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Abstract. Urban anomalies are unusual occurrences like congestion,
crowd gathering, road accidents, natural disasters, crime, etc., that cause
disturbance in society and, in worst cases, may cause loss to property
or life. Prediction of these anomalies at the early stages may prevent
significant loss and help the government to maintain urban sustainability.
However, predicting different kinds of urban anomaly is difficult because
of its dynamic nature (e.g., holiday versus weekday, office versus shopping
mall) and presence in various forms (e.g., road congestion may be caused
by blocked driveway or accident). This work proposes a novel integrated
framework UrbanAnom that utilizes a data fusion approach to predict
urban anomaly data using gated graph convolution and recurrent unit.
To evaluate our urban anomaly prediction framework, we utilize multi-
stream datasets of New York City’s urban anomalies, points of interest
(POI), roads, calendar, and weather that were collected via smart devices
in the city. The extensive experiments show that our proposed framework
outperforms baseline and state-of-the-art models.

Keywords: Urban anomaly, deep learning, data fusion, spatio-temporal
data, gated graph convolution network, gated recurrent unit

1 Introduction

The term anomaly refers to a deviation from the normal or expected pattern, and
examples of anomalies include fraud, real-world events, criminal activity, traffic
congestion, crowding, etc. One such type of anomaly is the urban anomaly, which
we see around us in the form of traffic congestion, fairs, market promotions, fire
incidents, criminality, etc., and may pose hazards to the general public’s safety or
result in financial losses. Statistics show that the annual cost of traffic congestion
in four major Indian cities—Delhi, Mumbai, Bengaluru, and Kolkata is Rs. 1.47
lakh crore [4]. Therefore, reducing life or economic losses might be possible with
early and accurate urban anomaly prediction. The local government, for instance,
can organize transportation and mobility management during the festival season
to avoid an unneeded stampede. With the help of this study, we hope to promote
sustainable urbanization by foreseeing various types of urban anomalies.

Predicting urban anomalies traditionally involves a lot of effort. For in-
stance, feature-based techniques rely on extracted features [20], which necessi-
tate domain expertise to accurately capture the intricate dynamics of the urban
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Fig. 1: Blocked driveway anomaly in urban areas

anomaly. While other research [9, 10] attempts to forecast anomalies but are
only capable of coarse-grained prediction with low accuracy, we are aiming to
predict different types of anomaly in a region bordered by roadways. An ex-
ample of anomalies in urban areas is shown in Fig. 1, where blocked driveway
anomaly affects region r2 and r5 directly and inferred from different contextual
information like weather, point of interest (POI), and date & time. Difficulties
in modelling anomaly prediction from several viewpoints are dynamic nature,
rare occurrences, area dependency, and direct-indirect influencing factors; these
difficulties drive a novel framework design.

We present the integrated framework where multiple deep neural networks
capture different aspects of data and fuse their output to achieve common ob-
jective. To address the challenge of the dynamic nature of the urban anomaly,
we extract spatial and temporal insights. Next, to solve the challenge of region
dependency, we form regions with the help of road network with the intuition
that it may pay attention towards illegal parking and blocked driveway. To incor-
porate the influence factors of urban anomaly, we use weather-related features.
Spatial and temporal aspects are learned by the framework separately. Later,
to join these modules, we fuse the output as input to global attention layer. To
get the relevance of different anomalous events, the attention layer is used to
predict future events more accurately. Finally, the hidden states from the atten-
tion layer are passed as input to multi-layer perceptron to predict the anomaly
category in a region. We utilize a number of real-world datasets, including those
gathered from New York City’s 311 complaints, POIs, and weather stations. Our
contributions are summarized as below:

– A novel framework, namely UrbanAnom is proposed to predict urban anomaly
of specific categories in particular region.

– We propose a GatedGCN based method to capture inter-region relationships
in the city. A Stacked GRU based modeling approach is chosen to take
advantage of long-term and short-term temporal dependency.

– The extensive experiments on real-world urban anomaly dataset shows that
UrbanAnom outperforms in terms of different metrics like F-measure, macro-
F1, and micro-F1 of 83%, 85%, and 83%, respectively, from baseline as well
as state-of-the-art models.
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2 Related Work

A review of the literature from spatio-temporal perspective is presented in this
section with two aims in mind: (1) Deep learning based methods, and (2) Hybrid
learning (graph + deep learning) based methods.

2.1 Deep learning based methods

Recently, deep learning based algorithms have been utilised with promising re-
sults in a variety of anomaly detection and prediction tasks, including crowd
gathering, traffic accidents, criminal prediction, etc. Among deep learning tech-
niques, recurrent neural networks have demonstrated superior performance in
a variety of spatial-temporal tasks, including weather forecasting, stock mar-
ket forecasting, accident forecasting, etc. In particular, Jiang et al. [12] pre-
dicted crowd dynamics from video data. They made predictions about future
crowd density and flow using a multi-task convLSTM encoder-decoder. Another
work done by Zhou et al. [29] have suggested utilising deep learning to predict
crimes like robberies and burglary by combining spatial, temporal, and seman-
tic data into latent space. Huang et al. [11] suggested a multi-view multi-model
spatial-temporal learning (MiST) framework used a recurrent neural network
and pattern fusion module to forecast city-wide anomalous events. For predict-
ing traffic accidents, they suggested a dynamic fused network framework that
makes advantage of hierarchical deep learning. Additionally, Shimosaka et al. [18]
proposed mixed-order poisson regression from GPS data to find nationwide ab-
normal events. In order to predict urban anomalies, Huang et al. [10] created
a hierarchical deep neural network that combined geographical, temporal, and
category aspects. We also use the concept of integrating different deep learning
models since an integrated framework can better capture the dynamic behavior
of events. The performance of deep learning-based approaches is usually im-
proved by the use of attention mechanisms in current trends. We also employ
this concept to enhance the performance of the entire framework.

2.2 Hybrid learning (graph + deep learning) based methods.

In general, several factors influence urban anomalies, and data analysis using a
single dimension does not reveal any underlying correlations. Therefore, Zhang
et al. [26] suggested employing graph embedding and neural network to de-
tect anomaly from spatio-temporal data. A multi-modal fusion model for urban
anomaly prediction from a spatial and temporal perspective was put out by Liu
et al. [16]. They obtained spatial information using a graph convolution net-
work, and temporal features using a gated recurrent unit. On the other hand,
we change the general architecture and take into account extra contextual infor-
mation like the calendar and weather data. Zhao et al. [27] solution to the traffic
prediction problem, which incorporates both spatial and temporal relationships,
used a temporal graph convolution network. In a different article, authors Liu et
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al. [15] also suggested a system that used adaptive graph convolution and tempo-
ral convolution to solve the challenge of urban anomaly detection. To efficiently
capture various inherent information, the integrated architecture has been ap-
plied to numerous prediction tasks. Urban anomalies can be predicted using
spatial and temporal clues, but we also need to take the context into account.
Therefore, we employ an integrated framework to capture different aspects.

3 Preliminaries

In this section, we first define the terms and then formally define the problem
statement for urban anomaly prediction. Particularly, we consider R geographi-
cal regions of an urban area and A anomaly categories with T time window.

3.1 Notation

Definition 1. Region Graph In this study, we use the map segmentation
method [24] on the road network, such as highway and arterial roads, to split
the city into regions R = r1, r2, . . . , rn. In the proposed architecture, we take
inter-region graph formulation into account. Each region ri ∈ R functions as a
node v ∈ V of the graph G = (V,E) in the inter-region case, where V indicates
the set of all disjoint regions and E is the set of all connecting pathways of the
regions. If two regions are close to one another, an edge ek ∈ E exists between
vi and vj such that i 6= j where (u, v) ∈ V . The region graph’s adjacency matrix
can be defined as RG ∈ RV ∗V . In RG, we specifically set the element RGij = 1
if a connecting path exists between two regions and RGij = 0 if there isn’t a
connecting path.

Definition 2. Point of interest The point of interest (POI) dataset includes
latitude and longitude positions for hospitals, businesses, educational institu-
tions, retail locations, etc., that serve as a feature of graph nodes. The rationale
behind taking POI into account is to identify correlations between various places
depending on how they function (such as a hospital or commercial area). For
instance, a similar functioning region in an urban location would have a similar
anomalous pattern, according to Yuan et al. [23] study. If F is the number of
POI categories, then the adjacency matrix for POI can be written as PI ∈ RV ∗F .
The element PIij is set to 1 in PI if a specific POI category is present in a
region and PIij to 0 in all other cases.

Definition 3. Temporal Anomaly Stream Data in the prediction of urban
anomalies shows a temporal stream that varies over time. This temporal stream
is represented for a region ri at time step k as T S = (Y 1k

i , Y 2k
i , . . . , Y lk

i ), where
T S ∈ Rn∗l∗k is the record of an anomaly of l category in k time slots at ri
region. When an anomaly of category al occurs at the kth time step at region
ri the adjacency matrix for the temporal stream has the value T Slki = 1 and
T Slki = 0 otherwise.



Deep learning based Urban Anomaly Prediction from Spatiotemporal Data 5

Definition 4. Weather and Calendar Context It stands to reason that
weather has an impact on anomalous occurrence because obstructed driveway re-
ports are more often in adverse weather. As a result, we incorporate the weather
as a crucial component, which is denoted as W ∈ R1×fw . The urban anomaly
changes with time as well. For instance, because most individuals tended to sleep
at night, there are fewer complaints at night. Additionally, there is a different
pattern of complaints during the week and on vacations. We therefore divide the
given day, which consists of 24 hours, into six-hour periods and represent this
as a one-hot encoding vector, CL ∈ R1×fcl .

3.2 Problem Statement

Solutions for predicting urban anomalies typically focus on extracting spatio-
temporal data without taking context into consideration. On the other hand, we
take into account semantic, spatial, and temporal data. The goal is to learn a
predictive function that predicts l anomaly categories across n regions in s future
time steps given historical data with l anomaly categories A = (a1, a2, . . . , al)
over n region R = (r1, r2, . . . , rn) and k time step T = (t1, t2, . . . , tk). The formal
representation of problem is given as:

yl,(k+s)
n = Ψ(RG,PI, T S,W, CL); (1)

where Ψ(·) is a approximation function that we want to learn with input ar-
guments region graph (RG), point of interests (PI), temporal anomaly (T S),

weather information (W), and calendar data (CL). The outcome is y
l,(k+s)
n , which

is a prediction of all anomaly categories l in every region n over the next s time
steps.

4 Framework: UrbanAnom

In this section, UrbanAnom framework is described in detail with introduction of
the model input and the motivation for proposed framework. As Fig. 2 shows the
architecture of UrbanAnom that consist four major modules: Semantic Spatial
Module, Context Aware Temporal Module, Global Attention, and Multi-Layer
Perceptron.

Definition 5. Anomaly context tensor The input for the model is adjacency
region matrix (RG), point of interest matrix (PI), temporal anomaly stream
(T S), calendar (CL), and weather embedding (W). As shown in Fig. 2, context
aware temporal module have extracted RG, PI and CL, W data along with T S.
In case of semantic spatial dependency adjacency matrix RG and PI are fed
into GatedGCN.
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Fig. 2: Graphical representation of proposed architecture

4.1 Semantic Spatial (SS) Module

To consider spatial information from the geographical region along with seman-
tic signals, we also include POI details. The intuition behind including POI is
that similar functioning regions may have similar kinds of anomalies. Tradi-
tionally, convolution neural network (CNN) is used to capture the local spatial
information, but it does not work well with non-euclidean space such as graphs.
We divide the city into regions according to road network, and considering each
region as node of the graph, CNN is unable to capture complex topological
relationships from the graph network. Recently, CNN variant that works over
graph has been come into existence, such as graph convolution network (GCN).
A benchmark over graph neural network given by [5], shows gatedGCN works
better in the node classification, graph classification, and link prediction, which
is anisotropic variant of GCN. Therefore, we decide to use gatedGCN [1] in the
task of extracting spatial information of geographical region.

Let hli is a hidden unit at layer l attached with node i. The updated unit
hl+1
i at next layer l + 1 in GatedGCN uses bath normalization, edge gates and

residual connections which is represented by the equations:

hl+1
i = hli +ReLU(BN(U lhli +

∑
j∈Ni

elij � Vlhlj)), (2)

where � is a Hadamard product, U l, V l ∈ Rd∗d and edge gates elij is used as soft
attention represented in equation as:

elij =
σ(êlij)∑

j′∈Ni
σ(êlij′) + ε

, (3)

êlij = êl−1ij + (BN(Alhl−1i +Blhl−1j + Clêl−1ij )), (4)

where ε is hyperparameter for numeric stability, σ represent activation function,
Al, Bl, Cl ∈ Rd∗d. The difference between GCN and gatedGCN is that the later
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one take cares edge feature at each layer. In summary, we use GatedGCN [1] to
learn semantic spatial relationship of anomalies.

4.2 Context Aware Temporal (CAT) Module

In the context-aware temporal module of UrbanAnom, we aim to encode se-
quential anomaly patterns with the context of anomaly occurrence in previous
days or weeks. We fed the details of anomalies that occur a month ago, a week
ago, a day ago. For each region ri, we generate anomaly occurrence vector At

l

that reflect the anomalies in region ri. Given the generated anomaly vector, we
leverage GRU [3], which is one of the recurrent neural network (RNN) that work
with time-series data. RNN is widely applied in time-series data. Different RNN
variants are there with various recurrent units such as vanilla RNN, Long short
term memory (LSTM), and gated recurrent unit (GRU). Both LSTM and GRU
have gating mechanism to deal with the vanishing gradient problem of the tra-
ditional recurrent neural network, but GRU is less complex and more efficient
in small training data. Our framework is flexible to change recurrent units; the
effect of change is also explored.

In GRU, on each timestep t, we have input xt, i.e., features and hidden state
ht. The hidden state also acts as a memory block, and operations of the memory
block are controlled by two gates, namely the update gate and reset gate. Update
gate controls what part of the hidden state is updated versus preserved, and reset
gate controls what part of the previous state are used to compute new content.
The operation on memory block performed by gates using following equations
at each timestep:

ut = σ(Wuh
t−1 + Uux

t + bu) (5)

Update gate (ut) controls what part of hidden state are updated versus pre-
served.

rt = σ(Wrh
t−1 + Urx

t + br) (6)

Reset gate (rt) controls what part of previous state are used to compute new
content.

h′t = tanh(Wh(rt · ht−1) + Uhx
t + bh) (7)

(h′t) represent the next hidden state.

ht = (1− ut) · ht−1 + ut · h′t (8)

(ht) is the current hidden state. Here Wu, Wr, Wh are weights and bu, br, bh
are biases. While σ and tanh are activation functions, Dot (.) represent element
wise product.

4.3 Global Attention Module

Limitation of neural network based architectures is that they represent fixed
length internal representation, which is not good for representing long depen-
dencies. In our case, for a specific region ri, complex dependencies exist among
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spatial and temporal anomaly occurrences. In our UrbanAnom architecture, we
use attention mechanisms that pick the most essential signals to capture short
and long distance dependencies, in order to avoid the situation where only the
last hidden vector is used to represent spatial and temporal patterns [17]. The
ability of the attention mechanism to selectively focus on a portion of crucial
information has been demonstrated in machine translation and image analysis
tasks. This inspires us to prefer global attention above representations of hidden
spatial and temporal states. Attention mechanism is given by the equations as:

attnn = tanh(Wattnhn + battn) (9)

Λn =
exp(attnTnWm)∑
n′ exp(attnTnWm)

(10)

â =

N∑
n=1

ΛnWattnhn (11)

where Wattn, battn,Wm are training parameters, hn shows the hidden state
learnt from lower layer and the number of input vectors represented by N .
Learned importance weight represented by αn and â represent new hidden repre-
sentation called attention vector. In our case we utilize the attention over hidden
states of both semantic spatial module and context aware temporal module.

Υ = ∆(â(SSht), â(CATht)) (12)

where Υ represents the global attention, SSht and CATht are the hidden
states of semantic spatial module and context aware temporal module. The sym-
bol ∆ is the fusion function between SS and CAT attention output.

4.4 Multi-Layer Perceptron based Prediction module

The multi-Layer perceptron is used as a last layer in the prediction phase of
the proposed UrbanAnom architecture to generate the presence of anomalies in
various categories of each unique region ri. The MLP is able to describe anomaly
occurrence probabilities using a softmax function. The output of SS, CAT , and
Υ is dynamically fused into a multilayer perceptron network to generate the final
anomaly prediction represented as an equation below:

yl,kn = fc(Wss ∗ SS +WCAT ∗ CAT +Wat ∗ Υt) (13)

where Wss, WCAT , Wat are learnable parameters and fc(·) represent the fully
connected layer of perceptrons. The cross entropy loss function is defined as:

L =
∑

n,l,k∈A

yl,kn logŷl,kn + (1− yl,kn )log(1− ŷl,kn ) + λRreg (14)

where ŷl,kn denotes the predicted anomalous event of the l category in region ri in
kth time slot. We use L2 norm as regularization Rreg function and λ is adjustable
hyperparameter. The model parameters are learned during minimization of loss
function.



Deep learning based Urban Anomaly Prediction from Spatiotemporal Data 9

5 Evaluation

We conduct experiments to determine the efficiency of the proposed framework
using datasets from New York City, including NYC-Urban Anomaly, NYC-POI,
NYC-Road Network, NYC-Weather, and NYC-calendar. In this section, we pro-
vide a description datasets used, parameter settings, performance validation,
parameter sensitivity, and evaluation of variants.

5.1 Dataset

In developed nations, the anomaly reporting system also emerged along with
the rise in urbanisation. As a result, we run independent experiments to predict
anomalies of different categories while validating our proposed framework using
various real-world datasets from New York City 1. The city of New York has
a 311 emergency service platform 2 that lets residents file complaints by phone
call, text message, or mobile app. Traffic congestion, crime, fire events, and other
anomalies can occur in metropolitan areas, but we have chosen the data given
by the 311 emergency service in New York City as our dataset for anomalies.

Brief explanation of the datasets is given as: 1) NYC-Urban Anomaly: Dataset
contains latitude, longitude, complaint type, and timestamp information. Four
types of anomalies, including blocked driveways, noise, illegal parking, and build-
ing use, have been the subjects of our experiments. The reason for selecting only
these categories is because they are common occurrences and simple to com-
pare with prior research.The distribution of urban anomalies is depicted in Fig.
3, with darker colours denoting more anomalies in a given area. 2) NYC-POI:
The dataset containts geo-coordinated information on different categories are
grouped into six main categories, including education, food & dinning, health
& beauty etc. The POI data is extracted from OpenStreetMap API 3of year
2017 and assume there is no major change in POI information. Table 1 shows
the statistics of the dataset. 3) NYC-Road Network: The main component of
the transportation system is the road network. To segment the road network
dataset of New York City into regions, a map segmentation method. The road
network information is given in the the website 4. 4) NYC-Weather: We acquired
meteorological information for New York City from WunderGround5, which in-
cluded temperature information as well as 18 characteristics of various weather
conditions, such as sunny, rain, and haze, etc. 5) NYC-Calender: The calendar
information, including the days of the week, the weekend, and the holidays, was
retrieved from the Holiday library 6.

1 https://opendata.cityofnewyork.us/
2 https://portal.311.nyc.gov/
3 https://www.openstreetmap.org/
4 https://figshare.com/articles/dataset/Urban Road Network Data/2061897
5 https://www.wunderground.com/
6 https://pypi.org/project/holidays/
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Table 1: Dataset statistics of urban anomaly and POI from NYC

Urban Anomaly from NYC
Category Instances

Blocked Driveway 74,698

Noise 134,690

Illegal Parking 57,374

Building Use 24,319

Point-of-interest (POI) from NYC
Category Instances

Business to Business 3717

Education 1062

Government & Community 3116

Food & Dinning 3385

Health & Beauty 4336

Real Estate & Construction 4675

Fig. 3: Anomaly distribution in NYC

5.2 Parameter Settings

All experiments were conducted on Google Colab using a GPU specification
of Tesla P100-PCIE-16GB and an Intel Xeon 2.20GHz processor. The Colab
environment allotted 12 GB RAM and 34 GB of hard drive space for memory.
We use the PyTorch toolkit to create the model in Python. We divided the
dataset into three sets: a training set (8 months), a validation set (2 months),
and a test set (4 months) (2 months). The hyper-parameters are fine-tuned using
the validation set, and test data is used for the final performance assessment.
Adam optimizer to train it with a 1e− 3 learning rate. In stacked GRU, we set
the hidden dimension size to 32, and 4 GRU layers are used with the topmost
layer as attention. In GateGCN, 2 layers are used, the global attention dimension
is set to 32, and MLP layers are 3. Batch size for the experiment is set to 64,
and regularization parameter λ is set to 0.01.

5.3 Performance Validation

We compare the performance of UrbanAnom with various baselines; Table 2
describes the results of urban anomaly prediction in terms of accuracy, preci-
sion, recall, and F-measure. In the urban anomaly prediction, UrbanAnom out-
performs the existing baseline approaches, according to the evaluation results.
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Table 2: Comparison with different baselines in percentage (%)
Methods Accuracy Precision Recall F-Measure

SVR [2] 69 68 65 66
LR [8] 67 66 67 66
ST-RNN [14] 72 69 70 69
LSTM [7]) 75 71 73 72
GRU [3] 74 73 72 72
ARM [6] 79 77 76 76

UrbanAnom 85 83 84 83

Table 3: Comparison with different state-of-the-art models in percentage (%)
Methods Accuracy Precision Recall F-Measure

DCA [28] - 75 62 70
CUAPS [9] 66 70 76 73
UAPD [21] 66 69 74 71
ind+int [25] 69 68 77 73
DAUAD [26] - 70 75 74
ST-MFM [16] 74 73 80 79
DST-MFN [15] - 77 84 81

UrbanAnom 85 83 84 83

This illustrates the advantage of taking into account the integration of semantic
spatial, context-aware temporal modules. Second, methods based on neural net-
works perform better than standard machine learning because neural networks
are better at learning hidden and non-linear correlations. Third, attention-based
techniques capture long-term dependencies more effectively than a simple recur-
rent neural network. Finally, just using time-series data is inefficient compared
to recurrent neural networks; in order to accurately forecast anomalies, we must
include spatial, temporal, and semantic information.

Additionally, we look into how well UrbanAnom predicts various categories
of anomalies; the results are given in Fig.s 4a, 4b, 4c, and 4d. Noise, illegal park-
ing, blocked driveways, and building use are some of the different categories we
include for evaluation. We find that UrbanAnom performed better than baseline
methods in predicting individual category anomalies and is capable of mod-
elling region, time, and category data efficiently. Last but not least, we compare
our model to current state-of-the-art urban anomaly prediction models. The re-
sults are reported in Table 3. As shown in Table 3, UrbanAnom predicts urban
anomaly more accurately in terms of different performance metrics.

5.4 Parameter Sensitivity

In this subsection, we examine the robustness of UrbanAnom, we examine the
effect of different hyperparameter settings (i.e., attention dimension, hidden state
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Fig. 4: Predicting results for individual anomaly category
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Fig. 5: Hyper-parameter sensitivity results

dimension), and the results are shown in Fig. 5a, and Fig. 5b. Other parameter
are set to the default value, except the parameter being tested. We observe from
Fig. 5a that increasing the dimension size increases the performance initially,
but it also occurs with extra computation cost. Therefore, we set the dimension
size as 32 to provide a balance between efficiency and computation cost. From
Fig. 5b, it is also observed that we got peak performance when hidden state
dimension set to 32. We also observe that both hyperparameters, i.e., attention
dimension and hidden state dimension have less effect on the performance, which
shows the robustness of the proposed framework.
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5.5 Evaluation of Variants

In addition to evaluating UrbanAnom with baseline and state-of-the-art tech-
niques, we also assess variants by doing an ablation study to determine the
impact. For a deeper understanding of UrbanAnom, we also assess the frame-
work from other aspects, including how the choice of various recurrent units
affects performance and how various context factors, such as POI and weather,
affect the outcome.

Ablation study of components Ablation study checks for the impact of an
individual component on the framework performance. It can be inferred from
the result that semantic spatial, temporal, attention and weather embedding
module provides additional context regarding prediction. Specifically, spatial and
temporal components plays significant role in correct prediction. 1) Effect of
semantic spatial module (UA-s): A simplified version of UrbanAnom that do not
include semantic spatial data into consideration for evaluation. As shown in Fig.
6a, F1-measure of UA-s is 0.75 which is comparatively less than UrbanAnom. 2)
Effect of context aware temporal module (UA-c): Another variant of UrbanAnom
which do not cover the temporal aspect of the urban anomaly prediction problem.
As observed from the results shown in Fig. 6a that UA-t have F1- measure of 0.78,
which is less than UrbanAnom. This effect raised beacause anomaly changes with
respect to time and temporal component plays an important role in prediction.
3) Effect of global attention module (UA-a): Model prediction score is observed in
the absence of global attention; it helps to understand how attention is affecting
the accuracy. Attention mechanism help to improve the performance of anomaly
prediction correctly, and results shown in Fig. 6a validates this statement. UA-a
has F1-measure of 0.79, its a significant reduction in accuracy of the proposed
framework. Therefore, adding attention helps in predicting urban anomaly more
accurately because it helps us to capture long term dependency in temporal and
spatial dimensions. 4) Effect of weather embedding module (UA-w): Weather
information can be an important aspect on anomalies, so to check its effect, we
evaluate our model without using it. As the intuition that weather may affect
urban lives, results show its applicability. It is clear from Fig. 6a, UA-w performs
less than UrbanAnom with F1-measure of 0.81.

Context, recurrent unit, and graph model selection effect The effect of
context information, recurrent unit, and graph model selection is shown in Fig. 6.
Insights of the Fig. 6 are discussed as: 1) Context information effect: To improve
the accuracy of predictions, we incorporate context information such as POI (P ),
weather (W ), and calendar (R) into our framework. The impact of contexts on
the model’s performance is important to know the effect of individual context
contribution in total prediction accuracy. In 6b, the F-measure is shown for the
emphcontext-W (without POI/W/R) information. For instance, P −W stands
for model performance without POI data. As shown, extra information improves
the model’s accuracy by 10%, and weather information has a large influence
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(b) Effect of context information
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(c) Recurrent unit selection
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(d) Graph based model selection

Fig. 6: Evaluation of variants

across all situations. The removal of all the context categories PRW−W decrease
the prediction accuracy significantly. 2) Recurrent unit selection effect: We utilize
different recurrent units, i.e., RNN, RNN-A, LSTM, LSTM-A, GRU, GRU-A for
temporal insights, where A denotes local attention. It is clear from the results
shown in Fig. 6c that selection of the recurrent unit makes a huge difference
in the accuracy of the model. The first observation that we have drawn is that
RNN has lower performance among all the variants and GRU-A has the best
one. Second, local attention also increases the F1-measure, as all the variants
RNN-A, LSTM-A, and GRU-A perfoms better than their base model. 3) Graph
based model selection effect: We experimentd with different variants of GCN,
i.e., GCN [13], graph attention network (GAT) [19], graph isomorphic network
(GIN) [22], and GatedGCN for spatial relation extraction. It is clear from the
results shown in Fig. 6d that GatedGCN have shown better performance than
other graph based models. We can also infer that GCN has lower performance
among all the variants.

6 Conclusion

To minimise the economic loss to our society, urban anomaly prediction is a
crucial endeavour. In this research, we proposed a solution to the problem of
urban anomaly prediction. In order to represent semantic spatial relations, the
metropolitan area is separated into regions based on the road network. We em-
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ploy the gated recurrent unit and take the weather into account to add context-
aware temporal information. We successfully predict anomalies in the real-world
dataset with an F-measure of 0.83 and compare the proposed method’s perfor-
mance with various baselines and state-of-the-art techniques to verify the model’s
performance. Additionally, we assess our suggested framework from a variety of
angles, including the contributions made by each module, the significance of the
contextual information, effect of graph based model and the influence of the
recurrent unit on performance.

The dataset for anomaly collected from NYC 311 services which inherits all
the issues of crowdsource data collection. For example, all the complaints are
not registered in the portal, and all registered complaints are not validated.
Multi-domain incorporation may increase the accuracy of the model; we will try
to add accidents data, crime data, human mobility data, etc., so that better
domain knowledge can be provided to the model. In the future, we try to use
proposed architecture in other prediction problems also and want to incorporate
more context information to simulate the real-world.
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