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Abstract. One of the main arguments behind studying disentangled
representations is the assumption that they can be easily reused in dif-
ferent tasks. At the same time finding a joint, adaptable representation
of data is one of the key challenges in the multi-task learning setting.
In this paper, we take a closer look at the relationship between disen-
tanglement and multi-task learning based on hard parameter sharing.
We perform a thorough empirical study of the representations obtained
by neural networks trained on automatically generated supervised tasks.
Using a set of standard metrics we show that disentanglement appears
naturally during the process of multi-task neural network training.
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1 Introduction

Disentangled representations have recently become an important topic in the
deep learning community [12,26,29,35,10]. The main assumption in this problem
is that the data encountered in the real world is generated by few independent
and explanatory factors of variation. It is commonly accepted that such repre-
sentations are not only more interpretable and robust but also perform better
in tasks related to transfer learning and one-shot learning [3,23,37,28].

Intuitively, a disentangled representation encompasses all the factors of vari-
ation and as such can be used for various tasks based on the same input space.
On the other hand, non-disentangled representations, such as those learned by
vanilla neural networks, might focus only on one or a few factors of variations
that are relevant for the current task, while discarding the rest. Such a represen-
tation may fail when encountering different tasks that rely on distant aspects of
variation which have not been captured.

Exploiting prevalent features and differences across tasks is also the paradigm
of multi-task learning. In a standard formulation of a multi-task setting, a model
is given one input and has to return predictions for multiple tasks at once.
The neural network might be therefore implicitly regularized to capture more
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factors of variation than a network that learns only a single task. Based on this
intuition, we hypothesize that disentanglement is likely to occur in the latent
representations in this type of problem.

This paper aims to test this hypothesis empirically. We investigate whether
the use of disentangled representations improves the performance of a multi-task
neural network and whether disentanglement itself is achieved naturally during
the training process in such a setting.

Our key contributions are:

– Construction of synthetic datasets that allow studying the relationship be-
tween multi-task and disentanglement learning.

– Study of the effect of multi-task learning with hard parameter sharing on the
level of disentanglement obtained in the latent representation of the model.

– Analysis of the informativeness of the latent representation obtained in the
single- and multi-task training.

– Inspection of the effect of disentangled representations on the performance
of a multi-task model.

We verify our hypotheses by training multiple models in single- and multi-
task settings and investigating the level of disentanglement achieved in their
latent representations. In our experiments, we find that in a hard-parameter
sharing scenario multi-task learning indeed seems to encourage disentanglement.
However, it is inconclusive whether disentangled representations have a clear
positive impact on the models performance, as the obtained by us results in this
matter vary for different datasets.

Code for our experiments is available at:
https://github.com/gmum/disentanglement-multitask.

2 Related Work

2.1 Disentanglement

Over the recent years, many methods that directly encourage disentanglement
have been proposed. This includes algorithms based on variational and Wasser-
stein auto-encoders [19,13,21,4,39], flow networks [9,38] or generative adversar-
ial networks [8]. The main interest behind disentanglement learning lays in the
assumption that such transformation unravels the semantically meaningful fac-
tors of variation present in the observations and thus it is desired in training
deep learning models. In particular, disentanglement is believed to allow for
informative compression of the data that results in a structural, interpretable
representation, which is easily adaptable for new tasks [3,23,36,24].

Several of these properties have been experimentally proven in applications in
many domains, including video processing tasks [15], recommendation systems
[29] or abstract reasoning [41,40]. Moreover, recent research in reinforcement
learning concludes that disentangling embeddings of skills allows for faster re-
training and better generalization [33]. Finally, disentanglement seems also to be

https://github.com/gmum/disentanglement-multitask
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positively correlated with fairness when sensitive variables are not observed [26].
On the other hand, some empirical studies suggest that one should be cautious
while interpreting the properties of disentangled representations. For instance,
the latest studies in the unsupervised learning domain point that increased dis-
entanglement does not lead to a decreased sample complexity in downstream
tasks [27].

Another key challenge in studying disentangled representations is the fact
that measuring the quality of the disentanglement is a nontrivial task [10,12,19],
especially in a unsupervised setting [27]. This motivates the research on practical
advantages of disentanglement representations and their impact on the studied
problem in possible future applications, which is the main focus of our work in
the case of multi-task learning.

2.2 Multi-task Learning

Multi-task learning aims at simultaneously solving multiple tasks by exploiting
common information [34]. The approaches used predominantly to this prob-
lem are soft [11] and hard [6] parameter sharing. In hard parameter sharing the
weights of the model are divided into those shared by all tasks, and task-specific.
In deep learning, this idea is typically implemented by sharing consecutive layers
of the network, which are responsible for learning a joint data representation.
In soft parameter sharing each task is given a set of separate parameters. The
limitations are then imposed by information-sharing or regularizing the distance
between the parameters by adding an applicable loss to the optimization objec-
tive.

Multi-task learning is widely used in the Deep Learning community, for in-
stance in applications related to natural language processing [25,30], computer
vision [32] or molecular property prediction modeled by graph neural networks
[5]. One may observe that the premises of multi-task and disentanglement learn-
ing are related to each other and thus it is interesting to investigate whether
the joint data representation obtained in a multi-task problem exhibits some
disentanglement-related properties.

3 Methods

In this section, we describe the methods and datasets used for conducting the
experiments.

3.1 Dataset Creation

In order to investigate the relationship between multi-task learning and disen-
tanglement, we require a dataset that fulfills two conditions:

1. It provides access to the true (disentangled) generative factors z from which
the observations x are created.
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Fig. 1: The setting of our experiments. Given a dataset of pairs (x, z) of obser-
vations and their true generative factors, we generate a set of functions h(z)i
which are aimed to approximate real-world supervised tasks. Then, we train a
neural network fφ(x) in a multi-task regression setting on pairs (x,h(z)). After
the training, we investigate the hidden representations learned by fφ and explore
their relation to true factors z.

2. It proposes multiple tasks for a supervised learner by providing labels yi
which non-linearly depend on the true factors z.

The first condition is required in order to measure how well the learned rep-
resentations approximate the true latent factors z. Access to the true factors
allows for full control over the experimental settings and permits a fair com-
parison through the use of supervised disentanglement metrics. Note that even
though unsupervised metrics have been proposed in the literature as well, they
typically yield less reliable results, as we further discuss in section 3.3.

The second condition is needed to train a network on multiple nontrivial
tasks to approximate the real-world setting of multi-task learning.

To our best knowledge, no nontrivial datasets exist that would abide by
both those requirements. Most of the available disentanglement datasets, such
as dSprites, Shapes3D, and MPI3D do fulfill the first condition, as they provide
pairs (x, z) of observations and their true generative factors. However, those
datasets do not offer any type of challenging task on which our model could
be trained. On the other hand, many datasets used for supervised multi-task
learning fulfill the second condition by providing pairs (x, y), but do not equip
the researcher with the latent factors z (ground truth), failing the first condition.

Thus, we aim to create our own datasets which fulfill both conditions by
incorporating nontrivial tasks into standard disentanglement datasets. Since in
multi-task approaches one often tries to solve tens of tasks at once, designing
them by hand is infeasible and as such we decide to generate them automati-
cally in a principled way. In particular, since supervised learning tasks might be
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formalized as finding a good approximation to an unknown function h(x) given
a set of points (x, h(x)), we generate random functions h(z) which are then used
to obtain targets for our dataset (see Figure 1).

We require h(z) to be both nontrivial (i.e. non-linear and non-convex) and
sufficiently smooth to approximate the nature of real-life tasks. In order to find a
family of functions that fulfills those conditions, we take inspiration from the field
of extreme learning, which finds that features obtained from randomly initialized
neural networks are useful for training linear models on various real-world prob-
lems [16]. As such, randomly initialized networks should be able to approximate
these tasks up to a linear operation.

In particular, in order to generate the dataset, we define a neural network
architecture h(z, θ). For this purpose, we used an MLP with four hidden layers
with 300 units, tanh activations, and an output layer which returns a single num-
ber. Then we sample n weight initializations of this network from the Gaussian
distribution θi ∼ N (0, 1), where i ∈ {1, . . . , n}. Each of the networks h(z, θi)
obtained by random initialization defines a single task in our approach. Thus,
for a given dataset D = (x, z) containing observations and their true generative
factors, we obtain a dataset for multi-task supervised learning by applying:

D̃ = {(x,h(z)) | (x, z) ∈ D} = {(x, y)},

where h(z) is a vector of stacked target values for each task, whose element
i is given by h(z)i = h(z, θi).

We use this data as a regression task, i.e. for a given neural network fφ
parameterized by φ the goal is to find:

argmin
φ

∑
(x,y)∈D̃

‖fφ(x)− y‖22.

We use this process to create multi-task supervised versions of dSprites,
Shapes3D, and MPI3D, with 10 tasks for each dataset.

3.2 Models

Multi-task model We investigate the relation between disentanglement and
multi-task learning based on a hard parameter sharing approach. In this setting,
several consecutive hidden layers of the model are shared across all tasks in order
to produce a joint data representation. This representation is then propagated
to separate task-specific layers which are responsible for computing the final
predictions.

In particular, we use a network consisting of a shared convolutional encoder
and separate fully-connected heads for each of the tasks. The encoder learns the
joint representation by transforming the inputs into a d-dimensional latent space.
1 The heads are implemented by 4-layer MLPs with ReLU activations, in order
1 We provide the full model summary in Appendix ??. The architecture of the
encoder follows the one from [1], which adopts the work of [27] for the pytorch
package. We use the implementations from https://github.com/amir-abdi/
disentanglement-pytorch.

https://github.com/amir-abdi/disentanglement-pytorch
https://github.com/amir-abdi/disentanglement-pytorch
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Fig. 2: The model used for multi-task training. The convolutional encoder E(x)
transforms the input data x to a latent representation z̃. The parameters of the
encoder are shared across all tasks. Next, the produced representation is passed
to the task-specific heads, which are implemented by fully-connected networks
(FCN).

to match the capacity of the networks used for task generating functions hi(x).
This overview of the model is illustrated in Figure 2.

Auto-encoder model In the second part of our experiments we want to un-
derstand if disentangled representation provides some benefits for the multi-task
problem. In order to produce disentangled representations, we decided to use
three different representation-learning algorithms: a vanilla auto-encoder, the
(beta)-variational auto-encoder [20,13] and FactorVAE [19].

All these variants of the auto-encoder architecture encompass a similar frame-
work. An auto-encoder imposes a bottleneck in the network which forces a com-
pressed knowledge representation of the original input. In some variants of those
models, we additionally try to constrain the latent variables to be highly in-
formative and independent which further correlates to disentanglement, e.g. in
models like β-VAE and FactorVAE. We use latent representations from these
models to train task-specific heads and evaluate if disentanglement helped to
decrease an error for that task.

The vanilla auto-encoder is also used in Section 4.2, where we add a decoder
with transposed convolutions to pre-trained encoders from Section 4.1. This
treatment is aimed to decode information for particular encoders in the most
efficient way. As such, we find auto-encoders to be a useful tool for investigating
disentanglement.
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3.3 Disentanglement Metrics

Measuring the qualitative and quantitative properties of the disentanglement
representation discovered by the model is a nontrivial task. Due to the fact that
the true generating factors of a given dataset are usually unknown, one may
assume that decomposition can be obtained only to some extent.

Commonly used unsupervised metrics are based on correlation coefficients
which measure the intrinsic dependencies between the latent components. Such
measures are widely used in the independent component analysis [17,18,14,4,39,2].
However, uncorrelatedness does not imply stochastical independence. Further-
more, metrics based on linear correlations may not be able to capture higher-
order dependencies and are often ineffective in large dimensional or in over-
determined spaces. All this makes the use of such unsupervised metrics ques-
tionable.

An alternative solution would be to use supervised metrics, which usually are
more reliable [27]. This is of course only possible after assuming access to the
true generative factors. Such an assumption is rarely valid for real-world datasets,
however, it is satisfied for synthetic datasets. Synthetic datasets present therefore
a reasonable baseline for benchmarking disentanglement algorithms.

Frequently used metrics which use supervision are mutual information gap
(MIG) [7], the FactorVAE metric [19], Separated Attribute Predictability (SAP)
score [22] and disenanglement-completness-informativeness (DCI) [12]. In order
to comprehensively assess the level of disentanglement in our experiments, we
have decided to use all of the above-mentioned metrics to validate our results.
A more detailed description of those metrics is available in Appendix ??.

4 Results and Discussion

In this section, we describe the performed experiments and discuss the obtained
results. For more details on the training regime and experimental setup please
refer to Appendix C.

4.1 Does Hard Parameter Sharing Encourage Disentanglement?

One of the most common approaches to multi-task learning is hard parameter
sharing. The key challenge in this method is to learn a joint representation
of the data which is at the same time informative about the input and can be
easily processed in more than one task. It is therefore tempting to verify whether
disentanglement arises in those representations implicitly, as a consequence of
hard parameter sharing.

In order to investigate this problem we build a simple multi-task model de-
scribed in Section 3.2 and evaluate it on the three datasets discussed in Section
3.1: dSprites, Shapes3D, and MPI3D, each with 10 artificial tasks. After the
training is complete, we calculate each of the disentanglement metrics described
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in Section 3.3 on the latent representation of the input data2. We compare the
obtained results with the same metrics computed for an untrained (randomly
initialized) network and for single-task models. In all the cases we use the same
architecture and training regime. Note that in the single-model scenario we train
a separate model for each of the 10 tasks, which is implemented by utilizing only
one, dedicated head in the optimization process. We train all models three times,
using a different random seed in the parameters initialization procedure. We re-
port the mean results and standard deviations in Figure 3.

Fig. 3: Different disentanglement metrics computed for random (untrained),
single-task and multi-task models evaluated on the three datasets described in
Section 3.1. The higher the value the better. For the single-task scenario, we
report the mean over all task-specific models. Note that in almost every case
the multi-task representations (red bars) outperform the random or single-task
representations (dark-gray bars and light gray bars, respectively). Additionally,
for single-task models, we report the maximal and minimal values over all tasks
to show that the performance on multi-task does not rely on any single ’lucky’
task. For tabulated results please refer to Appendix ??.

We observe that disentanglement metrics computed for the representations
obtained in the multi-task setting are typically significantly better than the
values obtained for single-task or random representations. Note that even the
2 We use the implementations of [27], which are available at https://github.com/
google-research/disentanglement_lib

https://github.com/google-research/disentanglement_lib
https://github.com/google-research/disentanglement_lib


On the relationship between disentanglement and multi-task learning 9

maximum mean result over all ten single-task models is in almost every case
further than one standard deviation from the multitask mean. Moreover, this is
true for all the tested datasets.

Fig. 4: Different disentanglement metrics computed for the multi-task setting
with one head shared between all tasks (one-head) and separate head for every
task (multi-head), evaluated on the three datasets described in Section 3.1. The
higher the value the better. One may observe that multi-head representations
perform better than the ones obtained in the standard, one-head multivariate
regression task. For tabulated results please refer to Appendix ??.

Let us also point out that instead of using separate heads for each of the tasks
in the multi-task model one could simply use one head with the output dimen-
sion equal to the number of tasks and perform standard multivariate regression
(with no parameter sharing). As presented in Figure 4, the latent representa-
tions emerging in such a scenario are less disentangled (in terms of the considered
metrics) than the representations obtained when utilizing hard parameter shar-
ing. However, the achieved values are still better than in single-task models. This
suggests that even though the increase in the metrics may be partially caused
by simply training the network on higher-dimensional targets, the positive in-
fluence of hard parameter sharing cannot be ignored. This advocates in favor
of the hypothesis that multi-task representations are indeed more disentangled
than the ones arising in single-task learning.

4.2 What Are the Properties of the Learned Representations?

The previous section discussed the obtained representations by analyzing quan-
titative disentanglement metrics. Here, we provide more insights into the char-
acteristics of latent encodings.

UMAP embeddings In order to gain intuition behind the differences be-
tween the representations obtained in the previous experiment we compute a
2D-embedding of the latent encodings using the UMAP algorithm [31]. The re-
sults are presented in Figure 5.

The embeddings obtained for the multi-task representations are much more
semantically meaningful, with easily distinguishable separate clusters. Moreover,
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Fig. 5: UMAP embeddings of the latent representations of the Shapes3D test
dataset obtained for different models. Change of the color within one subplot
presents the change in one particular ground truth component. The embeddings
obtained by the multi-task model seem to be most semantically meaningful. See
Appendix ?? for plots for other datasets.

the position and internal structure of the clusters correspond to different values
of the true factors. This cannot be observed for the untrained or single-task
representations, suggesting that the multi-task representations are indeed more
successful in encompassing the information about the real values of the genera-
tive sources of the data.

Latent space traversal Providing qualitative results of the retrieved factors
is a common practice in disentanglement learning [28,21,35,38,27]. In particular,
visual presentation of the interpolations over the latent space allows assessing
— from a human perspective — the informativeness and decomposition of the
obtained representations. Note that such analysis is possible only after adding
and training a suitable decoder network, which maps the retrieved factors back
to the image space.

In our setting, the decoder mirrors the architecture of the encoder (the con-
volutions are replaced by transposed convolutions of the same size — see Ap-
pendix ??). Given the latent representations as an input, the decoder optimizes
the reconstruction error (as measured by MSE) between its outputs and the
original images. We train three separate decoders corresponding to the different
encoders from the previous section — a randomly initialized encoder, an encoder
produced by one of the single-task models, and a multi-task encoder.
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Fig. 6: Reconstructions obtained by the decoders trained on random, single-task,
and multi-task encoding. For reference, we provide the original input images
in the first row. The quality of the reconstruction for the random and single-
task representation is very poor. Contrary, the multi-task encoder provided a
latent space that can be successfully decoded into images that closely resemble
the corresponding examples from the input. Thus, we conclude that the multi-
task representations are more informative about the data and provide better
compression.
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Fig. 7: Traverses over latent variable produced for a given architecture. The same
example was used in all three traverses. The second row of each image shows
how the decoder reconstructed this example in a particular setting. The rest of
the factors come from latent space generated from each encoder. Visualization
of components from the multi-task encoder are sharp and distinguish the gen-
erating factors distinctly. The same cannot be said about the latent factors in
single-task and random encoders, which are blurry and disconnected from any
interpretable ground truth factors. Please refer to Appendix ?? for the results
of the traversals over other datasets.
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First, let us discuss the reconstruction quality achieved by each of the tested
decoders. Results of this experiment are presented in Figure 63. Reconstructions
produced for the multi-task encodings are clearly superior to the ones obtained
for the single-task encodings. In the first case, the resulting images are sharp and
contain almost no noise. In contrast, the single task reconstructions are blurry
and similar to the ones produced for the randomly initialized encoder. We would
like to emphasise that all the decoders used the same architecture and that
during their optimization the parameters of the corresponding encoders were
kept fixed. Therefore the quality of the reconstruction is an important property
of a latent representation, as it allows us to assess the compression capacity of
the representation. From this perspective, the compression obtained in the multi-
task scenario is much more informative about the input than in the single-task
scenario.

Another approach to the visualisation of the latent variables is to perform
interpolations (traversals) in the latent space. We start by selecting a random
sample from the dataset and compute its encoding z̃ ∈ Rd. By modifying one
of the components of vector z̃ from −1 to 1 with 0.1 step and leaving the d− 1
unchanged, we produce a traversal along that particular factor. We repeat this
procedure for all the factors in order to capture their impact on the decoded
example. Results of such traverses for the dSprites dataset are shown in Figure 7.

Note that since the models were not trained directly for disentanglement but
only to solve a supervision task, it is not surprising that the representations are
not as clearly factorized as in specialized methods such as FactorVAE. However,
for the multi-task model, certain latent dimensions still appear to be disentangled
and one can easily spot the difference in quality between the single and multi-
task representations. In the multi-task traversals, we can notice components that
are responsible for the position and scale of a given figure (in Figure 7c, consider
the 5th and 7th factors, respectively). In contrast, the results for single task
representations demonstrate that even a slight change in any of the single latent
dimensions leads to a degradation of the reconstructed examples. As expected,
this effect is even more evident for the random (untrained) representations, where
the corruption over latent factor is even more prevalent than in the case of a
single-task traversal.

4.3 Does Disentanglement Help in Training Multi-task Models?

In the previous sections, we studied whether multi-task learning encourages dis-
entanglement. Here we consider an inverse problem by asking whether using dis-
entangled representation helps in multi-task learning. To investigate this issue,
we train an auto-encoder-based model devised specifically to produce disentan-
gled latent representations without access to the true latent factors. Next, we
freeze its parameters and use the encoder function to transform the inputs. The
obtained latent encodings are then passed directly to the heads of a multi-task

3 Numerical values for reconstruction errors are presented in Appendix ??.
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network which minimizes the average regression loss given the target values of
the artificial tasks.

We consider three different auto-encoder-based algorithms described in Sec-
tion 3.2: a vanilla auto-encoder (AE), a variational auto-encoder (VAE), and the
FactorVAE. The vanilla auto-encoder does not directly enforce latent disentan-
glement during the training. In the VAE model, the prior normal distribution
with identity covariance matrix implies some disentanglement. Finally, Factor-
VAE introduces a new module to the VAE architecture that explicitly induces
informative decomposition. Therefore, the representations obtained for each sub-
sequent model should be also naturally ordered by the level of the achieved
disentanglement. For the exact values of the calculated metrics please refer to
Appendix F. In addition, we also study a scenario in which we explicitly pro-
vide the true source factors. We trained all regression models three times, using
a different random seed in the parameters initialization procedure.

Table 1: RMSE of multi-task networks trained on latent representations obtained
by different auto-encoder-based methods. For comparison, we added the model
trained on ground truth factors. The best results are bolded, and best out of
auto-encoder architectures underlined.

Dataset dSprites Shapes3D MPI3D

Ground Truth 150.235 ± 3.754 72.979 ± 0.193 108.568 ± 0.285

AE 80.062 ± 0.341 114.939 ± 0.160 150.190 ± 0.097
VAE 63.260 ± 0.260 132.072 ± 0.169 194.865 ± 15.61
FactorVAE 91.937 ± 0.199 118.396 ± 0.423 151.646 ± 0.336

Table 1 summarizes the performance of the multi-task model trained on the
representations obtained for the above-discussed methods. Although the repre-
sentations obtained from FactorVAE are better (see, for instance, MIG or DCI
measures in Appendix F) than those from VAE and AE, the encodings pro-
duced by the vanilla AE are the best among the tested, exceeding the others on
Shapes3D and MPI3D and being second on dSprites. Note that these results co-
incide with observations presented in the literature. For example, [27] compared
different models that enforce disentanglement during the training and showed
that even a high value of that property within the factors do not constitute a
better model performance. However, in two out of three datasets, the use of
the ground true factors seems to significantly improve the obtained results. This
may suggest that the representations produced by the considered disentangle-
ment methods are not fully factorized. It is therefore inconclusive whether the
discrepancy between the obtained results is due to the shortcomings of the used
methods or a manifestation of the impracticality of disentanglement.
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5 Conclusions

In this paper, we studied the relationship between multi-task and disentangle-
ment representation learning. A fair evaluation of our hypothesis is impossible
on real-world datasets, without provided ground truth factors. To evaluate our
results we had to introduce synthetic datasets that contain all necessary prop-
erties to be seen as a benchmark in this field. Next, we studied the effects of
multi-task learning with hard parameter sharing on representation learning. We
found that nontrivial disentanglement appears in the representations learned in
a multi-task setting. Obtained factors have intuitive interpretations and corre-
spond to the actual ground truth components. Finally, we inverted the question
and investigated the hypothesis that disentangled representation is needed for
multi-task learning, the results however are not conclusive. We found out that
multi-task models benefit from disentanglement only on specific datasets. How-
ever, we cannot name an indicator of when this unambiguously applies.
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