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Abstract. Health screening is practiced in many countries to find asymp-
totic patients of diseases. There is a possibility that applying machine
learning to health screening datasets enables predicting future medical
conditions. We extend this approach by introducing interpretable ma-
chine learning and determining health screening items (attributes) that
contribute to detecting lifestyle-related diseases in their early stages. Fur-
thermore, we determine how contributing attributes change within one to
four years of time. We target diabetes and chronic kidney disease (CKD),
which are among the most common lifestyle-related diseases. We trained
predictive models using XGBoost and estimated each attribute’s contri-
bution levels using SHapley Additive exPlanations (SHAP). The results
indicated that numerous attributes drastically change their levels of con-
tribution over time. Many of the results matched our medical knowledge,
but we also obtained unexpected outcomes. For example, we found that
for predicting HbA1c and creatinine, which are indicators of diabetes
and CKD, respectively, the contribution from alanine transaminase goes
up as the time interval lengthens. Such findings can provide insights into
the underlying mechanisms of how lifestyle-related diseases aggravate.

Keywords: Interpretable machine learning · data-driven medicine · health
screening · disease prediction · tabular data

1 Introduction

Health screening is practiced in many countries to find asymptotic patients of
diseases. It has become increasingly important to detect early symptoms of
lifestyle-related diseases through health screening due to their increasing rate
of patients among diseases. Machine learning provides a promising approach for
making such predictions. In addition to finding asymptotic patients, there is high
potential in health screening data. Medical researchers can obtains insights from
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analyzing health screening data. Such an approach is often called data-driven
medicine.

Data-driven medicine has been gaining much popularity due to its potentially
high impact on medical practices and drug discovery. In the field of artificial in-
telligence (AI) research, interpretable machine learning provides a good measure
for data-driven medicine. Medical researchers can gain an understanding from
the insights provided by the interpretations of machine learning models into the
underlying mechanisms of diseases. Clinically, an interpretation can suggest test-
ing other examination items not included in the original health screening records
to further understand the patient’s condition.

In this paper, we introduce the aspect of time into interpretable machine
learning to health screening. Existing works on predictions and interpretations
have conducted analyses only at a single time interval, that is, using a specific
time interval between features and the target attribute. However, as a lifestyle-
related disease develops over time, different test items are affected. The change
can be observed by comparing attributes contributing to making predictions
at different points in time. A number of attributes may contribute to making
long-term predictions, while others are useful for short-term predictions. Such a
difference may have been known to clinicians, but it was difficult to observe it
quantitatively. Interpretable machine learning on health screening records can
now provide a suitable means for such an analysis.

To see the dynamics of contributing attributes, we observed the differences
in attributes that help make predictions at time intervals between one and four
years. Specifically, we trained models using XGBoost and ranked the attributes
in accordance with their contributions using SHapley Additive exPlanations
(SHAP) [11].

(1) Prepare dataset for each time interval (2) Train predictive models
      for each target

(3) Calculate SHAP values (4) Compare differently 
      between each time interval 

One-year interval
Two-year interval
Three-year interval
Four-year interval

Input year Target year

2016 2017 2018 2019 2020

One-year interval

Four-year interval

Two-year interval

Three-year interval

One-year

Two-year

Three-year

Four-year

Creatinine

included not included

HbA1c

included not included

SHAP

SHAP

SHAP

SHAP

Fig. 1. The framework for interpreting predictive models presented in this paper.

We chose type 2 diabetes and chronic kidney disease (CKD) as the target
diseases because they are the most common among lifestyle-related diseases.
From the experiments, we found that the contributing attributes significantly
differ depending on time intervals. Many attributes that contributed to predict-
ing the disease indicators one year later were different from those four years
later. Our results show that the interpretation of machine learning results can
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effectively uncover such dynamics and provide more insights into how lifestyle-
related diseases aggravate. This can also help patients and clinicians by enabling
them to diagnose diseases at early stages. In addition, our approach provides a
framework for applying interpretable machine learning to data-driven medicine
in general and can contribute to the development of evidence-based medicine for
lifestyle-related diseases. Figure 1 shows the overview of our experiments. The
main contributions of the paper are as follows.

– We created a high-performance predictive model of lifestyle-related diseases
for asymptomatic healthy patients based on a large-scale health screening
dataset.

– We implemented a SHAP-based interpretation system for finding attributes
that contribute to making predictions for the aggravation of diabetes and
CKD.

– We found that different attributes contribute to the aggravation of diabetes
and CKD depending on the time span being considered.

Our code is available at https://github.com/itumizu/interpretation_
at_multiple_time_intervals.

2 Related work

2.1 Prediction of diabetes stages using medical records

Many studies proposed models to predict the onset of diabetes using medical
records. Model building methods range from classical statistical approaches to
modern machine learning-based techniques. For predictive models and method-
ologies, Kavakiotis et al. is a good survey on machine learning and data mining
for diabetes research.

For classical statistical approaches, Sisodia et al. trained models such as de-
cision trees and support vector machines (SVMs) to predict whether a patient
would develop diabetes [19]. Choi et al. proposed a predictive model for type 2
diabetes using electronic medical records [4]. They used logistic regression, linear
discriminant analysis, quadratic discriminant analysis, and k-nearest neighbor.
Furthermore, Dagliati et al. applied a random forest and logistic regression on
electronic health records to predict the onset of diabetes complications [5]. As
modern machine learning techniques, Lai et al. used logistic regression and a
gradient boosting machine to predict type 2 diabetes [10]. Most studies only fo-
cused on making predictions. However, several studies analyzed the implications
of trained predictive models. For example, Manini et al. used a Bayesian network
to investigate a causal structure for clinical complications in type 1 diabetes [13].

In most existing work, models were trained by medical data obtained from
electronic medical records in hospitals. In contrast, our dataset comes from an-
nual medical checkups. Additionally, since our dataset contains data from healthy
subjects, it has an advantage in investigating the early stages of diabetes.
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2.2 Prediction of chronic kidney diseases stages using medical
records

CKD is known to cause and be caused by other diseases. Many studies aim to de-
termine whether hospitalized patients having CKD later develop other diseases
as a complication. Tangri et al. predicted whether patients with CKD would
deteriorate to renal failure [21]. They used the Cox proportional hazards model
to analyze the factors associated with CKD progression. Kunwar et al. built a
model to classify whether a patient has CKD using a naive Bayesian method and
a neural network and compared the performance [9]. Wang et al. used health
checkup data to predict the risk of CKD using random forest, XGBoost, and
ResNet by using the regression of creatinine levels [23]. Moreno-Sanchez pro-
posed a model for early detection of CKD by combining AdaBoost and decision
trees [15]. They analyzed the relationship between the feature importance ob-
tained from the constructed model and the attributes entered into the model.
For dealing with CKD complications, Ravizza et al. used logistic regression with
electronic medical record data to predict the risk of developing CKD in patients
with diabetes [17]. Belur Nagaraj et al. proposed a model to identify patients
with type 2 diabetes who will develop end-stage renal failure in the future [2].

CKD progresses slowly due to lifestyle-related effects. Therefore, there may be
no subjective symptoms until the disease becomes severe. Prediction of the long-
term progression of the disease and detection of signs will help prevent the onset
of the disease. However, existing studies almost entirely aimed at predicting the
onset of CKD for patients already having certain diseases rather than targeting
healthy subjects.

2.3 Interpretable prediction of diseases

Some studies have introduced interpretability into their prediction. Xie et al.
identified two new risk factors for type 2 diabetes by training predictive models
[24]. Their analysis included an SVM, random forest, and neural network. Using
time-series data, Park et al. proposed to use deep attention networks to make
interpretable predictions for vascular diseases [16]. Their model was based on
an RNN, which is appropriate for long-time sequence data, but it may not suit
the health screening records that we target. For interpretation at different time
intervals, Shakeri et al. compared attributes that contribute to the prediction of
sepsis onset at two and six hours using SHAP [18].

Broome et al. reviewed the status of machine learning and AI in making
decisions regarding diabetes care. They covered numerous use cases of machine
learning in identifying pre-diabetes patients, automated insulin dosing systems,
and customized meal and lifestyle recommendations. Finally, Dankwa-Mullan
et al. surveyed various ways AI can be used for diabetes care, discussing how
interpretable models are critical for many applications [6].

Existing studies have added interpretability to conventional methods. On the
other hand, few studies have attempted to use interpretability to find new rela-
tionships. Interpretable predictions lead to understanding the model’s behavior
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and why the predicted results were obtained. Moreover, interpretation of ma-
chine learning models can find abstract connections between the data learned by
the model and the prediction target. Our method uses modern machine learning
and interpretation techniques to analyze the relationship between the data and
the predictor, focusing on the difference in the time intervals.

3 Dataset

3.1 Structure and attributes

We used a medical checkup dataset collected by a regional health care center
in Mito Kyodo General Hospital in Japan. The dataset consists of three annual
medical checkup records. The number of samples (participants) for 2016, 2017,
2018, 2019, and 2020 was 4,133, 4,261, 4,270, 4,015, and 4,367, respectively.

We conducted a prediction task with time intervals ranging from one to four
years. We used records from participants who took medical checkups in both
input and target years.

The number of participants in each combination were 2,396 for 2016–2017,
2,527 for 2017–2018, 2,511 for 2018-2019, 2,701 for 2019-2020, 2,140 for 2016-
2018, 2,179 for 2017-2019, 2,531 for 2018-2020, 1,896 for 2016-2019, 2,274 for
2017-2020 and 1,975 for 2016-2020. We removed attributes that were missing in
over 95% of the participants.

We trained our model using the 38 remaining attributes: age, sex, height,
weight, waist circumference, body mass index (BMI), systolic blood pressure,
diastolic blood pressure, total cholesterol, high-density lipoprotein (HDL) choles-
terol, low-density lipoprotein (LDL) cholesterol, fasting blood sugar (FBS), hemoglobin
A1c (HbA1c), status of diabetes mellitus, hemoglobin, red blood cell count,
hematocrit, white blood cell count, uric acid, hematuria (blood in urine), urine
protein, urine sugar, fecal occult blood for day 1, fecal occult blood for day
2, neutral fat, cholinesterase, creatinine, albumin, alanine transaminase, aspar-
tate transaminase, γ-glutamyl transpeptidase, C-reactive protein, electrocardio-
gram, abdominal echo, chest X-ray, status of gastric intestinal series, ophthal-
mology, and serum abnormalities. In addition, there are answers to the 20 self-
administered questions [14] shown in Table 1. We did not include Q13 and Q16
in the attributes we used because the questions have changed since 2018, and
responses to the same questions are no longer available.

Sex was selected from male or female. Electrocardiogram, abdominal echo,
chest X-ray, status of gastric intestinal series, ophthalmology, serum abnormali-
ties were selected from “nothing particular,” “mild abnormality, “follow-up,” “re-
quires treatment,” “requires further testing,” and “under medical treatment.”
Fecal occult blood for day 1 and day 2 were selected from “negative,” “positive,”
and “missing.” Urine protein and urine sugar were selected from (-), (+-), (+),
(2+), (3+), (4+), (5+). Q1–Q12, Q14–Q15, Q17, Q20, and Q22 were yes/no
questions. Q18 was selected from “every day,” “sometimes,” and “none.” Q19 was
selected from “less than 180 ml,” “180–360 ml,” “360–540 ml,” and “more than
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Table 1. Self-administered questions in our medical checkup dataset

Number Question
Q1 Using anti-hypertensive drug
Q2 Using insulin injection or antidiabetic (hypoglycemic) drug
Q3 Using anti-cholesteremic agent

Q4 Have you ever been diagnosed as having a stroke (cerebral hemorrhage
or infarction) by a physician or had medical treatment?

Q5 Have you ever been diagnosed as having heart disease (angina pectoris or
myocardial infarction) by a physician or had medical treatment?

Q6 Have you ever been diagnosed as having chronic renal
failure by a physician or got artificial dialysis?

Q7 Have you ever been diagnosed as having anemia?
Q8 Have you smoked in the last month?
Q9 Have you put on weight by 10 kg since your 20s?

Q10 Have you exercised for more than 30 minutes each time,
for more than two times per week, and for more than one year?

Q11 Do you walk daily or do other physical activity
equal to walking for more than 1 hour per day?

Q12 Do you walk faster than those in the same age group as you?
Q14 Do you eat faster than others?

Q15 Do you have dinner within two hours before going to bed
more than three times a week?

Q17 Do you skip breakfast more than three times a week?
Q18 How often do you drink alcohol (such as sake, shochu, beer, whisky, etc.)?
Q19 When drinking, how much alcohol do you consume?
Q20 Do you sleep enough?
Q21 Do you want to improve your life style (life habit) such as exercise or eating?

Q22 If you have any chance to get health guidance
on improving your life style (life habit), will you use it?

540 ml,” where arbitrary alcoholic drinks was quantified by converting to sake
containing the same amount of alcohol. Q21 was selected from “I am not plan-
ning on improving,” “I would like to try,” “I am starting,” “I am improving (less
than six months)”, and “I am improving (more than six months).”

3.2 Ethical considerations

Annual medical examinations are conducted along with the Japanese Industry
Safety and Health Act and are performed to facilitate lifestyle change and early
disease diagnosis, which in turn would lower health expenditure and improve
quality of life. This study was reviewed and approved by the ethics review com-
mittee of the authors’ institution and conducted in accordance with the principles
of the Declaration of Helsinki. Written informed consent was obtained from each
participant.
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4 Method

4.1 Target attributes

We used HbA1c and creatinine as target attributes because they are commonly-
used indicators of diabetes and CKD, respectively. We refer to attributes used for
predicting as “features.” They are the inputs to predictive models. In statistical
terms, features are independent variables, and target attributes are dependent
variables.

HbA1c is widely used as a criterion for conducting a diabetes diagnosis. Crea-
tinine is a metabolite created by energy production in muscles, and high amounts
of it are found in patients with CKD. The estimated glomerular filtration rate
(eGFR) is also widely used for the diagnosis of CKD. Because the eGFR can
be computed deterministically from creatinine, age, sex, and race, we aimed at
predicting the amount of creatinine.

4.2 Prediction tasks

The models were trained using features from a single year. Because our dataset
contains health screening records from 2016 to 2020, we selected two years from
2016 to 2020 and used the latter half of the years chosen as the prediction
target. For example, in one experiment, features from 2016 were used to predict
the target attribute in 2020. In another experiment, features from 2017 were
used to predict the target attribute in 2020. For each pair, features from the
earlier year were used to predict the target attribute in the latter year.

To find attributes that contribute in making predictions in different ways,
we conducted two types of experiments: (1) Training with the target attribute,
together with strongly relevant attributes, from earlier years included as features,
and (2) training without the target attribute and strongly relevant attributes
from earlier years removed from features. In the latter type of experiments,
HbA1c, FBS, and status of diabetes mellitus were removed from the attributes
when predicting HbA1c. For predicting creatinine, only creatinine from earlier
years was removed from features.

4.3 Preprocessing

In our dataset, each participant is labeled with one of six possible stages of dia-
betes, namely nothing particular, mild abnormality, follow-up, requires treatment,
requires further testing, and under medical treatment. These stages were defined
by the Japan Society of Ningen Dock4. For predicting HbA1c, we only used data
from participants whose stage in the input year is in nothing particular, mild
abnormality, or follow-up.

When predicting creatinine, we used the eGFR to filter out a number of
participants. To measure the kidneys’ filtering capacity, the eGFR, which is

4https://www.ningen-dock.jp/wp/wp-content/uploads/2018/06/Criteria-category.pdf
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calculated from creatinine and age, is commonly used. We calculated the eGFR
using the following formula 1 defined by the Japanese Society of Nephrology [8].

eGFR = 194× Creatinine−1.094 ×Age−0.287(×0.739 if female) (1)

We used six categories defined by the Kidney Disease: Improving Global
Outcomes (KDIGO) organization [20]. In the six categories, we only used data
from participants whose category in the input year is G1, G2, and G3a (i.e.
eGFR = 45mL/min/1.73m2).

For attributes taking continuous values, we replaced missing values with the
average value. For attributes taking discrete values, a missing value is treated
as an additional category. These methods are commonly used to handle missing
values in data used for training models.

Contradictory samples were removed from the original dataset. Specifically,
we removed the participants who answered no to the question Q2: Using insulin
injection or antidiabetic (hypoglycemic) drug in the output year, despite their
stage being in under medical treatment that year. We assumed they did not
answer the questions correctly and removed them from the dataset.

For HbA1c prediction using preprocessed data, the numbers of participants
by time intervals were 1,410 for four years, 3,159 for three years, 5,281 for two
years, and 7,811 for one year. For creatinine prediction, the numbers of partici-
pants by time intervals were 1,544 for four years, 3,466 for three years, 5,753 for
two years, and 8,540 for one year.

We conducted five-times-five nested cross-validation to compare machine
learning techniques. Namely, we divided the dataset into five folds. For each
training session, we used one fold as a test dataset and the rest for training
and validation. The folds not used for testing were split into five further folds.
Four of them were used for training, and one was used for validation, that is,
hyperparameter optimization. The dataset was split into folds participant-wise.
In other words, no participant is contained in two or more folds.

4.4 Training and interpretation

We trained XGBoost [3] to predict the target attributes. It is known that XG-
Boost shows high performance for tabular data.

For interpretation, we used SHAP, which is based on game theory, to mea-
sure how each attribute contributed as a part of a coalition with other features
in making the prediction correct. We used TreeExplainer [12] to calculate the
SHAP values. There are model-independent methods for calculating SHAP val-
ues, such as Kernel SHAP. However, these methods compute SHAP values by
making many predictions using perturbed input data. Therefore, the combina-
tions become vast as the number of attributes increases and the computation
time becomes longer. In TreeExplainer, SHAP values are calculated on the ba-
sis of the branching information used for prediction by the tree-based model,
enabling fast and accurate calculation.
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We optimized model parameters using the Optuna framework [1]. For each
condition, we repeated training for 100 trials to optimize hyperparameters. In op-
timization, we changed the learning rate, max depth, min child weight, gamma,
colsample by tree, and subsample as hyperparameter in the specified range. the
learning rate is selected from {0.1, 0.01, 0.001}. max depth is selected from {1,
2, 3, 4, 5, 6, 7, 8, 9, 10}. min child weight is selected from {1, 2, 3, 4, 5}. gamma
is selected from {0.0, 0.1, 0.2, 0.3, 0.4}. colsample by tree is selected from { 0.6,
0.7, 0.8, 0.9, 1.0} subsample is selected from {0.6, 0.7, 0.8, 0.9, 1.0}. We trained
XGBoost for 1,000 rounds in each trial. For each method, if the validation root
mean squared error (RMSE) did not improve for 20 rounds, we stopped training.
After training, we selected the model having the highest validation RMSE and
compared the results.

5 Evaluation

5.1 Prediction accuracy

Table 2 shows the RMSE, mean absolute error (MAE), and R2 score for con-
ditions where (1) the target attribute in an earlier year is used as one of the
features and (2) the target attribute in an earlier year is not used as a feature.
When the time interval was longer, all error measures increased. This indicates
that the longer the time interval, the more difficult it is to make predictions.
The graphs also show that errors increase when the target attribute is not used
as a feature.

Table 2. Prediction performance of each condition

target target attribute time interval (year) RMSE MAE R2 score

HbA1c

included

1 0.188 ± 0.006 0.140 ± 0.003 0.709 ± 0.016
2 0.200 ± 0.014 0.144 ± 0.004 0.685 ± 0.030
3 0.233 ± 0.014 0.166 ± 0.005 0.614 ± 0.025
4 0.234 ± 0.027 0.159 ± 0.011 0.603 ± 0.063

not included

1 0.294 ± 0.007 0.226 ± 0.005 0.284 ± 0.029
2 0.304 ± 0.015 0.230 ± 0.007 0.268 ± 0.039
3 0.328 ± 0.019 0.245 ± 0.010 0.232 ± 0.020
4 0.335 ± 0.023 0.245 ± 0.010 0.188 ± 0.052

Creatinine

included

1 0.055 ± 0.001 0.041 ± 0.001 0.876 ± 0.005
2 0.059 ± 0.001 0.044 ± 0.001 0.858 ± 0.011
3 0.062 ± 0.003 0.046 ± 0.002 0.847 ± 0.013
4 0.065 ± 0.003 0.048 ± 0.001 0.838 ± 0.005

not included

1 0.103 ± 0.003 0.080 ± 0.001 0.566 ± 0.007
2 0.104 ± 0.003 0.081 ± 0.002 0.560 ± 0.027
3 0.106 ± 0.003 0.082 ± 0.002 0.551 ± 0.013
4 0.107 ± 0.005 0.082 ± 0.002 0.559 ± 0.024
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5.2 HbA1c included as a feature

We first present the results for when HbA1c from an earlier year is included as a
feature. For example, the amount of HbA1c in 2016 was used to predict HbA1c
in 2020. Because there is a strong correlation between the amounts of HbA1c
measured at two different years, the precision of prediction tends to be much
higher than when not including them as a feature. Such high precision is useful
for practical applications. However, because many predictions are explained by
the amount of HbA1c in the earlier year, it is more difficult to see how other
attributes contribute to making predictions. For this reason, including HbA1c as
a feature might not be an ideal approach for scientific investigation on clarifying
how various attributes affect the aggravation of the disease. Therefore, we also
trained models in which HbA1c from an earlier year was not included as a
feature. Such a model results in a lower prediction accuracy but enables to see
contributing attributes other than HbA1c.

Figure 2a indicates how highly-ranked attributes change over a four-year
period. The attributes are sorted in decreasing order of SHAP. The lines con-
nect the same attributes across the years. The top three attributes (HbA1c,
status of diabetes mellitus, and age) only slightly changed. However, attributes
with lower ranks changed drastically over time. For example, waist circumfer-
ence contributes largely to making predictions for the one-year interval (ranked
8th), but not much for the four-year interval (ranked 21st). In addition, alanine
transaminase does not contribute for a short time interval (ranked 29th for the
one-year interval) but contributes more in a longer time interval (ranked 6th for
the four-year interval).

Figure 3a and 3b indicate the waist circumference and alanine transaminase
for each sample, and the SHAP values corresponding to these values.

Alanine transaminase is one of the leading indicators of liver conditions.
When the liver is in a normal condition, it works as an enzyme. When the liver’s
condition deteriorates, alanine transaminase, working inside the cells, leaks into
the bloodstream, and its amount in the blood increases. Changes in the amount
of alanine transaminase in the blood have been reported to be associated with
diabetes [7, 22].

Among highly contributing attributes are uric acid, Q18, and Q19. Uric acid
is one of the commonly used indicators of kidney function. The amount of uric
acid in the blood increases when the kidneys are unable to filter it out. Causes
for such deficiency are alcohol consumption or decreased kidney function. Q18
and Q19 are questions about the frequency and amount of alcohol consumption.
Excessive drinking places an undue burden on the liver’s ability to break down
alcohol, resulting in a decline in liver function. As the time interval increases,
the rank of uric acid goes up, while those of Q18 and Q19 go down. The fact
that alanine transaminase and uric acid are more contributing in long-term pre-
dictions than in short-term ones may indicate that liver and kidney conditions
have a long-term effect on diabetes. At the time of writing, we are unsure as
to why the rankings of Q18 and Q19 go down over time. It could be because
drinking habits may change over four years while uric acid stays the same.
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year is included as a feature.
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year is not included as a feature.

Fig. 2. Ranking of attributes by SHAP values when predicting HbA1c.
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Fig. 3. Waist circumference, alanine transaminase and SHAP values for each sample
when predicting HbA1c using related attribute from earlier years.
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5.3 HbA1c not included as a feature

Figure 2b indicates the changes in high-ranked attributes. The change in ranking
was nearly the same as the previous results when HbA1c was included as a
feature. One difference is that hemoglobin appears as a high-ranked attribute,
possibly due to its correlation to HbA1c.

For all time intervals, age was ranked highest. Cholinesterase, aspartate
transaminase, and γ-glutamyl transpeptidase followed. It was essentially dif-
ferent from when HbA1c was used as a feature. Cholinesterase is an enzyme
produced by the liver and is one of the indicators of liver function. It is highly
correlated with nutritional status. The fact that diabetes is closely related to
diseases such as a fatty liver may explain why cholinesterase is ranked high.

The attributes that changed their ranks significantly were Q3, Q8, and LDL
cholesterol. Q3 is a question about using cholesterol-lowering drugs, and Q8 is a
question about smoking. Cholesterol-related indices such as Q3 and LDL choles-
terol have a significant relationship with the resultant condition of diabetes.
Aspartate transaminase and γ-glutamyl transpeptidase are enzymes that work
in the liver. These indices also fluctuate in value depending on the abnormalities
of the liver.

These results suggest that attributes related to liver function contribute to
making predictions of HbA1c. This coincides with our knowledge that diabetes
strongly correlates with liver function and sugar in the blood.

5.4 Creatinine included as a feature

1: Creatinine
2: Sex*

3: Fecal occult blood for day 1*
4: Weight
5: Height

6: Albumin
7: Neutral fat

8: Systolic blood pressure
9: Abdominal echo*

10: Uric acid
11: BMI
12: FBS

13: C-reactive protein
14: Cholinesterase

15: HbA1c
16: Diastolic blood pressure

17: Serum abnormalities*
18: Aspartate Transaminase

19: Total cholesterol
20: Age

22: Red blood cell count
23: γ-Glutamyl Transpeptidase

26: Hematocrit
27: White blood cell count

29: Alanine Transaminase

32: Waist circumference
33: Q1*

34: Status of gastric instestinal series*

39: Ophthalmology*

47: Chest X-ray*

1: Creatinine
2: Sex*
3: Height
4: Neutral fat
5: Systolic blood pressure
6: Albumin
7: FBS
8: Aspartate Transaminase
9: Uric acid
10: Weight
11: Cholinesterase
12: HbA1c
13: Age
14: Waist circumference
15: Q1*
16: Abdominal echo*
17: Hematocrit
18: Red blood cell count
19: BMI
20: White blood cell count

22: Serum abnormalities*
23: C-reactive protein
24: Ophthalmology*

26: Diastolic blood pressure
27: Alanine Transaminase
28: γ-Glutamyl Transpeptidase
29: Total cholesterol

31: Chest X-ray*

35: Status of gastric instestinal series*

42: Fecal occult blood for day 1*

1 2 3 4
Time interval (year)

Creatinine / included

(a) The target attribute from an earlier
year is included as a feature.

1: Sex*
2: Uric acid

3: Height
4: Weight

5: Age
6: Abdominal echo*

7: Cholinesterase
8: Fecal occult blood for day 2*

9: FBS
10: γ-Glutamyl Transpeptidase

11: Waist circumference
12: Diastolic blood pressure

13: HbA1c
14: Q17*
15: Q18*

16: Q3*
17: HDL cholesterol

18: Q8*
19: Total cholesterol

20: BMI
21: Red blood cell count

22: Status of gastric instestinal series*

27: LDL cholesterol

30: Urine protein*
31: Q1*

34: Aspartate Transaminase

38: Neutral fat
39: Hemoglobin

43: Ophthalmology*

1: Sex*
2: Height
3: Uric acid
4: Age
5: Cholinesterase
6: Weight
7: FBS
8: Neutral fat
9: Abdominal echo*
10: HbA1c
11: Diastolic blood pressure
12: Q1*
13: Q17*
14: γ-Glutamyl Transpeptidase
15: Red blood cell count
16: Aspartate Transaminase
17: Waist circumference
18: Hemoglobin
19: Total cholesterol
20: BMI

22: LDL cholesterol

24: Status of gastric instestinal series*

27: Q8*

29: HDL cholesterol
30: Ophthalmology*

32: Fecal occult blood for day 2*

36: Q18*
37: Urine protein*

40: Q3*

1 2 3 4
Time interval (year)

Creatinine / not included

(b) The target attribute from an earlier
year is not included as a feature.

Fig. 4. Ranking of attributes by SHAP values when predicting creatinine.
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Figure 4a indicates how highly-ranked attributes change over a four-year
period. The attributes are sorted in decreasing order of SHAP. The lines connect
the same attributes across the years. As expected, creatinine is the top-ranked
attribute. The other contributing attributes were sex, height, weight, albumin,
neutral fat, and FBS. Creatinine is a substance produced by muscles throughout
the body. Its amount increases or decreases depending on muscle mass. It is
logical that sex, height, and weight, which affect muscle mass, are ranked high.
Albumin is a type of protein found in the blood. Because it is produced in the
liver, it represents how well the liver is functioning. If the liver is not working
correctly, the production of albumin decreases. The kidneys filter out albumin,
but if they are not functioning right, they may not be filtered out and run off
into the urine.

There are attributes with significant changes. For example, fecal occult blood
for the day is ranked 3rd in the one-year interval and 4th in the two-year interval.
However, it is ranked below 40th for the three-year and four-year intervals. In
addition, waist circumference goes up from being ranked 32nd (one-year interval)
to 14th (four-year interval), suggesting its long-term effect on CKD.
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Fig. 5. Albumin and SHAP values for
each sample when predicting creatinine
using creatinine from earlier years.
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Fig. 6. Cholinesterase and SHAP values
for each sample when predicting creati-
nine without using creatinine from ear-
lier years.

Figure 5 shows that the SHAP value is higher in the positive direction when
the albumin level is small. In particular, when kidney function deteriorates,
nephrotic syndrome develops, which is a disease in which albumin in the blood
flows out into the urine, decreasing in the amount in the blood. Therefore, the
amount of albumin in the blood is as essential as creatinine when detecting the
changes in kidney function at an early stage.

Waist circumference is also known as abdomen circumference, which increases
due to the accumulation of fat in the gut and under the stomach’s skin as the time
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interval between features and the target attribute lengthens. The ranks of weight
and BMI lower while that of waist circumference rises. Therefore, although one
can estimate the degree of obesity from other indices, waist circumference is
considered a clear indicator of fat accumulation and can represent the degree of
obesity. In contrast, it cannot be defined only by height and weight.

5.5 Creatinine not included as a feature

Figure 4b shows the change of high-ranked attributes. When creatinine was
not included as a feature, gender, height, and weight were ranked similarly as
when creatinine was included. The other highly-ranked attributes were uric acid,
cholinesterase, and abdominal echo. Uric acid and Cholinesterase are indicators
of the function of the liver. Uric acid is also used to represent the level of kidney
healthiness. Like HbA1c, they are also closely related to kidney function. Ab-
dominal echo is an ultrasound examination of the abdominal organs such as the
kidneys, liver, and pancreas. Therefore, it is reasonable that these attributes in-
dicate the status of organs related to renal function and are listed as an essential
attribute in the condition that does not use creatinine to make predictions. In
Figure 6, when cholinesterase is large, the SHAP value decreases. Cholinesterase
increases when the liver condition worsens, for example by having a fatty liver
which is strongly associated with obesity. In addition, there is a strong relation-
ship between obesity and a decrease in total body muscle mass. Therefore, it is
reasonable that cholinesterase has a strong negative correlation with the SHAP
value.

Among medical consultation questions, highly-ranked ones were Q1 and Q17.
Q1 asks about the use of medication to lower blood pressure. Q17 asks about
skipping breakfast three or more times a week. High blood pressure is caused by
irregular sleep and disordered eating habits. Hypertension has a strong effect on
blood vessels and has a significant impact on the kidneys. Therefore, it is logical
that blood pressure status is substantial and contributes to the prediction of the
kidney condition. The fact that diastolic blood pressure was ranked high also
supports this effect.

A healthy diet is one of the essential factors in maintaining good health,
regardless of kidney condition. In addition, breakfast provides the energy needed
for daytime activities and moderates blood sugar fluctuations during the day. It
also indicates the relationship between lifestyle and diet in maintaining kidney
function.

6 Conclusion

We analyzed the time dynamics of relationships between the predictions in our
predictive model and the attributes in health screening data. Overall, the com-
bination of XGBoost and SHAP turned out to be extremely powerful for finding
contributing attributes from health screening data.
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The experiments showed that as the time interval between features and the
target attribute changes, many attributes change their degree of significance.
A number of them matched with our existing knowledge on the mechanism
of diabetes and CKD, but there were also interesting, unexpected observations
that may provide insight to medical researchers. For example, the rank of alanine
transaminase rises as the time interval lengthens, both for predicting HbA1c and
creatinine. This suggests that alanine transaminase is a good early indicator for
the target diseases.

The investigation of time dynamics of interpretations can lead to finding new
relationships between health screening and the progression of diabetes and CKD.
In many cases, the results matched our knowledge regarding diabetes and CKD,
suggesting the effectiveness of using interpretable machine learning to investigate
the underlying mechanisms of diseases.

In this work, we interpreted models that predict future medical states using
health records from a single year as an input. Our current approach cannot
capture how the dynamics over several years affect the medical condition in the
future. For example, our predictive model cannot take into account whether the
patient’s medical test result is deteriorating rapidly in a few years or not. If we
can train predictive models that take health records from several years as input,
we can see the effect of such dynamics on the future outcome. We, therefore,
plan to develop predictive models that take time-series data as input and obtain
interpretations for those models.
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