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Abstract. The search for optimal neural network architecture is a well-
known problem in deep learning. However, as many algorithms have been
proposed in this domain, little attention is given to the analysis of wiring
properties that are beneficial or detrimental to the network performance.
We take a step at addressing this issue by performing a massive evaluation
of artificial neural networks with various computational architectures,
where the diversity of the studied constructions is obtained by basing the
wiring topology of the networks on different types of random graphs. Our
goal is to investigate the structural and numerical properties of the graphs
and assess their relation to the test accuracy of the corresponding neural
networks. We find that none of the classical numerical graph invariants by
itself allows to single out the best networks. Consequently, we introduce a
new numerical graph characteristic, called quasi-1-dimensionality, which
is able to identify the majority of the best-performing graphs.

Keywords: Deep Learning · Artificial Neural Networks · Neural Archi-
tectures · Network Analysis · Image Classification

1 Introduction

Over the recent years many different neural architectures have been proposed,
varying from hand-engineered solutions [23,11,13] to very complicated, auto-
matically generated patterns produced by Neural Architecture Search (NAS)
algorithms [31,15,19,6]. However, in this vast panorama of searching methods and
benchmarking data, little focus is placed upon analyzing what specific structural
properties of the architectures are related to the performance of the network.
Apart from studies revolving around residual connections [25] and the impact
of width or depth of the network [23,29], we still lack an understanding of why
certain wiring topologies work better than others. We believe that addressing
this issue would not only increase our knowledge about deep learning systems but
also provide guidelines and principles for constructing new, better neural network
architectures. Moreover, gathering empirical data linking the graph structure of
the information flow with the performance could contribute nontrivial benchmark
data for the, yet to be developed, theory.
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The aim of this paper is to perform a wide-ranging study of neural network
architectures for which the wiring pattern between the blocks of operations is
based on a variety of random graphs. We focus on analyzing the interrelation
of the structure of the graph with the performance of the corresponding neural
network in an image recognition task. This allows us to address some fundamental
questions for deep neural networks such as to what extent does the performance
of the network depends on the pattern of information flow encoded in its global
architecture. Is the performance basically independent of the structure or can
we identify quantitatively structural patterns which typically yield enhanced
performance? The goal of this work is to identify and analyze the discriminative
features of neural network architectures. We do not aim at constructing, nor
searching for, an optimal architecture.

Another motivation is the observation that artificial neural networks typically
have a quite rigid connectivity structure, yet in recent years significant advances
in performance have been made through novel global architectural changes like
ResNets, [11] or DenseNets [12]. This has been further systematically exploited
in the field of Neural Architecture Search (see [6] for a review). Hence there
is a definite interest in exploring a wide variety of possible global network
structures. On the other hand, biological neural networks in the brain do not
have rigid structures and some randomness is an inherent feature of networks
that evolved ontogenetically [4]. Contrarily, we also do not expect these networks
to be uniformly random [17]. Therefore, it is very interesting to investigate the
interrelations of structural randomness and global architectural properties with
the network’s performance.

To this end, we explore a wide variety of neural network architectures for an
image recognition task, constructed accordingly to wiring topologies defined by
random graphs. This approach can efficiently produce many qualitatively different
connectivity patterns by alternating only the random graph generators [28]. The
nodes in the graph correspond to a simple convolutional computational unit, whose
internal structure is kept fixed. Apart from that, we do not impose any restrictions
on the overall structure of the neural network. In particular, the employed
constructions allow for modeling arbitrary global (as well as local) connectivity.
We investigate a very diversified set of graph architectures, which range from
the quintessential random, scale-free, and small-world families, through some
edge-direction sensitive constructions, to graphs based on fMRI data. Altogether
we conduct an analysis of more than 1000 neural networks, each corresponding
to a different directed acyclic graph3. Such a wide variety of graphs is crucial
for our goal of analyzing the properties of the network architecture by studying
various characteristics of the corresponding graph and examining their impact
on the performance of the model.

We find that among more than 50 graph-theoretical properties tested by us
in this study, none is able to distinguish, by itself, the best performing graphs.
We are able to identify one group of the top graphs by introducing a new
numerical graph criterion, which we refer to as quasi-1-dimensionality. This

3 The code is available at https://github.com/rmldj/random-graph-nn-paper

https://github.com/rmldj/random-graph-nn-paper
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criterion captures graphs characterized by mostly local connections with a global
elongated structure, providing guidelines for beneficial biases in the architectural
design of neural networks.

2 Related Work

Neural Architecture Search. Studies undertaken over the recent years indicate a
strong connection between the wiring of network layers and its generalization
performance. For instance, ResNet introduced by [11], or DenseNet proposed
in [12], enabled successful training of very large multi-layer networks, only by
adding new connections between regular blocks of convolutional operations. The
possible performance enhancement that can be gained by the change of network
architecture has posed the question, whether the process of discovering the
optimal neural network topology can be automatized. In consequence, many
approaches to this Neural Architecture Search (NAS) problem were introduced
over the recent years [6]. Among others, algorithms based on reinforcement
learning [31,2], evolutionary techniques [19] or differentiable methods [15]. Large
benchmarking datasets of the cell-operation blocks produced in NAS have been
also proposed by [29] and extended by [5].

The key difference between NAS approaches an the present work is that
we are not concentrating on directly optimizing the architecture of a neural
network for performance, but rather on exploring a wide variety of random graph
architectures in order to identify what features of a graph are related to good or
bad performance of the associated neural network. Thus we need to study both
strong and weak architectures in order to ascertain whether a given feature is,
or is not predictive of good performance. We hope that our findings will help to
develop new NAS search spaces.

Random Network Connectivity. There were already some prior approaches
which focused on introducing randomness or irregularity into the network con-
nectivity pattern. The work of [21] proposed stochastic connections between
consecutive feed-forward layers, while in [13] entire blocks of layers were ran-
domly dropped during training. However, the first paper which, to our knowledge,
really investigated neural networks on random geometries was the pioneering
work of [28]. This paper proposed a concrete construction of a neural network
based on a set of underlying graphs (one for each resolution stage of the network).
Several models based on classical random graph generators were evaluated on
the ImageNet dataset, achieving competitive results to the models obtained by
NAS or hand-engineered approaches. Using the same mapping, [20] investigated
neural networks based on the connectomics of the mouse visual cortex and the
biological neural network of C.Elegans, obtaining high accuracies on the MNIST
and FashionMNIST datasets.

Although the works discussed above showed that deep learning models based
on random or biologically inspired architectures can indeed be successfully trained
without a loss in the predictive performance, they did not investigate what kind
of graph properties characterize the best (and worst) performing topologies.
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The idea of analyzing the architecture of the network by investigating its graph
structure has been raised in [30]. However, this work focused on exploring the
properties of the introduced relational graph, which defined the communication
pattern of a network layer. Such a pattern was then repeated sequentially to
form a deep model. In addition, [16] have also analyzed machine learning models
with the tools of network science, but their research was devoted to Restricted
Boltzmann Machines.

The main goal of our work is to perform a detailed study of numerical graph
characteristics in relation to the associated neural network performance. Contrary
to [30] we are not concentrating on exploring the fine-grained architecture of a
layer in a sequential network. Instead, we keep the low-level operation pattern
fixed and encapsulated in the elementary computational node. We focus on the
high-level connectivity of the network, by analyzing the graph characteristics of
neural network architectures based on arbitrary directed acyclic graphs.

3 From a Graph to a Neural Network

Fig. 1: The graph to neural network mapping. First, a graph is sampled from a
predefined set of random graph generators. Next, the graph is transformed to a
DAG by selecting a node ordering and enforcing the connections to be oriented
accordingly to that ordering. Such DAG is treated as a blueprint for a neural
network architecture. Nodes with different colors work on different resolutions of
the feature maps. The beige (interstage) edges indicate the connections on which
a resolution reduction is performed. The black edges (intrastage) link nodes that
work within the same resolution. Best viewed in color.

In order to transform a graph into a neural network, we adopt the approach
presented in [28]. In that paper, a graph is sampled from a predefined list of
generators and transformed into a directed acyclic graph (DAG). Next, the DAG
is mapped to a neural network architecture as follows:

The edges of the graph represent the flow of the information in the network and
the nodes correspond to the operations performed on the data. The computation
is performed accordingly to the topological order. In each node, the input from
the ingoing edges is firstly aggregated using a weighted sum. Next, a ReLU –
Conv2d – Batch-Norm block is applied. The result of this procedure is then
propagated independently by each outgoing edge. When the computations leaves
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(a) The node architecture (b) orphan nodes

Fig. 2: (a): The node is represented by the green-shaded area. The black arrows
illustrate the graph edges labeled with the associated weights. The gray arrows
indicate the ordering of the operations performed in the node as well as the
residual connection. (b): The gray nodes (orphan nodes) in the DAG either do
not have an input from previous stages of processing or do not have an output.
Hence we add the red edges from the immediately preceding node or to the
immediately succeeding node.

the last node, a global average pooling is performed, followed by a dense layer
with the number of output neurons equal to the target dimension.

The network nodes are divided into three sets of equal size, referred to as
stages (denoted by different colors in the figures). The first stage operates on the
original input resolution, with the number of channels C being set in the first
(input) node of the graph. The subsequent stages operate on a decreased input
resolution and increased number of output channels by a factor of 2, with respect
to the previous stage. In order to perform the downsampling, on every edge that
crosses two stages the same block of operations as in a standard node is executed,
but with the use of convolutions with stride 2 (when crossing subsequent stages)
or stride 4 (when crossing from the first stage to the last). In the figures in the
present paper, we represent such resolution-changing edges with beige color, and
refer to them as interstage. See Fig. 1 for a visualization of the above described
mapping. We introduce three modifications to this procedure:

Firstly, in [28] there were separate random graphs for each of the three stages of
the neural network. This means that subsequent stages were connected only by one
edge. In our case, we have a random graph for the whole network. Dimensionality
reduction is performed on a graph edge when necessary, by a node with stride 2
or 4 convolution, as described above. In consequence, we do not bias the model
to have a single bottleneck connection between the computations performed on
different spatial resolutions. Moreover, we observe that the introduction of such a
bottleneck generally deteriorates the network performance (we discuss this issue
in Section 6.2).

Secondly, we introduce an additional residual connection from the aggregated
signal to the output of the triplet block in the node. The residual connection
always performs a projection (implemented by a 1×1-convolution, similar to
ResNet C-type connections of [11] — see Figure 2a). The residual skip connection
shifts the responsibility of taking care of the vanishing gradient problem from
edges to the nodes, allowing the global connectivity structure to focus on the
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information flow, with the low-level benefits of the residual structure already
built-in.

Thirdly, we improve the method of transforming a graph into a DAG so
that it automatically takes into account the graph structure. This is achieved
by ordering the nodes accordingly to a 2D Kamada-Kawai embedding [14] and
setting the directionality of an edge from the lower to the higher node number.
Any arising orphan nodes like the ones in Figure 2b are then fixed by adding
a connection from the node with the preceding number or adding a connection
to the node with the succeeding number. We observe that this approach leads
to approximately 2x fewer orphan nodes than the random ordering, and circa
1.5x less than the original ordering returned by the generator, which was used in
[28]. A detailed description of the DAG transformation process together with a
comparison of various node orderings can be found in Appendix B and C.

4 The Space of Random Graphs and DAGs

We performed a massive empirical study of over 1000 neural network architectures
based on 5 graph families and 2 auxiliary constructions. We summarize below
their main characteristics.

– Erdős-Rényi (er) – In this model, given a parameter p ∈ [0, 1], each possible
(undirected) edge arises independently of all the other edges with probabil-
ity p [7]. Small p usually results in sparse graphs, while increasing p increases
also the chance of obtaining a graph with dense connections.

– Barabási-Albert (ba) – Given a set of m initially connected nodes, new nodes
are added to the graph iteratively. In each step, a new node is connected
with at most m other nodes with probability proportional to the nodes’
degrees. The Barabási-Albert model favors the formation of hubs, as the few
nodes with a high degree are more likely to get even more connections in
each iteration. Therefore graphs produced by this model are associated with
scale-free networks [3].

– Watts-Strogatz (ws) – The Watts-Strogatz model starts with a regular ring
of nodes, where each of the nodes is connected to k of its nearest neighbors.
Then, iteratively, every edge (u, v) which was initially present in the graph is
replaced with probability p by an edge (u,w), where the node w is sampled
uniformly at random from all the other nodes. The graphs obtained by this
method tend to have the small-world property [26].

– Random-DAG (rdag) – The models mentioned so far produce undirected
graphs, which need to be later transformed to DAGs. We choose to also study
models produced by an algorithm that directly constructs a random DAG.
An advantage of this algorithm over other existing DAG-generating methods
is that it allows to easily model neural networks with mostly short-range or
mostly long-range connections, which was the main reason for implementing
this construction. This procedure and its parameters are thoroughly explained
in Section 4.1.
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– fMRI based (fmri) – In addition to the above algorithmic generators we also
introduce a family of graphs that are based on resting-state functional MRI
data. We use the network connectomes provided by the Human Connectome
Project [24] obtained from the resting-state fMRI data of 1003 subjects [22].
As input for graph construction, we use the released (z-score transformed)
partial correlation matrix for 50- and 100-component spatial group-ICA
parcellation. We describe in detail the exact method of deriving DAGs from
the fMRI partial correlation matrices in Appendix D. Apart from the number
of nodes, this family has a single thresholding parameter.

Moreover, we considered two auxiliary types of graphs:

– Bottleneck graphs (bottleneck) – For some graphs from the above families, we
introduced a bottleneck between the various resolution stages (see Section 6.2).

– Composite graphs (composite) – We obtained these graphs by maximizing

in a Monte-Carlo simulation the expression
(
log_num_paths
num_nodes

) 1
2 − 2grc −

avg_clustering where grc is the global reaching centrality of the graph. This
construction was motivated by a certain working hypothesis investigated at
an early stage of this work which was later discontinued. Nevertheless, we
kept the graphs for additional structural variety.

For each of the above families, we fix a set of representative parameters4. Then
for every family-parameters pair, we sample 5 versions of the model by passing
different random seeds to the generator. Using this procedure we create 475
networks with 30 nodes and 545 networks with 60 nodes. We train all networks
for 100 epochs with the same settings on the CIFAR-10 dataset5. For each
network, we set the number of initial channels C in order to obtain approximately
the same number of parameters as in ResNet-56 (853k).

4.1 Direct Construction of Random DAGs

In order to study some specific questions, like the role of long-range versus short-
range connectivity, we implement a procedure for directly constructing random
DAGs that allows for more fine-grained control than the standard random graph
generators and is flexible enough to generate various qualitatively different kinds
of graph behaviors. As an additional benefit, we do not need to pass through the
slightly artificial process of transforming an arbitrary undirected graph to DAG.

We present the method in Algorithm 1. We start with N nodes, with a
prescribed ordering given by integers 0, . . . , N − 1. For each node i, we fix the
number of outgoing edges nouti (clearly nouti < N − i). Here we have various
choices leading to qualitatively different graphs. For example, sampling nouti from
a Gaussian and rounding to a positive integer (or setting nouti to a constant)
would yield approximately homogeneous graphs. Taking a long-tailed distribution
4 Refer to Appendix I for a full list.
5 We provide a full description of the training procedure in Appendix A.
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Algorithm 1 Random DAG
1: Input: nodes i = 0, . . . , N − 1,

number of outgoing edges nouti ,
size of a local neighbourhood B,
real α, function f(x)

2: for i = 0 to N − 2 do
3: if node i+ 1 does not have an ingoing connection then
4: make an edge i→ i+ 1
5: end if
6: while not all nouti outgoing edges chosen do
7: Make randomly the edge i→ j with probability pj =

wij∑
k>i wik

8: where the weight wij is given by
9: wij = (noutj )αf

(
b j−iB c

)
10: provided j > i and i→ j does not exist so far
11: end while
12: end for

would yield some outgoing hubs. One could also select the large outgoing hubs
by hand and place them in a background of constant and small nouti .

For each node i we then randomly choose (with weight wij given in Algo-
rithm 1) nodes j > i to saturate the required nouti connections. The freedom in
the choice of weight wij gives us the flexibility of preferential attachment through
the parameter α, and the possibility of imposing local or semi-local structure
through the choice of the weighting function f

(
b j−iB c

)
.

Different choices of f lead to different connectivity structures of the DAG.
An exponential f(x) = exp(−Cx) results in short-range connections and local
connectivity. The power law scaling f(x) = 1/x produces occasionally longer
range connections, while f(x) = 1 does not imply any nontrivial spatial structure
at all. In this work, we investigated all three of the above possibilities. Since we
do not want the integer node labels i or j to be effectively a 1d coordinate, we
define a local neighborhood size B so that differences of node labels of order B
would not matter. This motivates the form of the argument of the weighting
function f(x) ≡ f

(
b j−iB c

)
, where bac denotes the floor of a. In the simulations

we set B = 5 or B = 10.
Through the choice of the function f(.), we can model graphs with varying

proportions of short- to long-range connections with the parameter B defining
the size of the local neighborhood. The choice of multiplicity distribution of nouti

allows to model, within the same framework, a uniform graph, a graph with
power law outgoing degree scaling, or a graph with a few hubs with very high
multiplicity. Finally, the parameter α enables to control preferential attachment
of the connections. Consequently, the algorithm allows to produce DAGs with
diverse architectural characteristics well suited for neural network analysis.

Let us note that the presented procedure is somewhat similar to the latent
position random graph model [1] with graph features Xi = (i, nouti ) and kernel
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(a) (b)

Fig. 3: (a): One of the worst networks with 30 nodes. The worst networks are
typically characterized by sparse connections and long chains of operations. For
more examples of the worst networks see Appendix J. (b): The test accuracy
versus selected network features. We indicate the best (equal or above 93.25%)
models as red, the worst (below 92%) as blue, and the rest as gray. The first
presented feature is the length of the shortest path between the input and the
output node. The second one is the Wiener index [27], and the third is closeness
centrality [8]. All features are rescaled using min-max scaling (For more details
on data processing refer to Appendix F).

κ(Xi, Xj) = (noutj )αf
(
b j−iB c

)
. However, in such a case, the kernel would still

need to be normalized by the weights of all nodes smaller than j, as in line 7 of
Algorithm 1. Moreover, such formulation could produce DAGs with disconnected
components, whereas in our setting we ensure that every node n > 0 has an
incoming connection (see lines 3-4).

5 Results

In this Section, we first exhibit the inadequacy of classical graph invariants to
select the best performing networks and describe the generic features of the worst
networks. Then we introduce a class of well-performing networks (which we call
quasi-1-dimensional or Q1D) and provide their characterization in terms of a
novel numerical graph invariant.

5.1 The Inadequacy of Classical Graph Characteristics

The key motivation for this work was to understand what features of the un-
derlying graph are correlated with the test performance of the corresponding
neural network. To this end, for the analysis, we use 54 graph features, mostly
provided by the networkx library [10] as well as some simple natural ones, like
the logarithm of the total number of paths between the input and output or the
relative number of connections between stages with various resolutions. For a
full list of the features see Appendix F.

It turns out that none of the classical features by itself is enough to isolate
the best-performing networks. However, the worst networks form outliers for
several of the tested graph properties and thus can be more or less identified (see
Figure 3b for a representative example and more plots in the Appendix H).
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5.2 The Worst Networks

As mentioned before, several investigated network features seem to be able to
discriminate the worst networks. In Figure 3b we present a selected set of such
features: the minimal length of a path between the input and output node,
the Wiener index [27], and the closeness centrality [8] of the output node. The
Wiener index is the sum of the lengths of all-pair shortest paths and the closeness
centrality of a node is the reciprocal of the average shortest path distance to that
node.

The above properties show that the worst networks are usually characterized
by long distances between any two nodes in the graph, resulting in long chains of
operations and sparse connections. An example of such a graph is presented in
Figure 3a. In addition, we verified that purely sequential 1d chain graphs (node i
is connected only to node i+ 1) gave indeed the worst performance.

(a) (b)

Fig. 4: (a): The best network with 30 nodes (left), with 60 nodes (center) and
an example of a highly ranked fMRI based network. For more examples of the
best networks see Appendix J. (b): The visualization of the Q1D criterion. The
green triangles indicate graphs without a global elongated structure and the gray
diamonds are used to represented the elongated graphs with bottlenecks. Networks
with Q1D property are drawn as red dots. The black vertical line illustrates the
threshold τ = 0.25. The Q1D criterion for this threshold successfully selects the
best networks from the elongated group.

5.3 The Best Networks

Crucial to our results is the observation that the best networks belonged pre-
dominantly to the Random DAG category with short-range connections (i.e.
exponential f(x)). One generic visual feature of these graphs is that they have
a definite global ordering in the feed-forward processing sequence defining the
1d structure, yet locally there are lots of interconnections that most probably
implement rich expressiveness of intermediate feature representations (see the
first two graphs in Figure 4a). We call such graphs quasi-1-dimensional (quasi-1d
for short). These models have a very large number of paths between the input and



Discovering wiring patterns influencing neural network performance 11

the output. This is, however, not the feature responsible for good performance,
as maximally connected DAGs that have the maximal possible number of paths
do not fall into this category and give worse results (see Figure 8 in Appendix).
In contrast, filament-like, almost sequential models such as some Watts-Strogatz
networks (recall Figure 3a) have in fact significantly worse performance, so
sequentiality by itself also does not ensure good generalization.

We would like to formally characterize these graphs purely in terms of some
numerical graph features without recourse to their method of construction. This
is not a priori a trivial task. This is because one has to be sensitive to the globally
elongated structure. However, the filament-like, almost sequential graphs are
quite similar in this respect, yet they yield very bad performance. So numerical
graph properties which are positively correlated with a stretched topology tend
to have similar or even larger values for the very bad graphs. A condition that
can eliminate the filament-like graphs is nbottlenecks = 0, where a bottleneck edge
is defined by the property that cutting that edge would split the graph into two
separate components.

In order to numerically encode the elongated character of a network, we
perform PCA on the set of node coordinates returned by the Kamada-Kawai
embedding and require a sufficiently anisotropic explained variance ratio. Note
that despite appearances this is a quite complex invariant of the original abstract
graph, as the Kamada-Kawai embedding depends on the whole global adjacency
structure through the spring energy minimization. Hence the nature of the
embedding encodes nontrivial relevant information about the structure of the
graph. We define then the elongation of the network as

pca_elongation = 2 · (variance_ratio− 0.5), (1)

where variance_ratio is the percentage of the variance explained by the compo-
nent corresponding to the largest eigenvalue computed during the PCA decom-
position. Networks with very large pca_elongation tend to have only one main
computational path, while small pca_elongation is associated with graphs with
many global inter-connections. For instance, almost purely sequential graphs have
pca_elongation close to 1.0, while for fully connected DAGs this property is equal
to 0. In order to use this continuous feature to define a discrete class of graphs
with a visible hierarchical structure of the Kamada-Kawai embedding we need to
specify a threshold τ and consider only graphs for which pca_elongation > τ .
Accordingly, we formally define the quasi-1d graphs (Q1D) as satisfying the
condition:

pca_elongation > τ and nbottlenecks = 0, (2)

This condition is visualized in Figure 4b. The first term of the Q1D definition
accounts for networks that have a global one-dimensional order (like the two
first networks in Figure 4a). The second condition eliminates graphs containing
bottlenecks which form the bulk of badly performing elongated graphs (denoted
by gray dots in Figure 4b). In our analysis, we set τ = 0.25, which is a visual
estimate motivated by Figure 4b. This value is of course not set in stone and could
just as well be a bit higher or lower. The rough choice of τ is also corroborated
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Table 1: For each graph family we report in percentage the number of all graphs
having Q1D property, the number of graphs in top-50, the share of the given
family in top-50 and the number of Q1D graphs within the ones present in
top-50, followed by analogous statistics for the graphs in bottom-50. The Q1D
criterion selects almost every best performing rdag and more than half fmri
graphs (fourth column), which are the majority in top-50 (second column). None
of the worst performing graph satisfies the Q1D criterion (last column).

model with Q1D in share in Q1D in share in Q1D
property top-50 top-50 top-50 bot-50 bot-50 bot-50

ba 0.00 4.00 4.00 0.00 0.00 0.00 0.00
bottleneck 0.00 0.67 2.00 0.00 6.67 20.00 0.00
composite 0.00 0.00 0.00 0.00 0.00 0.00 0.00
er 1.33 2.67 4.00 0.00 2.67 4.00 0.00
fmri 32.86 12.86 18.00 55.56 1.43 2.00 0.00
rdag 66.98 13.95 60.00 93.33 0.93 4.00 0.00
ws 7.05 1.36 12.00 16.67 7.95 70.00 0.00

all 19.50 4.90 – 68.00 4.90 – 0.00

by the fact that the Q1D criterion for this threshold is strongly correlated with
performance, as we discuss below.

We find that among the top 50 networks, 68% have the Q1D property.
Moreover, out of the remaining 970 graphs, only 17% are Q1D. A breakdown of
the top-50 and bottom-50 by specific graph families and the Q1D property is
presented in Table 1. One may observe that Q1D successfully selects almost every
of the best performing rdags and half of the fmri graphs (fourth column). Those
two families are also the most representative among the top-50. Furthermore,
none of the graphs in the bottom-50 has the Q1D property (last column).

The Q1D criterion is able to single out one type of the best performing net-
works, being at the same time agnostic about the details of the graph generation
procedure. This is especially important considering the failure of classical graph
features in this regard.

Finally, let us also mention that there are some qualitatively different networks
(see for example the fmri network in Figure 4a) in the fmri class as well as in the
ba class, which achieve good performance. Those networks are often not elongated
(as indicated by several green points with high test accuracy in Figure 4b) and
therefore do not satisfy the Q1D criterion. It seems, however, quite difficult to
identify a numerical characterization that would pick out the best networks from
this category.
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Fig. 5: The CIFAR-10 test accuracy averaged over different versions (random
seeds) of random DAG models with 30 nodes and constant number (2-5) of
output edges nouti . The symbol exp3 stands for exponential weighting function
f(x), pow1 for a power law and one for a constant. It may be observed that the
networks with primarily local connections (exp3 - the first bar in each set) have
the best performance.

6 Impact on Architecture Design

The key components of the Q1D graphs are elongated structure and lack of
bottlenecks. In this section we further analyze the importance of those character-
istics as guidelines in the design of neural network connectivity. We start with a
study of the effect of short- vs. long-range connections in the rdag graphs and
follow with a commentary about the role of many resolution-changing pathways.
Finally, we also perform a comparison of the CIFAR-10 results with results on
CIFAR-100 in order to ascertain the consistency of the identification of the best
and worst-performing network families.

6.1 Long- vs. Short-range Connections

The algorithm for directly generating random DAGs allows for modifying, in a
controllable way, the pattern of long- versus short-range connectivity. This is
achieved by changing the function f(x) from an exponential, leading to local
connections, through a power law, which allows for occasional long-range connec-
tions, to a constant function, which does not impose any spatial order and allows
connections at all scales. The results are presented in Figure 5. We observe that
within this class of networks the best performance comes from networks with
primarily short-range connections and deteriorates with their increasing length.

Fig. 6: The CIFAR-10 (y-axis)
and CIFAR-100 (x-axis) test ac-
curacies. Each datapoint con-
tains results averaged over the
random versions of the models.
The results are strongly corre-
lated, yielding Pearson correla-
tion coefficient equal to 0.868.

This may at first glance seem counter-
intuitive, as skip connections are typically con-
sidered beneficial. However, the effect of long-
range connections which is associated with eas-
ier gradient propagation is already taken care
of by the residual structure of each node in our
neural networks (recall Section 3). One can un-
derstand the deterioration of the network per-
formance with the introduction of long-term
connections as coming from an inconsistency



14 Aleksandra I. Nowak � and Romuald A. Janik

of the network with the natural hierarchical
semantic structure of images. This result leads
also to some caution in relation to physical in-
tuition from critical systems where all kinds of
power law properties abound. The dominance
of short-range over long-range connections is
also consistent with the good performance of
quasi-1-dimensional networks as discussed in
Section 5.3.

6.2 Influence of Bottlenecks

As noted in Section 3, one difference between the networks of [28] and our
construction was that in the former case, there were separate random graphs for
each processing stage of a specific resolution, which were connected with a single
gateway. In our case, we have a single graph, which encompasses all resolutions.
Thus generally there are many independent resolution-reducing edges in the
network instead of a single one. In order to verify whether such a single gateway
between different resolutions is beneficial or not, for a selected set of graphs,
we artificially introduced such a bottleneck by first erasing all inter-resolution
edges. Next, we create a single edge from the last node in the preceding stage
to the first node in the consequent stage and then fixing possible orphans as
in Figure 2b6. We found that, systematically, the introduction of a bottleneck
deteriorates performance (see Figure 8. in Appendix). Hence multiple resolution
reduction pathways are beneficial. Let us note that this result is coherent with our
findings from Section 5.3, where bottleneck edges (also within a single resolution
stage) typically appear in badly performing networks.

6.3 CIFAR-10 versus CIFAR-100 Consistency

In addition to the CIFAR-10 task, we trained all networks with 60 nodes (except
for the bottleneck ablations) on the CIFAR-100 dataset. We used the same
training procedure as the one for CIFAR-10. The motivation for this experiment
was to verify whether the graph families which performed best in the first problem
achieve also high results in the second. Indeed, we observe a significant correlation
0.868 (see Figure 6) between the respective test accuracies (averaged over the 5
random realizations of each graph type). Especially noteworthy is the consistency
between the groups of best and worst graphs for the two datasets.

7 Conclusions and Outlook

We have performed an extensive study of the performance of artificial neural
networks based on random graphs of various types, keeping the training protocol
6 See a visualization of a bottleneck graph in Appendix I
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fixed. One class of networks which had the best performance in our simulations
were networks, which could be characterized as quasi-1-dimensional, having mostly
local connections with a definite 1-dimensional hierarchy in data processing (one
can dub this structure as local chaos and global order). These were predominantly
networks in the rdag family. We also introduced a very compact numerical
characterization of such graphs. It is worth noting, that some of the fMRI-based
graphs were also among the best-performing ones (together with some ws and ba
ones). We lack, however, a clear-cut numerical characterization of these “good”
graphs as there exist graphs with apparently similar structure and numerical
invariants but much worse performance.

Among other structural observations made in this project, we noted that long-
range connections were predominantly negatively impacting network performance.
Similarly, artificially imposing a bottleneck between the processing stages of
various resolutions also caused the results to deteriorate. Thus, a general guideline
in devising neural network architectures which can be formed in consequence
of our study is to prefer networks with rich local connections composed into
an overall hierarchical computational flow, with multiple resolution-reducing
pathways and no bottleneck edges. These characteristics seem to consistently
lead to good performance among the vast panorama of connectivity patterns
investigated in the present paper.
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