
Automatic Feature Engineering through
Monte Carlo Tree Search

Yiran Huang1[0000−0003−3805−1375](�), Yexu Zhou1[0000−0002−8866−7998],
Michael Hefenbrock1[0000−0002−7583−2376], Till Riedel1[0000−0003−4547−1984],
Likun Fang1[0000−0002−5550−3532], and Michael Beigl1[0000−0001−5009−2327]

Telecooperation Office, Karlsruhe Institute of Technology, Karlsruhe, Germany
{yhuang,zhou,hefenbrock,riedel,fang,michael}@teco.edu

Abstract. The performance of machine learning models depends heav-
ily on the feature space and feature engineering. Although neural net-
works have made significant progress in learning latent feature spaces
from data, compositional feature engineering through nested feature trans-
formations can reduce model complexity and can be particularly de-
sirable for interpretability. To find suitable transformations automati-
cally, state-of-the-art methods model the feature transformation space
by graph structures and use heuristics such as ε-greedy to search for
them. Such search strategies tend to become less efficient over time be-
cause they do not consider the sequential information of the candidate
sequences and cannot dynamically adjust the heuristic strategy. To ad-
dress these shortcomings, we propose a reinforcement learning-based au-
tomatic feature engineering method, which we call Monte Carlo tree
search Automatic Feature Engineering (mCAFE). We employ a surro-
gate model that can capture the sequential information contained in
the transformation sequence and thus can dynamically adjust the explo-
ration strategy. It balances exploration and exploitation by Thompson
sampling and uses a Long Short Term Memory (LSTM) based surro-
gate model to estimate sequences of promising transformations. In our
experiments, mCAFE outperformed state-of-the-art automatic feature
engineering methods on most common benchmark datasets.

Keywords: data mining, feature engineering · monte carlo tree search
· reinforce learning.

1 Introduction

In many applications, the success of machine learning is often attributed to the
experience of experts who use not only the best-fitting algorithms but also ex-
tensive domain knowledge. This domain knowledge is often reflected in the pre-
processing of raw data: it is transformed step-by-step so that it can be optimally
processed by an automated machine learning pipeline. Most of this heuristic
search performed by an expert is commonly referred to as feature engineering.
Due to limited human resources but ever-growing computing capabilities, au-
tomating this search process is becoming increasingly attractive.

2 Y. Huang et al.

Feature engineering can be understood as a combinatorial optimization that
attempts to maximize the utility of a subsequent optimization step, i.e., fitting
the model. By employing explicit feature engineering, as opposed to deep learning
(e.g., Long Short Term Memory (LSTM) [10] in [1]), we obtain a tighter control
over the model space.

Furthermore, good feature engineering can increase the robustness (general-
izability to unknown data) and interpretability (predictability of decisions based
on input features) of the overall machine learning architecture.

However, there are several challenges in automatically searching for useful
features made up of sequences of atomic mathematical transformations such as
addition (add), logarithm (log), or a sine function (sin). First, the search space
grows large very quickly, as the number of possible transformation sequences
grows exponentially with their length and the atomic transformations allowed.
Second, evaluating a potentially promising transformation sequence can be time-
consuming, as it requires training and evaluation of a machine learning model.
Both of these features make the search challenging and require methods that
search the space efficiently.

To address these challenges, Cognito [6] models the exploration of the trans-
formation space with a transformation tree and explores the tree with some
handcrafted heuristic traversal strategies such as depth-first, global traversal,
or balanced traversal. Furthermore, the recently proposed reinforcement-based
approach [7] applies a Q-learning algorithm and approximates the Q value with
linear approximation to automate feature engineering.

While these methods achieve good results, our hypothesis is that they can
be significantly improved by addressing two aspects, namely:

– Choice of search hyperparameters and dynamic adaptation of the
heuristic strategy: A serious problem with an approach that relies en-
tirely on guidance is the tendency to fall into local optima. Strategies like
ε-greedy and Upper Confidence Bound (UCB) [17] can mitigate this prob-
lem, however, both need careful tuning of the initial hyperparameters that
also control the dynamic adaptation of their search strategy.

– Sequential information of the composite transformations: New fea-
tures can be transformations of existing features. Such compositions are
sensitive to the order in which the atomic transformations are applied. State
of the art feature engineering methods approximate the performance of a
given transformation sequence with a linear model [7] or a deep convolu-
tional neural network [8], which do not exploit the sequential information
(order) contained in the composite transformation.

To address these shortcomings, we present a novel algorithm called Monte
Carlo tree search for Automatic Feature Engineering (mCAFE). We choose
Thompson sampling as an automatically adjusting selection policy, in combina-
tion with an LSTM network to capture the sequential information in the feature
transformation sequences, while the main structure follows a Monte Carlo Tree
Search (MCTS) [9].

Automatic Feature Engineering through Monte Carlo Tree Search 3

Our contributions can be summarized as 1) we leverage Thompson sampling
to guide the exploration, thus avoiding the parameters initialization and strategy
dynamic adjustment problem. 2) we utilize sequential information of composed
transformations by training an LSTM-based surrogate model for predicting the
expected reward of a transformation sequence to a given dataset. 3) we evaluated
the algorithm on common benchmark datasets (see [7]) and achieved improve-
ments on most of them.

2 Related work

In recent years, a large number of research results have emerged for domain-
specific feature engineering. The work of [2] investigates how to share infor-
mation through feature engineering in multi-task learning tasks, and [3] tries
to find suitable features to improve the class separation. However, less new re-
search has been done on feature engineering applicable to all data types. FC-
Tree, proposed in [12], uses the original and constructed features as the splitting
point to partition the data through a decision tree. It constructs local features
where the local error is high and the features constructed so far are not well
predicted. FEADIS [13] uses a random combination of mathematical functions,
including ceiling, modulus, sin, and feature selection methods to construct new
features. Of these, features are then selected greedily and added it to the orig-
inal features. The Data Science Machine (DSM) [4] applies transformations to
all features at once. Then, feature selection and model optimization are per-
formed on the generated dataset. A similar procedure was also applied in [5].
In contrast, ExploreKit [14] increases the constructed features iteratively. To
overcome the exponential growth of the feature space, ExploreKit uses a novel
machine learning-based feature selection approach to predict the usefulness of
new candidate features. Similarly, Cognito [6] introduced the notion of a tree-like
exploration of the transformation space. Through a few handcrafted heuristics
traversal strategies, such as depth-first and global-first strategy, Cognito can ef-
ficiently explore the set of available transformations. However, several factors,
such as episode budget constraints, are beyond the consideration of the strategy.
As an improvement, a reinforcement learning-based feature engineering method
was proposed in [7] to explore the available feature engineering choices under
a given budget. Finally, LFE [15] considers each feature individually and pre-
dicts the best transformation of each feature through the learning-based method.
However, none of these methods takes the order of the transformations of the
features into account. More recently, a graph-based method was proposed in [8]
that guides the exploration of the transformation space with a deep neural net-
work.

3 Methodology

We model the feature engineering problem as a classic episode-based reinforce-
ment learning problem consisting of an agent interacting with the environment.

4 Y. Huang et al.

The search starts from the initial state representing the original dataset D0 ∈ D,
where D denotes the state space. From D0, a transformation t ∈ T (action) can
be chosen to transform the dataset (all the features contained in the dataset)
according to t. The new state D′ is then obtained by the concatenation of the
data of the old state D with t(D), i.e., D′ = [D, t(D)]. Through this, the new
state contains all information (data) from the previous states, which can be seen
as a Markov property. Finally, for each state D, a machine learning model can be
trained on D to obtain its n fold cross-validation performance. However, since
we seek to obtain the best sequence of length L, we further define a feature
engineering pipeline, as an ordered sequence (t1, · · · , ti, · · · , tL) consisting of L
transformations. The i-th entry of the sequence denotes the decision in the i-
th step, i.e., the transformation to apply to the data in order to generate new
features. Overall, the environment can be summarized with a 3-tuple (D, T , r),
denoting the state space D, the transformation (action) space T and the rewards
r ∈ {0, 1}. The reward thereby expresses whether a transformation pipeline of
length L improved over the best performing model found so far.

Monte-Carlo Tree Search (MCTS) defines a class sampling-based tree search
algorithms used to find optimal decisions in vast search domains and has been
successfully applied to related problems like feature subset selection [25]. To deal
with huge search spaces, MCTS models the search space as a tree structure and
explores the tree iteratively. It gradually favors the most promising regions in
the search tree given an arbitrary evaluation function.

Evidently, our search space of feature transformations can span such a tree,
which allows the application of MCTS to find a feature set that contains features
constructed by an optimal transformation pipeline on the original dataset. We
discuss the construction of the tree in the following, alongside the selection policy
(Thompson sampling) and a surrogate model-based (LSTM) expansion policy.
Finally, we will outline the overall mCAFE algorithm. In contrast to problems
like feature subset selection, the ordering of the nodes inside the tree is of critical
importance in our case.

3.1 The transformation tree

We illustrate the reinforcement task with a transformation tree of maximum
depth L, in which each node represents a state (dataset), each edge represents
an action (transformation) and each path from the root to a leaf node represents
a feature engineering pipeline. Additionally, each edge in the tree is associated
with a distribution, which shows the mean success (reward = 1) probability of
taking the action at its parent state. The nodes in the tree are divided into two
categories: (1) root node D0 is the initial state for each pipeline and represents
the original dataset; (2) derived nodes Di, where i > 0, has only one parent node
Dj , i > j ≥ 0 and the connecting edge responds to the action t ∈ T applied to
the parent node, i.e., Di = [Dj , t(Dj)]. In this way, we translate the feature
engineering problem into a problem of exploring the transformation tree to find
the node that maximizes the expected reward.

Automatic Feature Engineering through Monte Carlo Tree Search 5

Fig. 1. Representation of feature transformation with a tree structure. Here, each node
corresponds to a state D and each edge corresponds to a transformation (action). The
distributions on the edges display the distribution over the mean success (reward = 1)
probability when taking the action in the parent state.

Fig. 1 shows a full transformation tree for a pipeline of L = 2 and two avail-
able actions T = {log, add}. Each node in the tree is a candidate dataset for
the feature engineering problem. For example, the derived nodes D4 and D5,
represent

D4 = {D0, add(D0), log(D0), log(add(D0))} ,
D5 = {D0, log(D0), add(D0), add(log(D0))} .

Note that, although the transformations inD4 andD5 are the same, the resulting
dataset is not identical due to the order in which the transformations are applied.

We can find the optimal node by traversing this tree. However, the complexity
of this task grows exponentially as L and the number of available transforms |T |
becomes larger. Since traversing all possible nodes of the tree is prohibitive,
mCAFE focuses on optimizing the selection policy πs and expansion policy πe
to reduce the number of evaluations required to find a good transformation
sequence.

3.2 The selection policy

The selection policy πs determines the balance between exploration and exploita-
tion. It guides the selection for known parts of the MCTS. The UCB and ε-greedy
are the two most commonly used selection policies, for which also strong theoret-
ical guarantees on the regret1 can be proven. While they have proven successful
in various reinforcement learning settings, they are not ideal for the applica-
tion of feature engineering. This is mainly due to their requirement to explicitly
define the exploration and exploitation trade-off through ε in ε-greedy and λ

1 The amount we lose for not selecting optimal action in each state

6 Y. Huang et al.

in the UCB. Additionally, ε greedy does not adapt the trade-off dynamically
but always pursues ε % exploration. To address these problems, we make use of
the Thompson sampling as the selection policy. In the following, we introduce
Thompson sampling and adapt it to the feature engineering case.

Consider the state space D, the action space T and rewards r ∈ {0, 1}.
Thompson sampling selects an action based on the probability of it being the
optimal action. Representing the set of N observations O = {(r, t,D)}N , where
D ∈ D, t ∈ T , we model the probability of different rewards of each action with
a parametric likelihood distribution p(r|t,D, θ) depending on the parameters θ.
The prior distribution of these parameters is denoted by p(θ). Consequently, the
posterior distribution given a set of observations O can be calculated using Bayes
rule, i.e., p(θ|O) ∝ p(O|θ)p(θ). Thompson sampling implements the selection
policy πs by sampling a parameter θ from the posterior distribution p(θ|O), and
taking the action that maximizes the expected reward. Hence,

πs(D) = argmax
t∈T

E [r|t,D, θ] where θ ∼ p (θ|O) . (1)

Since, in the case of feature engineering, each state D ∈ D satisfies the
Markov property, we can simplify the problem of which action to take on state
D, to whether taking the action t ∈ T leads to a performance improvement.
This can be modeled as a classic Bernoulli bandit problem, where the variable
θ = (θ1, θ2, · · ·) denotes the expected values of a Bernoulli random variable
expressing the probability of taking the selected action in given a state (and
obtaining a reward of one). The distribution of the parameter θt can be modeled
through a beta distribution

p(θt|α, β) = Γ (α+β)
Γ (α)Γ (β)θ

α−1
t (1− θt)β−1,

where Γ is the Gamma function. Γ (α+β)
Γ (α)Γ (β) serves as a normalisation constant that

ensures the integration of the density function over (0,1) is 1. The parameters α
and β control the shape of the distribution and the mean of the distribution is
α

α+β . It denotes the expectation that taking the corresponding action will lead
to performance improvement. The higher α, the larger the mean and therefore
the probability of the action to be selected. On the other hand, the larger β, the
lower the probability.

The beta distribution is conjugate to the Bernoulli distribution (i.e., the
posterior distribution p(θ|O) inherits the functional form the prior distribution
p(θ)). Given an observed sample O = (r, t,D), the posterior distribution of the
parameters θ is given by

θt′ ∼ Beta (α+ 1r=1,t′=t, β + 1r=0,t′=t) , t′ ∈ T . (2)

The parameter α is incremented when the action led to an improvement
in performance. Otherwise, the parameter β is incremented. In this view, α
represents the number of successes in the Bernoulli trial and β represents the
number of failures. Furthermore, the support of the beta distribution is (0, 1),

Automatic Feature Engineering through Monte Carlo Tree Search 7

Fig. 2. The Surrogate network consist of 2 LSTM layers of size 32 and a two fully
connected layers of size 32 with a ReLU activation function.

independent of the parameterization. This ensures that there is always a nonzero
probability for each action to be selected. Consequently, there is always a nonzero
probability to take each path in the tree.

Fig. 1 shows an example of the tree representation. Each edge in the tree
maintains a beta distribution Beta(α, β). By comparing the two transformations
on D0 with the same β, we can see that the higher the value of α the more
the distribution is shifted towards sampling larger values (higher probabilities
of success). In each step, an edge is selected based on the sampling result. This
ensures the priority of high-quality edges while also allowing inferior edges to
be selected occasionally. By using Thompson sampling as the selection policy,
we avoid choosing hyperparameters to balance the exploration and exploitation
trade-off. In contrast, the trade-off is adjusted dynamically through the posterior
distribution of the parameter θ, which is updated along with the observation.
Even though α and β represent hyperparameters, their choice is arguably more
intuitive as α = β = 1 describes a uniform distribution.

The requirement to construct and sample from a beta distribution for each ac-
tion may rise efficiency concerns, as this process is slow compared to an ε-greedy
selection. However, this is not an issue for feature engineering as in each episode,
the selection phase takes little time compared to the other phases of the algo-
rithm. This will be further explored in Section 4 (see Table 1).

3.3 The expansion policy

The selection policy πs guides the selection of actions in parts of the search space
that have been explored. Outside of the explored search space and beyond the
leaves of the MCTS, the expansion policy πe guides the selection of the actions
t. It expands the child nodes to the tree and selects the one with the maximum
expectation reward (Q value) as the next exploration candidate

πe(D) = argmax
t∈T

E [r|t,D, θ]

= argmax
t∈T

Q̂(D, t).
(3)

8 Y. Huang et al.

Fig. 3. The mCAFE framework: each iteration (episode) includes four phases: selection,
expansion, roll-out, back-propagation. B is the number of iterations.

Since the state space D is huge and it is infeasible to calculate the expectation
directly, mCAFE models it with a surrogate network Q̂(D, t) as shown in Fig. 2.
This network takes the selected action t and the action sequence, which was
used to generate the leaf node state D as input, and outputs the expectation
reward of taking this action at the state. Considering the characteristic input
and order information in the sequence, the surrogate network consists of three
parts, namely a binary encoder which takes an action as input and outputs a
binary code, one LSTM layer with a hidden size of 32 to deal with different
lengths of the input sequence and capture their sequential information, and a
fully connected layer with an input size of 32 and ReLU activation function to
map the LSTM output to the expectation.

Since each edge in the tree maintains a beta distribution, we collect training
data from all the existing edges in the tree and update the surrogate model
after each iteration (episode). With the help of the surrogate model Q̂(D, t),
the expansion policy can be defined as selecting the action t that maximizes the
expectation reward predicted by the surrogate model.

3.4 The mCAFE algorithm

The mCAFE applies MCTS to explore the target space, while the selection
policy gradually biases the actions taken towards the more promising regions
of search space in order to find the optimal sequence of actions. It follows the
general MCTS scheme, where the main four phases have been modified as follows
(Fig. 3):

Selection Starting from the root node, mCAFE selects the child node ac-
cording to the selection policy πs iteratively until it reaches a leaf node.

Expansion In a leaf node of the transformation tree, all the available child
nodes are expanded to the tree. One of these nodes is selected to explore accord-
ing to the expansion policy πe.

Roll-out Instead of the performance of the current node, we are interested
in whether the expectation performance of its descendant nodes has been better
than the best performance so far. To achieve this, mCAFE combines the n-folds
cross-validation and the general Roll-out process by the following: Assuming that

Automatic Feature Engineering through Monte Carlo Tree Search 9

Fig. 4. Example of an episode of mCAFE. The beta distributions of the edges in the
selected path are displayed next to the corresponding edge. Blue denotes the distribu-
tion before back-propagation and orange after back-propagation.

the current node is of depth l in the MCTS tree, mCAFE completes the feature
engineering pipeline by sampling L − l transformations from T randomly with
replacement, where L is the predefined length of the pipeline (transformation
sequence). This process is repeated n times to get n different pipelines (transfor-
mation sequences), where n is the number of iterations in n fold cross validation.
A reward of r = 1 is returned if the mean evaluation score of the transformation
sequences is higher, else r = 0.

Back-propagation The reward from the roll-out process is back propagated
along the path from the node selected in the expansion process to the root node
in the tree, updating the parameters α, β in each edge on the path with the
update rule (see Section 3.2).

The algorithm stops after the computational budget is exhausted, e.g. the
algorithm stops when the number of episodes reaches 100 in the experiment.

Fig. 4 shows an example of an episode of the mCAFE algorithm. Starting
from the root node D0, it selects explored nodes according to the selection policy
πs until reaching the leaf node D4. Then an unexplored node D7 is selected and
expanded to the tree according to the expansion policy πe. If the depth of the
current node l (expanded node D7) is smaller than the predefined pipeline length
L (max depth), an action is selected according to the random policy and applied
to the current node to create a new node, which is regarded as the new current
node. This process is repeated until the depth of the new node l is larger than the
pipeline length L. Finally, the current node is evaluated and its reward is back-
propagated, updating the parameters of the beta distributions along the path

10 Y. Huang et al.

from D0 to D7. Since r = 1, the α of all edges along the path are incremented,
while the β remain unchanged. Correspondingly, the beta distribution of each
edge in the path is slightly shifted to the right, and the probability of selecting
the corresponding actions is increased.

4 Evaluation

In this section, we design six different experiments to address the following ques-
tions: 1) How well does the mCAFE approach compare to the state-of-the-art [7]?
2) Is the sampling-based selection policy necessary for the mCAFE algorithm?
3) Is the sequential information of the transformation sequence important for
the prediction of the Q value? 4) Is the surrogate-based expansion policy neces-
sary for the mCAFE algorithm? 5) How should the hyperparameter L (pipeline
length) be chosen in the mCAFE algorithm? 6) How does mCAFE perform for
different predictive models?

For the first five experiments, we use the same benchmarks as [7]. For this,
we tried to reproduce this previous work. Some datasets were removed from the
experiment since either the results of the base model differ considerably from
those in [7], e.g., ’Amazon Employ’ and ’Whine Quality Red’. Additionally, ’Wine
Quality White’, ’Higgs Boson’, ’SVMGuide3’, ’Bikeshare DC’ were removed as
they displayed a different dataset size compared to the one cited in [7]. To
overcome this problem for future work, we published our code and datasets
at https://github.com/HuangYiran/MonteCarlo-AFE.git.

We run the last experiment on the Automatic Machine Learning (AutoML)
benchmark datasets [24]. We keep the same hyperparameter setting as in the
first four experiments for both our work and the baseline.

In the experiments, we use episode budgets instead of time budgets for the
following three reasons. 1) Different from some other optimization tasks, the time
spent on candidate evaluation for feature engineering tasks dominates the overall
time spent. This time is inevitable for all the evaluation-oriented optimization
methods when dealing with feature engineering tasks. Table 1 shows the average
percentage of time taken by the mCAFE for each step in the first 20 episodes. The
roll-out phase, which consist of random transformation selection and candidate
evaluation, takes up an average of 97% of the overall time. 2) The run time varies
greatly across datasets. It is influenced by the size of the data and the sensitivity
of the data to different transformations. 3) The algorithm implementation and
operating environment have a significant impact on the run time.

For the first five experiments, we use the random forest model of the sklearn
package (version 0.24) with default parameters and an episode budget of B = 100
as in [7], in order to make the result more comparable.

We set the pipeline length to L = 4 according to the result of the third exper-
iment and all the beta distributions are initialized with (1, 1) for a uniform prior.
To reduce the computation time, we sub-sample to the dataset with a large num-
ber of data points. For the sub-sampling, up to 104 data points are considered.
To ensure comparability, we did not tune any hyperparameters of the feature

https://github.com/HuangYiran/MonteCarlo-AFE.git

Automatic Feature Engineering through Monte Carlo Tree Search 11

Table 1. Average percentage of time for each process in the first 20 episodes.

Size Time spent in percentage (%)
Dataset Rows Feat. Selection Expansion Roll-out Back-propagation
SpecFact 267 44 0.01 0.04 96.94 3.01
PimaIndian 768 8 0.02 0.05 97.29 2.66
Lymphography 148 18 0.01 0.04 96.98 2.97
Ionosphere 351 34 0.01 0.06 96.37 3.56
AP-omentum-ovary 275 10936 0.01 0.02 98.57 1.40
SpamBase 4601 57 0.01 0.01 98.74 1.24

engineering algorithms to suit a concrete data set or prediction model (which we
changed for the last experiment). Considering the imbalanced datasets, we apply
the F1-score to assess the classification performance and use 1 - RAE (Relative
Absolute Error) as in [7] as the metric for the regression task. All performances
are obtained under 5-folds cross-validation, which also means the parameter n
in roll out process is set to 5.

In the experiment, we used the transformation functions T = { Log, Exp,
Square, Sin, Cos, TanH, Sigmoid, Abs, Negative, Radian, K-term, Difference,
Add, Minus, Product, Div, NormalExpansion, Aggregation, Normalization, Binning
}.

4.1 Performance of mCAFE

We evaluate the improvement of mCAFE algorithm in comparison with the
following methods, namely the original dataset (Base), a Reinforcement-Based
Model (RBM) with discount factor 0.99, learning rate 0.05 and B 100, a tree-
heuristic model (Cognito) with global search heuristic for 100 nodes, random
selection selecting a transformation from the available transformation set and
applying it to one or more features in the original dataset. If the addition of the
new features leads to an improved performance, we keep the new feature. This
process is repeated 100 times to get the final dataset.

We summarized the performance of the methods in Table 2. It can be seen
that, mCAFE achieves the best score in all the regression datasets against the
reinforcement-based model and achieved superior results on most of the classifi-
cation datasets. However, mCAFE performs worse than the reinforcement based
model in two datasets on ’Credit Default’ and ’SpamBase’. Among them, the
difference on ’SpamBase’ is not significant. From these results, we conclude that
the proposed method performs better than the state-of-the-art automatic feature
engineering approaches.

4.2 Ablation study

The proposed selection strategy and extension strategy are the most important
components supporting the performance of the algorithm. To verify their impor-
tance, we designed two ablation experiments.

12 Y. Huang et al.

Table 2. Comparing performance of without feature engineering (Base), reinforcement-
based model (RBM) [7], Cognito [6], random selection and mCAFE in 100 episodes
using 15 open source datasets. Classification (C) tasks are evaluated with F1-score and
regression (R) tasks are evaluated with (1-relative absolute error).

Dataset C/R Rows Feat. Base RBM Cognito Random mCAFE
SpecFact C 267 44 0.686 0.788 0.790 0.748 0.855 ± 0.036
PimaIndian C 768 8 0.721 0.756 0.732 0.709 0.773 ± 0.026
German Credit C 1001 21 0.661 0.724 0.662 0.655 0.764 ± 0.026
Lymphography C 148 18 0.832 0.895 0.849 0.680 0.967 ± 0.016
Ionosphere C 351 34 0.927 0.941 0.941 0.934 0.962 ± 0.014
Credit Default C 30000 25 0.797 0.831 0.799 0.766 0.796 ± 0.006
AP-omentum-ovary C 275 10936 0.615 0.820 0.758 0.710 0.831 ± 0.036
SpamBase C 4601 57 0.955 0.961 0.959 0.937 0.953 ± 0.016
Openml_618 R 1000 50 0.428 0.589 0.532 0.428 0.743 ± 0.015
Openml_589 R 1000 25 0.542 0.687 0.644 0.571 0.776 ± 0.018
Openml_616 R 500 50 0.343 0.559 0.450 0.343 0.622 ± 0.010
Openml_607 R 1000 50 0.380 0.647 0.629 0.411 0.803 ± 0.010
Opemml_620 R 1000 25 0.524 0.683 0.583 0.524 0.765 ± 0.012
Openml_637 R 500 50 0.313 0.585 0.582 0.313 0.637 ± 0.021
Openml_586 R 1000 25 0.547 0.704 0.647 0.549 0.783 ± 0.020

Selection policy We apply the traditional UCB with ε-greedy policy as selec-
tion policy in the mCAFE algorithm (mCAFE-ucb) and compare its performance
with the proposed model, which uses Thompson sampling based selection policy
(mCAFE-ts). The parameter λ of UCB is set to 1.412 as proposed in [23], the
ε is set to 0.1 while the mCAFE algorithm keeps the same setting as the last
experiment. Performance of the classification task is measured with F1-score and
regression task is measured with (1- relative absolute error). Fig. 5 divides the
results of the comparison into four categories. 1) mCAFE-ts gets better result:
the result performance measured is higher than with mCAFE-ucb. 2) mCAFE-
ts is faster: the number of episodes needed to obtain the same result is larger
on MCAFE-ucb. 3) Tie: mCAFE-ucb obtains the same result and requires the
similar number of epochs (difference smaller than 5). 4) mCAFE-ucb gets bet-
ter result: mCAFE-ucb obtains the same results and requires a smaller number
of episodes than mCAFE). The result in Fig. 5 demonstrates the importance
of the selection strategy. mCAFE achieved better performance on 64.7% of the
datasets and tied on 13.3%.

Expansion Policy In the expansion process, we use an LSTM neural network
to approximate the expectation reward (Q value) of taking an action, since
it can capture the sequential information of the transformation sequence. To
prove that this information is important for the Q value prediction, we designed
an experiment to compare the performance of using MLP and LSTM as the
surrogate model in mCAFE.

Automatic Feature Engineering through Monte Carlo Tree Search 13

0 1 2 3 4 5 6 7
Number of datasets

mCAFE-ts gets better result

mCAFE-ts is faster

Tie

mCAFE-ucb gets better result

Fig. 5. Comparing the performance between mCAFE-ucb and mCAFE.

PimaIndian Lymphography AP_omentum-ovary SpamBase
0.00

0.02

0.04

0.06

M
e
a
n
 a

b
s
o
lu

te
 e

rr
o
r

MLP LSTM

Fig. 6. Comparing the performance of MLP and LSTM model in predicting the Q
value.

To make the trained models comparable, the MLP model here contains two
76 dimension hidden layers so that it has a similar number of parameters as the
LSTM surrogate model mentioned above. We use the mean absolute error as
the evaluation criterion. A smaller value indicates a better model. Both models
are trained with 100 epochs. We can see from Fig. 6 that, the LSTM obtains
significantly better results than the MLP model in all datasets.

To evaluate its contribution to mCAFE, we compare the performance of the
following three models, namely mCAFE with LSTM-based expansion policy,
mCAFE with random expansion policy, mCAFE with greedy expansion policy,
which always expand the best action explored.

All three models used the same initial parameters as the last experiment.
Each model is evaluated 10 times on each dataset. The performance of the
models on the regression datasets is displayed with the box plot in Fig. 7.
We can see that mCAFE with neural network achieves best performances on
all datasets except two, where mCAFE with random policy performs better
on dataset ’Openml_618’ and mCAFE with fixed expansion policy performs
better on dataset ’Openml_586’. For all datasets except ’Openml_618’ and
’Openml_586’, mCAFE with neural network expansion policy also loses to
mCAFE with random expansion policy on dataset ’AP-omentum-ovary’.

The main differences between these three expansion approaches are the us-
ages of previous observations and the dispersion of the selected actions. mCAFE
with a fixed expansion policy selects actions greedily according to the perfor-
mance of the actions in the first layer. This selection process is stable, however,
hinders the exploration of new transformations, which is likely the reason for its

14 Y. Huang et al.

Openml_637

Openml_607

Openml_620

Openml_618

Openml_586

Openml_616

Openml_589

Data set

0.6

0.7

0.8

P
e
rf

o
rm

a
n
c
e

LSTM based policy Random policy Greedy policy

Fig. 7. Comparing performance of mCAFE with neural network expansion policy (with
nn), mCAFE with random expansion policy (with random) and mCAFE with fix ex-
pansion policy (with fix) on all the regression dataset. Classification task is evaluated
with F1-score and regression task is evaluated with (1-relative absolute error).

0 1 2 3 4 5 6 7 8
Length of feature engineering pipeline

0.4

0.6

0.8

1.0

P
e
rf

o
rm

a
n
c
e

AP_Omentum_Ovary

dataset_10_lymph

dataset_37_diabetes

openml_586

openml_618

openml_620

Fig. 8. Comparing performance of mCAFE with different maximum pipeline length on
3 classification datasets (F1-score) and 3 regression datasets (1-relative absolute error).

failure in most cases. mCAFE with neural network expansion policy captures the
performance information of previous observation and uses it in the prediction of
the reward expectation of future actions.

4.3 Length of feature engineering pipeline

The length of the feature engineering pipeline L determines the number of actions
selected in each roll-out step, as well as the length of the final transformation
sequence. It influences the performance of mCAFE algorithm not only on the
final result but also on the time and memory consumption. In general, the larger
L, the larger the time and memory consumption and, at the same time, the larger
the number of features after the transformation. To achieve the best results with
limited resources, we conducted an experiment to find a suitable parameter L
by comparing the performance of the algorithm with different L values.

Automatic Feature Engineering through Monte Carlo Tree Search 15

Table 3. The performances of mCAFE with different predictive models on AutoML
benchmark dataset [24]. The improvements brought by the mCAFE are shown in the
parentheses. Classification task is evaluated with F1-score and regression task is eval-
uated with (1-relative absolute error)

B
as
e
pe

rf
or
m
an

ce
P
er
fo
rm

an
ce

w
it
h
m
C
af
e

A
ut
oM

L
be

nc
hm

ar
k
da

ta
se
ts

R
bf
-s
vm

L
in
ea
r-
sv
m

L
in
ea
r
m
od

el
D
ec
is
io
n
tr
ee

R
bf
-s
vm

L
in
ea
r-
sv
m

L
in
ea
r
m
od

el
D
ec
is
io
n
tr
ee

sh
ut
tl
e

0.
90
1

0.
99
6

0.
85
9

0.
99

8
0.
99
6
(0
.0
95
)

0.
99
8
(0
.0
02
)

0.
99
6
(0
.1
37
)

0.
99

8
(0
.0
01
)

ph
pZ

L
gL

9q
0.
40
7

0.
43
2

0.
50

3
0.
45
4

0.
40
7
(0
.0
00
)

0.
43
2
(0
.0
00
)

0.
50

3
(0
.0
00
)
0.
45
4
(0
.0
00
)

ph
py

M
5N

D
4

0.
56
3

0.
84
8

0.
77
5

0.
92

0
0.
75
2
(0
.1
89
)

0.
94
3
(0
.0
95
)

0.
89
3
(0
.1
18
)

0.
95

9
(0
.0
39
)

ph
pv

co
G
8S

0.
47
1

0.
42
6

0.
46
8

0.
57

2
0.
56
1
(0
.0
90
)

0.
57

9
(0

.1
53

)
0.
52
9
(0
.0
61
)

0.
57
8
(0
.0
06
)

ph
pQ

O
f0
w
Y

0.
32
0

0.
38
5

0.
45
7

0.
69

8
0.
62
0
(0
.3
00
)

0.
49
3
(0
.1
08
)

0.
68
2
(0
.2
25
)

0.
69

8
(0
.0
00
)

ph
pn

B
qZ

G
Z

0.
01
6

0.
76

8
0.
70
0

0.
74
7

0.
46
7
(0
.4
51
)

0.
76

8
(0
.0
00
)

0.
76
0
(0
.0
60
)

0.
75
0
(0
.0
03
)

ph
pm

P
O
D
5A

0.
91

9
0.
74
9

0.
86
9

0.
91
2

0.
91

9
(0
.0
00
)
0.
90
8
(0
.1
59
)

0.
90
8
(0
.0
39
)

0.
91
3
(0
.0
01
)

ph
pm

cG
u2

X
0.
93
0

0.
95

3
0.
94
1

0.
85
4

0.
97

0
(0
.0
40
)
0.
95
3
(0
.0
00
)

0.
94
1
(0
.0
00
)

0.
85
4
(0
.0
01
)

ph
pM

aw
T
ba

0.
65
0

0.
58
9

0.
71
6

0.
79

7
0.
80
2
(0
.1
52
)

0.
78
7
(0
.1
98
)

0.
78
7
(0
.0
71
)

0.
82

0
(0
.0
23
)

ph
pk

Ix
sk
f

0.
83
3

0.
76
7

0.
84
7

0.
87

7
0.
88
3
(0
.0
50
)

0.
88
3
(0
.1
16
)

0.
87
0
(0
.0
23
)

0.
89

2
(0
.0
15
)

16 Y. Huang et al.

Fig. 8 shows the relationship between length L and the best performance
displayed by the mCAFE algorithm for six datasets. L = 0 signifies the perfor-
mance of the random forest model on the base dataset. We can see that some
achieve good results with L = 1, however, increasing L can further improve its
performance. Most of the datasets reach the maximum performance with L = 4,
while a small fraction shows a lower performance. This may be due to the ran-
dom selection in the starting process. The performance on ’Dataset_10_lymph’
is worse for higher L, which is probably due to overfitting. From this experiment,
we can conclude that the optimal L depends on the dataset. However, L = 4
should be a suitable choice in most cases.

4.4 Performances of mCAFE on different predictive models

Different predictive models differ in their performance and sensitivity to mCAFE
on the same dataset. To test this conjecture, we tested the performance of
the mCAFE with the following predictive models on the AutoML benchmark
datasets separately, namely Rbf-svm, Linear-svm, Linear model, Decision tree.

Table 3 summarizes the results of the experiment. We can see that mCAFE
brings performance improvements to most of the datasets. The value of feature
engineering is more prominent for linear and svm models. It is worth noting that
although the performance of each model on the original dataset varies greatly,
the performance obtained after mCAFE tends to be close.

5 Conclusion and future work

In this paper, we show that existing automatic feature engineering methods
can be significantly improved by building upon two simple observations. Our
results suggest that feature engineering should make use of sequence information,
incorporating composite transformations into the surrogate model. In addition,
a suitable selection policy should be chosen. The proposed novel MCTS-based
framework uses an LSTM neural network for the expansion policy to explore
the search space efficiently. Furthermore, Thompson sampling is employed to
address the trade-off between exploration and exploitation in the selection policy.
Through this, we manage to obtain superior results to state-of-the-art methods
for automatic feature engineering on the majority of commonly used benchmarks.
We believe that further improvements could be made to the algorithms by adding
transformations that might also reduce redundant and irrelevant feature during
the construction.

6 Acknowledgements

This work was partially funded by the Ministry of The Ministry of Science,
Research and the Arts Baden-Wuerttemberg as part of the SDSC-BW and by
the German Ministry for Research as well as by Education as part of SDI-C
(Grant 01IS19030A)

Automatic Feature Engineering through Monte Carlo Tree Search 17

References

1. Zhou, Y., Hefenbrock, M., Huang, Y., Riedel, T., Beigl, M. Automatic Remaining
Useful Life Estimation Framework with Embedded Convolutional LSTM as the
Backbone. ECML PKDD 2020.Springer, doi:10.1007/978-3-030-67667-4_28

2. Guo, P., Deng, C., Xu, L., Huang, X., Zhang, Y. Deep Multi-task Augmented
Feature Learning via Hierarchical Graph Neural Network. ECML PKDD 2021.
Springer, doi:10.1007/978-3-030-86486-6_33

3. Schelling, B., Bauer, L.G.M., Behzadi, S., Plant, C. Utilizing Structure-Rich Fea-
tures to Improve Clustering. ECML PKDD 2020. Springer, doi:https://doi.org/
10.1007/978-3-030-67658-2_6

4. Kanter, J.M., Veeramachaneni, K. Deep feature synthesis: Towards automating
data science endeavors. DSAA 2015, IEEE, doi:10.1109/DSAA.2015.7344858

5. Lam, H.T., Thiebaut, J.M., Sinn, M., Chen, B., Mai, T., Alkan, O. One button
machine for automating feature engineering in relational databases.arXiv 2017,
doi:10.48550/arXiv.1706.00327

6. Khurana, U., Turaga, D., Samulowitz, H., Parthasrathy, S. Cognito: Automated
feature engineering for supervised learning. ICDMW 2016,IEEE, doi:10.1109/
ICDMW.2016.0190

7. Khurana, U., Samulowitz, H., Turaga, D. Feature engineering for predictive mod-
eling using reinforcement learning. AAAI 2018. PKP, doi:10.1609/aaai.v32i1.
11678

8. Zhang, J., Hao, J., Fogelman-Soulié, F., Wang, Z. Automatic feature en-
gineering by deep reinforcement learning.AAMAS 2019, ACM, ACM DL
10.5555/3306127.3332095

9. Coulom, R. Efficient Selectivity and Backup Operators in Monte-Carlo Tree Search.
CG 2006. Springer, doi:10.1007/978-3-540-75538-8_7

10. Graves, A. Long Short-Term Memory. In: Supervised Sequence Labelling with Re-
current Neural Networks. Studies in Computational Intelligence, vol. 385 (2012).
Springer, doi:10.1007/978-3-642-24797-2_4

11. Markovitch, S., Rosenstein, D. Feature Generation Using General Construc-
tor Functions. Machine Learning, vol. 49, Springer (2002), doi:10.1023/A:
1014046307775

12. Fan, W., Zhong, E., Peng, J., Verscheure, O., Zhang, K., Ren, J., et al. Generalized
and heuristic-free feature construction for improved accuracy. SDM 2010, doi:
10.1137/1.9781611972801.55

13. Dor, O., Reich, Y. Strengthening learning algorithms by feature discovery. Infor-
mation Sciences, vol. 189, Elsevier (2012), doi:10.1016/j.ins.2011.11.039

14. Katz, G., Shin, E.C.R., Song, D. Explorekit: Automatic feature generation and
selection. ICDM 2016, IEEE, https://doi.org/10.1109/ICDM.2016.0123

15. Nargesian, F., Samulowitz, H., Khurana, U., Khalil, E.B., Turaga, D.S. Learning
Feature Engineering for Classification. IJCAI 2017, doi:10.24963/ijcai.2017/
352

16. Gelly, S., Silver, D. Monte-Carlo tree search and rapid action value estimation
in computer Go. Artificial Intelligence, vol. 175(11), Elsevier, doi:10.1016/j.
artint.2011.03.007

17. Auer, P. Using confidence bounds for exploitation-exploration trade-offs. JMLR,
vol. 3 (Nov 2002),ACM DL 10.5555/944919.944941

18. Kocsis, L., Szepesvári, C. Bandit Based Monte-Carlo Planning. In: Fürnkranz,
J., Scheffer, T., Spiliopoulou, M. (eds) Machine Learning: ECML 2006. Springer,
doi:10.1007/11871842_29

https://doi.org/10.1007/978-3-030-67667-4_28
doi:10.1007/978-3-030-67667-4_28
https://doi.org/10.1007/978-3-030-86486-6_33
doi:10.1007/978-3-030-86486-6_33
https://doi.org/https://doi.org/10.1007/978-3-030-67658-2_6
doi:https://doi.org/10.1007/978-3-030-67658-2_6
https://doi.org/https://doi.org/10.1007/978-3-030-67658-2_6
doi:https://doi.org/10.1007/978-3-030-67658-2_6
https://doi.org/10.1109/DSAA.2015.7344858
doi:10.1109/DSAA.2015.7344858
https://doi.org/10.48550/arXiv.1706.00327
doi:10.48550/arXiv.1706.00327
https://doi.org/10.1109/ICDMW.2016.0190
doi:10.1109/ICDMW.2016.0190
https://doi.org/10.1109/ICDMW.2016.0190
doi:10.1109/ICDMW.2016.0190
https://doi.org/10.1609/aaai.v32i1.11678
doi:10.1609/aaai.v32i1.11678
https://doi.org/10.1609/aaai.v32i1.11678
doi:10.1609/aaai.v32i1.11678
https://dl.acm.org/doi/10.5555/3306127.3332095
https://dl.acm.org/doi/10.5555/3306127.3332095
https://doi.org/10.1007/978-3-540-75538-8_7
doi:10.1007/978-3-540-75538-8_7
https://doi.org/10.1007/978-3-642-24797-2_4
doi:10.1007/978-3-642-24797-2_4
https://doi.org/10.1023/A:1014046307775
doi:10.1023/A:1014046307775
https://doi.org/10.1023/A:1014046307775
doi:10.1023/A:1014046307775
https://doi.org/10.1137/1.9781611972801.55
doi:10.1137/1.9781611972801.55
https://doi.org/10.1137/1.9781611972801.55
doi:10.1137/1.9781611972801.55
https://doi.org/10.1016/j.ins.2011.11.039
doi:10.1016/j.ins.2011.11.039
https://doi.org/10.1109/ICDM.2016.0123
https://doi.org/10.1109/ICDM.2016.0123
https://doi.org/10.24963/ijcai.2017/352
doi:10.24963/ijcai.2017/352
https://doi.org/10.24963/ijcai.2017/352
doi:10.24963/ijcai.2017/352
https://doi.org/10.1016/j.artint.2011.03.007
doi:10.1016/j.artint.2011.03.007
https://doi.org/10.1016/j.artint.2011.03.007
doi:10.1016/j.artint.2011.03.007
https://dl.acm.org/doi/10.5555/944919.944941
https://doi.org/10.1007/11871842_29
doi:10.1007/11871842_29

18 Y. Huang et al.

19. Silver, D., Tesauro, G. Monte-Carlo simulation balancing. In Proceedings of the
26th Annual International Conference on Machine Learning, (2009), doi:10.1145/
1553374.1553495

20. Rimmel, A., Teytaud, F. Multiple Overlapping Tiles for Contextual Monte Carlo
Tree Search. EvoApplications 2010. Springer, doi:10.1007/978-3-642-12239-2_
21

21. Fernández-Delgado, M., Cernadas, E., Barro, S., Amorim, D. Do we need hundreds
of classifiers to solve real world classification problems?. JMLR, vol. 15(1), ACM
DL 10.5555/2627435.2697065

22. Helmbold, D. P., Parker-Wood, A. All-Moves-As-First Heuristics in Monte-Carlo
Go. IC-AI 2009, CiteSeer 10.1.1.183.7924

23. Coquelin, P. A., Munos, R. Bandit algorithms for tree search. arXiv preprint 2007,
doi:10.48550/arXiv.cs/0703062

24. Gijsbers, P., LeDell, E., Thomas, J., Poirier, S., Bischl, B., Vanschoren, J. An
open source AutoML benchmark. arXiv preprint 2019, doi:10.48550/arXiv.1907.
00909

25. Gaudel, R. , Sebag, M. Feature selection as a one-player game, ICML 2010, ACM
DL 10.5555/3104322.3104369

https://doi.org/10.1145/1553374.1553495
doi:10.1145/1553374.1553495
https://doi.org/10.1145/1553374.1553495
doi:10.1145/1553374.1553495
https://doi.org/10.1007/978-3-642-12239-2_21
doi:10.1007/978-3-642-12239-2_21
https://doi.org/10.1007/978-3-642-12239-2_21
doi:10.1007/978-3-642-12239-2_21
https://dl.acm.org/doi/10.5555/2627435.2697065
https://dl.acm.org/doi/10.5555/2627435.2697065
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.183.7924
https://doi.org/10.48550/arXiv.cs/0703062
doi:10.48550/arXiv.cs/0703062
https://doi.org/10.48550/arXiv.1907.00909
doi:10.48550/arXiv.1907.00909
https://doi.org/10.48550/arXiv.1907.00909
doi:10.48550/arXiv.1907.00909
https://dl.acm.org/doi/10.5555/3104322.3104369
https://dl.acm.org/doi/10.5555/3104322.3104369

	Automatic Feature Engineering through Monte Carlo Tree Search

