The average scores of two map-
ping directions are reported.
Experiment results show that
AutoMap can learn accurate map-
ping across medical coding sys-
tems.

Method Similarity Hit@10

MUSE 0.1633 0.0600
VecMap 0.4612 0.5974
AutoMap 0.4992* 0.6657*

Table 5. Ablation study. Dataset is eICU [25].
The average scores of two mapping directions
between ICD-9 and ICD-10 codes are reported.
R.O. denotes random ontology. Experiment results
demonstrate the importance of AutoMap’s 2-step
coarse-to-fine mapping.

Method
Mortality Length-of-Stay
AUC-PR F1

Step 1 Only 0.2680 0.3623
Step 1 Only + R.O. 0.2054 0.3631
Step 2 Only 0.2038 0.3306
AutoMap 0.2712* 0.3744*

This supports the isometric assumption used in both methods. Further, AutoMap
achieves the best results with statistical significance. This demonstrates that the
proposed coarse-to-fine mapping can better map coding systems with different
granularities.

5.6 Ablation study

Finally, we compare AutoMap with three ablated versions. As shown in Tab. 5,
only performing step 2 (code-level refinement) gives the worst results. This is
reasonable as the model will easily over-fit the target data with limited labels.
Also, since the mapping matrix W is randomly generated, the adversarial learn-
ing module will even harm the downstream tasks. Next, we can see that per-
forming step 1 (ontology-level alignment) only gives better results. This indicates
that step 1 contributes most to AutoMap’s improvements. This may because the
isometric assumption and medical ontology can act as a strong prior to guide the
model learning process. This point can also be supported by the performance
with randomly-generated ontology. Lastly, AutoMap achieves the best results.
This shows the importance of refining the mapping at code-level after the coarse
ontology alignment.

6 Conclusion

We propose AutoMap for automatic medical code mapping across different hospi-
tals EHR systems. Benefit from the coarse-to-fine mapping, AutoMap can better
align coding systems at different granularities. We evaluate AutoMap extensively
using different backbone models with two real-world EHR datasets. Experimen-
tal results show that AutoMap outperforms existing solutions on multiple predic-
tion tasks when mapping solutions exist and provides a mapping strategy when
conventional solutions do not exist.

14 Z. Wu et al.

References

1. Artetxe, M., Labaka, G., Agirre, E.: Learning bilingual word embeddings with
(almost) no bilingual data. In: Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers). pp. 451–
462. Association for Computational Linguistics, Vancouver, Canada (Jul 2017).
https://doi.org/10.18653/v1/P17-1042, https://www.aclweb.org/anthology/P17-
1042

2. Artetxe, M., Labaka, G., Agirre, E.: A robust self-learning method for fully
unsupervised cross-lingual mappings of word embeddings. In: Proceedings of
the 56th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers). pp. 789–798. Association for Computational Lin-
guistics, Melbourne, Australia (Jul 2018). https://doi.org/10.18653/v1/P18-1073,
https://www.aclweb.org/anthology/P18-1073

3. Birkhead, G.S., Klompas, M., Shah, N.R.: Uses of electronic health records for
public health surveillance to advance public health. Annual Review of Public
Health 36(1), 345–359 (2015). https://doi.org/10.1146/annurev-publhealth-
031914-122747, https://doi.org/10.1146/annurev-publhealth-031914-122747,
pMID: 25581157

4. Bodenreider, O.: The Unified Medical Language System (UMLS): integrating
biomedical terminology. Nucleic Acids Res 32(Database issue), D267–270 (Jan
2004)

5. Choi, E., Bahadori, M.T., Kulas, J.A., Schuetz, A., Stewart, W.F., Sun, J.: Re-
tain: An interpretable predictive model for healthcare using reverse time attention
mechanism. In: Proceedings of the 30th International Conference on Neural Infor-
mation Processing Systems. p. 3512–3520. NIPS’16, Curran Associates Inc., Red
Hook, NY, USA (2016)

6. Choi, E., Bahadori, M.T., Schuetz, A., Stewart, W.F., Sun, J.: Doctor ai: Predicting
clinical events via recurrent neural networks. In: Doshi-Velez, F., Fackler, J., Kale,
D., Wallace, B., Wiens, J. (eds.) Proceedings of the 1st Machine Learning for
Healthcare Conference. Proceedings of Machine Learning Research, vol. 56, pp.
301–318. PMLR, Northeastern University, Boston, MA, USA (18–19 Aug 2016),
https://proceedings.mlr.press/v56/Choi16.html

7. Choi, E., Bahadori, M.T., Searles, E., Coffey, C., Thompson, M., Bost, J., Tejedor-
Sojo, J., Sun, J.: Multi-layer representation learning for medical concepts. In: Pro-
ceedings of the 22nd ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining. p. 1495–1504. KDD ’16, Association for Computing Ma-
chinery, New York, NY, USA (2016). https://doi.org/10.1145/2939672.2939823,
https://doi.org/10.1145/2939672.2939823

8. Choi, E., Xu, Z., Li, Y., Dusenberry, M., Flores, G., Xue, E., Dai, A.: Learning
the graphical structure of electronic health records with graph convolutional trans-
former. Proceedings of the AAAI Conference on Artificial Intelligence 34, 606–613
(04 2020). https://doi.org/10.1609/aaai.v34i01.5400

9. Conneau, A., Lample, G., Ranzato, M., Denoyer, L., Jégou, H.: Word translation
without parallel data (2018)

10. Gupta, P., Malhotra, P., Narwariya, J., Vig, L., Shroff, G.: Transfer learning for
clinical time series analysis using deep neural networks (2019)

11. Harutyunyan, H., Khachatrian, H., Kale, D.C., Ver Steeg, G., Galstyan,
A.: Multitask learning and benchmarking with clinical time series data.
Scientific Data 6(1) (Jun 2019). https://doi.org/10.1038/s41597-019-0103-9,
http://dx.doi.org/10.1038/s41597-019-0103-9

AutoMap: Automatic Medical Code Mapping 15

12. Hripcsak, G., Duke, J.D., Shah, N.H., Reich, C.G., Huser, V., Schuemie, M.J.,
Suchard, M.A., Park, R.W., Wong, I.C., Rijnbeek, P.R., van der Lei, J., Pratt,
N., Norén, G.N., Li, Y.C., Stang, P.E., Madigan, D., Ryan, P.B.: Observational
Health Data Sciences and Informatics (OHDSI): Opportunities for Observational
Researchers. Stud Health Technol Inform 216, 574–578 (2015)

13. Johnson, A.E., Pollard, T.J., Shen, L., Lehman, L.H., Feng, M., Ghassemi, M.,
Moody, B., Szolovits, P., Celi, L.A., Mark, R.G.: Mimic-iii, a freely accessible
critical care database. Scientific data 3, 160035 (2016)

14. Li, Y., Rao, S., Solares, J.R.A., Hassaine, A., Ramakrishnan, R.,
Canoy, D., Zhu, Y., Rahimi, K., Salimi-Khorshidi, G.: BEHRT:
Transformer for Electronic Health Records. Scientific Reports
10(1), 7155 (Dec 2020). https://doi.org/10.1038/s41598-020-62922-y,
http://www.nature.com/articles/s41598-020-62922-y

15. Luo, J., Ye, M., Xiao, C., Ma, F.: HiTANet: Hierarchical Time-Aware
Attention Networks for Risk Prediction on Electronic Health Records, p.
647–656. Association for Computing Machinery, New York, NY, USA (2020),
https://doi.org/10.1145/3394486.3403107

16. Ma, F., Chitta, R., Zhou, J., You, Q., Sun, T., Gao, J.: Dipole: Diagnosis predic-
tion in healthcare via attention-based bidirectional recurrent neural networks. In:
Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. p. 1903–1911. KDD ’17, Association for Computing
Machinery, New York, NY, USA (2017). https://doi.org/10.1145/3097983.3098088,
https://doi.org/10.1145/3097983.3098088

17. Ma, L., Gao, J., Wang, Y., Zhang, C., Wang, J., Ruan, W., Tang, W., Gao,
X., Ma, X.: Adacare: Explainable clinical health status representation learning
via scale-adaptive feature extraction and recalibration. In: The Thirty-Fourth
AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second In-
novative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth
AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020,
New York, NY, USA, February 7-12, 2020. pp. 825–832. AAAI Press (2020),
https://aaai.org/ojs/index.php/AAAI/article/view/5427

18. Ma, L., Ma, X., Gao, J., Zhang, C., Yu, Z., Jiao, X., Ruan, W., Wang, Y., Tang,
W., Wang, J.: Covidcare: Transferring knowledge from existing emr to emerging
epidemic for interpretable prognosis (2020)

19. Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural net-
work acoustic models. In: in ICML Workshop on Deep Learning for Audio, Speech
and Language Processing (2013)

20. Mandel, J.C., Kreda, D.A., Mandl, K.D., Kohane, I.S., Ramoni, R.B.: SMART on
FHIR: a standards-based, interoperable apps platform for electronic health records.
J Am Med Inform Assoc 23(5), 899–908 (09 2016)

21. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space (2013)

22. Mikolov, T., Le, Q.V., Sutskever, I.: Exploiting similarities among languages for
machine translation (2013)

23. Nguyen, P., Tran, T., Wickramasinghe, N., Venkatesh, S.: Deepr: A convolutional
net for medical records. IEEE Journal of Biomedical and Health Informatics 21(1),
22–30 (2017). https://doi.org/10.1109/JBHI.2016.2633963

24. Pennington, J., Socher, R., Manning, C.D.: Glove: Global vectors for word repre-
sentation. In: Empirical Methods in Natural Language Processing (EMNLP). pp.
1532–1543 (2014), http://www.aclweb.org/anthology/D14-1162

16 Z. Wu et al.

25. Pollard, T.J., Johnson, A.E.W., Raffa, J.D., Celi, L.A., Mark, R.G., Badawi,
O.: The eICU Collaborative Research Database, a freely available multi-center
database for critical care research. Scientific Data 5(1), 180178 (Sep 2018).
https://doi.org/10.1038/sdata.2018.178, https://doi.org/10.1038/sdata.2018.178

26. Rajkomar, A., Oren, E., Chen, K., Dai, A.M., Hajaj, N., Hardt, M., Liu, P.J., Liu,
X., Marcus, J., Sun, M., Sundberg, P., Yee, H., Zhang, K., Zhang, Y., Flores, G.,
Duggan, G.E., Irvine, J., Le, Q., Litsch, K., Mossin, A., Tansuwan, J., Wang, D.,
Wexler, J., Wilson, J., Ludwig, D., Volchenboum, S.L., Chou, K., Pearson, M.,
Madabushi, S., Shah, N.H., Butte, A.J., Howell, M.D., Cui, C., Corrado, G.S.,
Dean, J.: Scalable and accurate deep learning with electronic health records. npj
Digital Medicine 1(1), 18 (Dec 2018). https://doi.org/10.1038/s41746-018-0029-1,
http://www.nature.com/articles/s41746-018-0029-1

27. Schönemann, P.H.: A generalized solution of the orthogonal procrustes prob-
lem. Psychometrika 31(1), 1–10 (Mar 1966). https://doi.org/10.1007/BF02289451,
https://doi.org/10.1007/BF02289451

28. Shang, J., Xiao, C., Ma, T., Li, H., Sun, J.: Gamenet: Graph augmented
memory networks for recommending medication combination. In: The Thirty-
Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-
First Innovative Applications of Artificial Intelligence Conference, IAAI 2019,
The Ninth AAAI Symposium on Educational Advances in Artificial Intelli-
gence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019.
pp. 1126–1133. AAAI Press (2019). https://doi.org/10.1609/aaai.v33i01.33011126,
https://doi.org/10.1609/aaai.v33i01.33011126

29. Søgaard, A., Ruder, S., Vulić, I.: On the limitations of unsupervised bilin-
gual dictionary induction. In: Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers). pp. 778–
788. Association for Computational Linguistics, Melbourne, Australia (Jul 2018).
https://doi.org/10.18653/v1/P18-1072, https://www.aclweb.org/anthology/P18-
1072

30. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov,
R.: Dropout: A simple way to prevent neural networks from overfit-
ting. Journal of Machine Learning Research 15(56), 1929–1958 (2014),
http://jmlr.org/papers/v15/srivastava14a.html

31. Tang, S., Davarmanesh, P., Song, Y., Koutra, D., Sjoding, M.W., Wiens, J.: De-
mocratizing EHR analyses with FIDDLE: a flexible data- driven preprocessing
pipeline for structured clinical data. Journal of the American Medical Informatics
Association 0(0), 14 (2020)

32. Wojcik, B.E., Stein, C.R., Devore, R.B., Hassell, L.H.: The Challenge
of Mapping between Two Medical Coding Systems. Military Medicine
171(11), 1128–1136 (Nov 2006). https://doi.org/10.7205/MILMED.171.11.1128,
https://academic.oup.com/milmed/article/171/11/1128-1136/4578127

33. Xiao, C., Choi, E., Sun, J.: Opportunities and challenges in developing deep learn-
ing models using electronic health records data: a systematic review. Journal
of the American Medical Informatics Association 25(10), 1419–1428 (06 2018).
https://doi.org/10.1093/jamia/ocy068, https://doi.org/10.1093/jamia/ocy068

34. Zhang, C., Gao, X., Ma, L., Wang, Y., Wang, J., Tang, W.: Grasp:
Generic framework for health status representation learning based
on incorporating knowledge from similar patients. Proceedings of the
AAAI Conference on Artificial Intelligence 35(1), 715–723 (May 2021),
https://ojs.aaai.org/index.php/AAAI/article/view/16152

AutoMap: Automatic Medical Code Mapping 17

35. Zhang, H., Dullerud, N., Seyyed-Kalantari, L., Morris, Q., Joshi, S., Ghas-
semi, M.: An empirical framework for domain generalization in clin-
ical settings. In: Proceedings of the Conference on Health, Inference,
and Learning. p. 279–290. CHIL ’21, Association for Computing Machin-
ery, New York, NY, USA (2021). https://doi.org/10.1145/3450439.3451878,
https://doi.org/10.1145/3450439.3451878

