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Abstract. We study online learning of general convex sets and halfs-
paces on graphs. While online learning of halfspaces in Euclidean space
is a classical learning problem, the corresponding problem on graphs is
understudied. In this context, a set of vertices is convex if it contains all
connecting shortest paths and a halfspace is a convex set whose comple-
ment is also convex. We discuss mistake bounds based on the Halving
algorithm and shortest path covers. Halving achieves near-optimal bounds
but is inefficient in general. The shortest path cover based algorithm is
efficient but provides optimal bounds only for restricted graph families
such as trees. To mitigate the weaknesses of both approaches, we propose
a novel polynomial time algorithm which achieves near-optimal bounds
on graphs that are K2,k minor-free for some constant k ∈ N. In contrast
to previous mistake bounds on graphs, which typically depend on the
induced cut of the labelling, our bounds only depend on the graph itself.
Finally, we discuss the agnostic version of this problem and introduce an
adaptive variant of Halving for k-intersections of halfspaces.

Keywords: online learning · graph convexity · node classification.

1 Introduction

We study online learning of halfspaces and general convex sets on graphs. While
most previous mistake bounds in online learning on graphs are based on the
cut-size, that is, the number of edges with differently labelled endpoints, we
focus on label-independent bounds, which can be computed directly from the
graph itself. Our approach makes small mistake bounds possible even if the
cut-size is large. To achieve that, we assume that the vertices with positive labels
are convex in the graph. Here convex means that the vertex set is connected
and belongs to some intersection-closed hypothesis space. We will focus on the
geodesic convexity defined by shortest paths. In the special case of halfspaces,
where both the positively and negatively labelled vertex sets are convex, we prove
a strong bound given solely by the diameter of the input graph and the size of a
the largest complete bipartite graph K2,m that is a minor of the input graph.

While the problem of online learning halfspaces in Euclidean space is a
classical machine learning problem [34,32], the graph variant of this problem
has not yet been studied. Convexity on graphs is a well-studied topic outside of
the field of machine learning [15,14,33]. However, only recently it was used in
learning problems. Seiffarth et al. [35] initiated the study of node classification
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under the assumption that both classes are geodesically convex, hence halfspaces.
Stadtländer et al. [36] studied a more relaxed version of geodesic convexity
allowing multiple disconnected convex regions, called weak convexity. In a previous
work, we study the active learning version of this problem and have shown near-
tight bounds on the query complexity of learning halfspaces [37]. Bressan et al.
[6] developed bounds for the same problem under additional margin assumptions
and stronger query oracles. While active learning of general convex sets on graphs
is not possible with a sub-linear query bound, as it requires to query the whole
graph already in the case of a single path, non-vacuous mistake bounds in the
online setting can still be achieved, as we will show. Previously, the special case
of learning monotone classes on partially ordered sets has been studied [18,31].
Monotone classes can be seen as halfspaces under the order convexity [38] on
directed acyclic graphs, hence a special case of graph convexity spaces.

2 Background

We introduce necessary concepts in online learning and convexity spaces.

2.1 Online learning

We will focus on the realisable online-learning setting [28]. Given a set X and a
hypothesis space H ⊆ {h(·) | h : X → {−1, 1}}, our learner At knows H and its
strategy might change in each round t ∈ N. It plays the following iterative game
against a potentially adversarial opponent. Any round t has the following steps:

1. opponent picks xt ∈ X;
2. learner predicts At(xt) = ŷt ∈ {−1, 1} as the label of xt;
3. opponent reveals the correct label yt ∈ {−1, 1} to the learner;
4. if ŷt 6= yt the learner makes a mistake;
5. At potentially updates its strategy.

The opponent is forced to play realisable, that is, there is an h ∈ H such that
yt = h(xt) for all t ∈ N. The learner’s predictions ŷt are allowed to be improper,
that is, there is not necessarily a hypothesis in H determining ŷt. Let MA(h)
denote the worst-case number of mistakes an algorithm A makes on any sequence
of points labelled by h ∈ H. The goal is to minimise the worst-case number of
mistakes over all hypotheses MA(H) = max

h∈H
MA(h).

For any given hypothesis space H, a lower bound on the number of mistakes
for any online learning algorithm is given by the Littlestone dimension Ldim(H),
which is the size of the largest mistake tree [28]. It is a combinatorial quantity
similar to the VC dimension VC(H). The Standard Optimal Algorithm (SOA) [28]
achieves the optimal mistake bound Ldim(H) for any finite hypothesis space. In
general, it is intractable as it requires computing Ldim(H′) for multiple H′ ⊆ H
in each step, which is known to be hard [16].
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2.2 Convexity spaces

For a thorough introduction on convexity theory and graph convexity theory we
refer the reader to [38] and [33].

For a set X and a family C ⊆ 2X of subsets, the pair (X, C) is a convexity
space if (i) ∅, X ∈ C, (ii) C is closed under intersection, and (iii) C is closed under
unions of sets totally ordered by inclusion. For finite set systems, property (iii)
always holds. The sets in C are called convex. If a set C and its complement X \C
are convex, both are called halfspaces. We denote by CH ⊆ C the set of halfspaces
of the convexity space (X, C). Note that in general CH is not intersection-closed.
Two disjoint sets A,B are halfspace separable if there exists a halfspace C such
that A ⊆ C and B ⊆ X \ C. Separation axioms characterise the ability of a
convexity space to separate sets via halfspaces.

Definition 1 (Separation axioms [38]). A convexity space (X, C) is:

S1 if each singleton x ∈ X is convex.
S2 if each pair of distinct points x, y ∈ X is halfspace separable.
S3 if each convex set C and points x ∈ X \ C are halfspace separable.
S4 if any two disjoint convex sets are halfspace separable.

If S1 holds the remaining axioms are increasingly stronger, that is, S2 ⇐ S3 ⇐
S4. A mapping σ : 2X → 2X is a convex hull (or closure) operator if for all
A,B ⊆ X with A ⊆ B (i) σ(∅) = ∅, (ii) σ(A) ⊆ σ(B), (iii) A ⊆ σ(A), and
(iv) σ(σ(A)) = σ(A). Any convexity space (X, C) induces a convex hull operator
by σ(A) =

⋂
{C | A ⊆ C ∈ C}. A set A ⊆ X is convex, that is A ∈ C, if

and only if it is equal to its convex hull, A = σ(A). A set H ⊆ X is a hull
set if its convex hull is the whole space, σ(H) = X. For A,B ⊆ X, the set
A/B = {x ∈ X | A ∩ σ(B ∪ {x}) 6= ∅} is the extension of A away from B. For
a, b ∈ X, the extension {a}/{b} is also called a ray a/b. Two disjoint sets A1, A2

form a partition of A ⊆ X if A1 ∪A2 = A. The partition A1, A2 of A is a Radon
partition if σ(A1) ∩ σ(A2) 6= ∅. The Radon number is the minimum number r(C)
such that any subset of X of size r(C) has a Radon partition.

A particular type of convexity is interval convexity. It is given by an interval
mapping I : X × X → 2X such that for all x, y ∈ X, (i) x, y ∈ I(x, y) and
(ii) I(x, y) = I(y, x). I(x, y) is the interval between x and y. We denote I(A) =⋃
a,b∈A I(a, b). A set C in an interval convexity space is convex if and only if

C = I(C). The convex hull is given by σ(A) =
⋃∞
k=1 I

k(A), where I1(·) = I(·)
and Ik+1(·) = I(Ik(·)). Well-known interval convexity spaces are metric spaces
(X, ρ). There, the interval contains all the points for which the triangle inequality
holds with equality: Iρ(x, y) = {z ∈ X | ρ(x, y) = ρ(x, z) + ρ(z, y)}. In Euclidean
space this corresponds to all points on a line segment and leads to the standard
notion of convex sets.

We study convexity spaces induced by graphs. For a graph G = (V,E), a
convexity space (V, C) is a graph convexity space if all C ∈ C are connected
in the graph G. Typically, convex sets in graphs are defined through a set of
paths P in the graph G. The set P could for example consists of all shortest or
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induced paths in G, or all paths up to a certain length. Then one can define the
interval mapping IP(x, y) =

⋃
{V (P ) | P ∈ P has endpoints x and y}, where

V (·) denotes the vertex set of the corresponding graph. The most commonly
studied convexity on graphs is the geodesic convexity (or shortest path convexity)
where P is the set of shortest paths in G. For a connected graph G = (V,E) it is
given by the interval mapping Id, where d : V 2 → R is the shortest path distance
in G. Let x, y ∈ V . For unweighted graphs d(x, y) is the minimum number of
edges on any x-y-path and for graphs with edge weights, w : E → R>0, it is the
minimum total edge weight of any x-y-path. A set of vertices C ⊆ V is, thus,
geodesically convex if and only if C contains every vertex on every shortest path
joining vertices in C, corresponding again to the Euclidean case.

We denote the size of the geodesic minimum hull set in G as h(G) and the
induced subgraph given by a vertex set X ⊆ V (G) as G[X]. The diameter d(G)
of a weighted or unweighted graph G is the maximum number of edges in any
shortest path in G. We denote the treewidth of a graph, which is a measure of
tree-likeness, as tw(G) [3]. Let cbm(G) be the largest integer m such that the
complete bipartite graph K2,m is a minor of G. For n ∈ N, we let [n] = {1, . . . , n}.

3 Learning halfspaces

We start with the online learning of halfspaces, corresponding to the special
case where the positive class and its complement, the negative class are convex.
We start by discussing near-optimal bounds based on the Halving algorithm,
which most likely has no polynomial runtime. After that we show how to use
shortest path covers to get an efficient algorithm achieving near-optimal mistake
bounds only on restricted graph families. We mitigate the weak points of both
approaches by a novel polynomial-time algorithm that achieves near-optimal
bounds on graphs with bounded cbm(G). See Table 1 for an overview on our
resulting bounds.

Table 1: Overview on mistake bounds
halfspaces k-intersection convex sets

Halving O(r(G) log |V (G)|) O(k r(G) log |V (G)|) O(VC(C) log |V (G)|))
tree-based O(cbm(G)2 log d(G)) / /
shortest path cover O(|S∗| log d(G)) O(|S∗| log d(G)) O(|S∗| log d(G))

3.1 Halving

The well-known Halving algorithm is a very simple yet near-optimal approach
to online learning. Let 1{·} be the indicator function and VSt = {h ∈ H | ∀n ∈
[t− 1] : h(xn) = yn} be the version space at round t. The idea is to predict each
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ŷt using the majority vote 1{h̄(xt)≥0}, where h̄ =
∑
h∈VSt

h(xt). That way, on
any mistake, half of the hypotheses in the version space can be discarded. If H is
finite, we can bound the number of Halving’s mistakes M1/2(H) as follows.

Proposition 2 (Angluin [1] and Littlestone [28]). For any hypothesis space
H it holds that

VC(H) ≤ Ldim(H) ≤M1/2(H) ≤ log |H | ≤ 2 VC(H) log |X| .

The last inequality follows from the Sauer-Shela lemma. Note that Halving
achieves the optimal mistake bound Ldim(H) up to the log |X| factor. For the
set of halfspaces CH of a graph convexity space (V, C), it holds that [37]

VC(CH) ≤ r(C) ≤ 2 tw(G) + 1 ≤ 3 tw(G) , (1)

and thus we additionally get the follwing proposition.

Proposition 3. For the set of halfspaces CH of any convexity space (X, C) it
holds that

M1/2(CH) ≤ 2 VC(CH) log |V | ≤ 2r(C) log |V | ≤ 6 tw(G) log |V | .

While Halving achieves a near-optimal mistake bound, it is unclear whether it is
possible to run Halving in polynomial time. In particular, checking whether there
exists any consistent geodesically convex halfspace h ∈ CH for the given partially
labelled graph is NP-hard [35]. It is well-known that for many hypothesis spaces
on graphs, it is hard to compute Halving’s predictions, that is, decide whether
h̄ ≥ 0 [8,21]. This makes an exact polynomial time implementation of Halving
unlikely. However, in the discussion section we will mention possible directions
based on sampling to potentially overcome this problem. If the VC dimension
of the set of halfspaces is bounded, we can run Halving in polynomial time by
enumerating the version space, as long as we can efficiently compute convex hulls.

Theorem 4. For any finite S4 convexity space (X, C), Halving on CH can be
implemented in time O(|X|VC(CH)+2σT ) per step, where σT is the time complexity
to compute convex hulls in (X, C).

Proof. By the Sauer-Shelah lemma, the hypothesis space and hence any version
space has size O(|X|VC(CH)). For any given partially labelled S4 convexity space,
the question whether there exists a consistent hypothesis reduces to the question
whether the convex hulls of the positively and negatively labelled points overlap.
This follows directly from the definition of S4 spaces, as in this case, we can find
a halfspaces separating the two convex hulls.

A naive enumeration of the version space would result in 2|X| such checks. To
achieve an enumeration in time O(|X|VC(CH)+2σT ) we have to be more careful.
We first compute the region of disagreement D, which consists of all x ∈ X such
that there exist consistent h, h′ ∈ CH with h(x) 6= h′(x) in O(|X|σT ) time.
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We will perform the following recursive enumeration. Let x ∈ D. We know
that there exists hypotheses h, h′ consistent with the remaining labelled points
and h(x) 6= h′(x). So, we branch on x by setting its label either to 1 or to −1.
Recursively we recompute the disagreement region for this new set of points
and continue. Any leaf in this recursion tree corresponds to a unique hypothesis
consistent with the original labelled points. Also, as D shrinks in each branching
step by at least one element, the path from root to leaf in the recursion tree has
length at most |X|. In total this gives O

(
|X||X|VC(CH)

)
many recursion steps,

as the number of leaves corresponding to unique hypotheses is bounded by the
size of the hypothesis space. As each branching step takes O(|X|σT ) we achieve
the stated overall runtime. ut

As in the geodesic convexity, convex hulls can be computed in time σT =
O(|V (G)|3) [37], we achieve a polynomial runtime for S4 graphs of bounded
treewidth, because VC(CH) ≤ 3 tw(G) by Equation (1). For non S4 graphs
we can still achieve polynomial time if we can enumerate the version space in
polynomial time. For example, we can enumerate all consistent hypotheses of
bipartite or planar graphs, which are in general not S4 and have unbounded
treewidth, in polynomial time [19] leading to the next result.

Proposition 5. Let G be a planar or bipartite graph and (V (G), C) the geodesic
convexity on G. Halving can be implemented in polynomial time for the hypothesis
space of geodesically convex halfspaces CH on G.

3.2 Shortest path cover based approach

In contrast to the inefficient Halving algorithm, we discuss now a simple and
efficient algorithm achieving optimal bounds only on specific graph families.

To derive a simple upper bound, we note that one immediate consequence of
the halfspace assumption is that any shortest path P can have at most one cut
edge, that is, an edge with differently labelled endpoints. We can follow Gärtner
and Garriga [18] to perform online binary search on a path P if we already know
the labels of its endpoints. In this case, we can predict for any xt ∈ V (P ) the
label of the closer endpoint. That way if we make a mistake we can deduce at
least half of the path’s labels. That means that we will make at most dlog d(G)e
mistakes, as the length of P is at most the diameter |V (P )|− 1 ≤ d(G). Here, log
is the base 2 logarithm. If we do not know the endpoints’ labels, we can apply the
following simple strategy. First we make at most one mistake on the first point
a ∈ V (P ). Then we will predict on any b ∈ V (P ) the same label as a, so that
on mistake we would have two different labelled points on P . By the halfspace
assumption we can infer the labels of all vertices but the a-b sub-path and hence
we are back in the previous case with endpoints with known labels.

Lemma 6. Given any shortest path P in a graph G, there exists a prediction
strategy making at most 2 + log(|V (P )| − 1) mistakes on P .

We can generalise this approach to the whole graph using shortest path
covers [37], which is a set S of shortest paths whose vertices cover the graph:
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P∈S V (P ) = V (G). Performing binary search on each path in S gives our next

mistake upper bound. We call this approach the SPC algorithm SPC(S) based
on a shortest path cover S.

Theorem 7. Let (V, C) be the geodesic convexity space on a graph G = (V,E)
and S a shortest path cover of G. The mistake bound for the SPC algorithm using
a shortest path cover S is

MSPC(S)(CH) ≤ |S|(2 + log d(G)) .

As we can compute an O(log d(G))-approximation S to the minimum shortest
path cover S∗ in polynomial time [37] we get the following result.

Theorem 8. Let (V, C) be the geodesic convexity space on a graph G = (V,E)
and S∗ a minimum shortst path cover of G. There exists a polynomial-time online
learning algorithm, which computes a shortest path cover S such that

MSPC(S)(CH) ≤ O(|S∗|(log d(G))2) .

There exist edge-weighted graph families where the bound of Theorem 7 is
asymptotically tight. For example, we can use the same construction as in [37].

Proposition 9. There exists a family of edge-weighted graphs Gk,` with k, ` ∈ N,
such that Gk,` has a shortest path cover of size k and diameter ` and for any
online algorithm A applied to the geodesically convex halfspaces CH in Gk,` the
mistake lower bound MA(CH) ≥ k log ` holds.

3.3 Efficient algorithms for graphs with bounded cbm(G)

While the previously discussed SPC algorithm is tight on specific graphs, there
exists graphs, where it is arbitrarily bad. For example, on the star graph, which
is a tree T with V (T )− 1 leaves, the minimum shortest path cover S∗ has size
|S∗| ≥ V (T )−1

2 resulting in a mistake bound linear in V (T ), whereas the optimal
strategy makes at most two mistakes. In this section, we mitigate the weakness of
the SPC algorithm and achieve a polynomial time algorithm with a near-optimal
mistake bound on graphs with bounded cbm(G).

Algorithm 1: Tree-based online halfspace learning on graphs
Input: unweighted graph G, with n = |V (G)|

1 compute a Dijkstra shortest path tree T rooted at x1

2 predict ŷ1 = 1 and receive a mistake if ŷ1 6= y1

3 for t ∈ [n] \ {1} do
4 Let P be the root-leaf path in T containing xt
5 Predict ŷt with binary search on P .
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Theorem 10. Let G be an unweighted graph. Algorithm 1 has a O(|V |2) per
step runtime and achieves a mistake bound of O(cbm(G)2 log d(G)) for the class
of geodesically convex halfspaces in G.

Proof. Without loss of generality we can assume that x1 is positive. Correctness
follows immediately by the fact that we are only applying the binary search
strategy to each root-leaf shortest path in T .

By Lemma 6 we will make at most O(log d(G)) mistakes on each such path.
Note however, that we only make mistakes on such a path if its leaf in T is
negative. Otherwise we will just predict positive all the time and do not make
any mistake. We will bound the number of possible leaves in T that can be
negative by O(cbm(G)2) and hence show that only O(cbm(G)2) binary searches
are required, while on all other paths we will not make any mistakes at all.

Let H− ⊆ CH be any negatively labelled geodesically convex halfspace with
x1 /∈ H− and let R+ ⊆ T \H− be the set of vertices that are positive and have
a neighbour in H−. As H− is convex, and hence connected, we can contract all
edges in H− such that only a single vertex h− remains. Additionally, we contract
all edges leading to the R+ vertices from x1 but the ones with endpoints in R+.
This constructions shows that G has a complete bipartite minor K2,|R+| with x1

and h− on the one side and R+ on the other. Hence, |R+| ≤ cbm(G).
We inspect again the original non-contracted G. Let r ∈ R+ and let L− ⊆ H−

be the children of r in T . As r is positive and all vertices in L− are negative, L−
must be a clique in G. Otherwise, the halfspace assumption would be violated
as the shortest path between a, b ∈ L− would go over r. For that, we use the
fact that G is unweighted. Any clique of size f ≥ 3 contains a K2,f−2 and hence
f ≤ cbm(G) + 2. All together this gives O(cbm(G)2) cut edges on T . Note that
there might be more cut edges in G, but the halfspaces is determined by the cut
edges in T . The runtime is given by one run of Dijkstra and the repeated binary
searches on each path. ut

Note that for many graphs, the tree-based approach gives a significantly better
bound than the shortest path cover based algorithm. On any tree the SPC mistake
bound will be linear in the number of leaves, while the tree-based approach will
just perform one binary search resulting in O(log d(G)). Also, for outerplanar
graphs a constant number of binary searches suffice, as cbm(G) ≤ 2 [13].

3.4 Lower bounds

We will use the separation axioms to discuss general mistake lower bounds for
arbitrary graph convexity spaces. Let (V, C) be a graph convexity space. Without
any further assumptions, we have the VC dimension VC(CH) as a lower bound on
the optimal number of mistakes Ldim(CH) as already discussed. For S4 convexity
spaces we have r(C)− 1 = VC(CH) [37] and hence in this case, also the Radon
number is a lower bound on the optimal number of mistakes, r(C)− 1 ≤ Ldim(C).
Interestingly the minimum hull set size h(G) is not a lower bound in general even
though it is a lower bound in the active setting for S3 convexity spaces [37]. For
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example, the star graph T has h(T ) = |V (T )| − 1 but Ldim(CH) = 1. Finally,
in geodesic S2 graph convexity spaces, we can place a cut edge arbitrarily on
any shortest path, hence Ldim(CH) ≥ log d(G). Compared to specific worst-case
graphs, as in Proposition 9, these lower bounds hold in general for any graph, as
long as the graph convexity space satisfies the corresponding separation axiom.

4 Learning general convex sets

Having discussed three different approaches to learn halfspaces on graphs, we
now turn to general convex sets. We discuss Halving and an adapted shortest
path cover based approach for this setting. In the special case of k-intersections
of halfspaces, we discuss an adaptive strategy that does not require to know
k. Let us start with a standard result on intersection-closed hypothesis spaces,
adapted to our graph setting.

Proposition 11 (Horváth and Turán [24]). For any graph convexity space
(V (G), C) on a graph G it holds that

VC(C) = max
C∈C

h(G[C]) .

This immediately shows that the minimum hull set size h(G) is a lower bound on
VC(C) and hence also on Ldim(C). Also, r(C)− 1 is a lower bound on VC(C), as
any set without a Radon partition can be shattered. It is unclear how to compute
maxC∈C h(G[C]) efficiently, as already computing h(G) is APX-hard [11]. We
provide an efficiently computable upper bound. The VC dimension VC(C) of any
convexity space on a graph can be bounded by the VC dimension of the set of all
connected setsHcon⊇ C ofG. The quantity VC(Hcon) is bounded by the maximum
number of leaves `(G) in any spanning tree of G, `(G) ≤ VC(Hcon) ≤ `(G) + 1
[27]. Hence, we achieve the following proposition.

Proposition 12. For any graph convexity space (V (G), C) on a graph G it holds
that

VC(C) ≤ VC(Hcon) ≤ `(G) + 1 .

Computing `(G) is also APX-hard, yet, a near-linear time 3-approximation
algorithm exists [30]. The first inequality of Proposition 12 is tight for specific
convexity spaces: We can take a maximum vertex set A ⊆ V (G) shatterable
by connected sets and define CA = 2A ∪ V (G). The resulting convexity space
(V (G), CA) satisfies `(G) ≤ VC(CA) = VC(Hcon) ≤ `(G) + 1.

By Proposition 2 we directly get that Halving achieves the mistake bound
O(VC(C) log |V (G)|) = O(`(G) log |V (G)|). The next theorem shows that we can
run Halving in polynomial-time if the VC dimension is a constant and convex
hull computations are efficiently possible in (X, C).

Theorem 13. For any finite convexity space (X, C) Halving can be implemented
in time O(|X|VC(C)+1σT ) per step where σT is the time complexity to compute
convex hulls on (X, C).
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To achieve the runtime in Theorem 13, we can use the algorithm of Boley
et al. [5] to enumerate the whole version space in each step. Interestingly, we
can adapt our SPC algorithm to be able to handle convex sets with the same
asymptotic mistake bound.

Theorem 14. Let (V, C) be the geodesic convexity space on a graph G = (V,E)
and S a shortst path cover of G. The mistake bound of the SPC algorithm using
an SPC S is

MSPC(S)(C) ≤ O(|S| log d(G)) .

One can achieve the bound by performing two instead of one binary searches
as soon as one point is known on any particular path. The idea is based on the
same strategy on path covers [18]. We additionally remark that as on any fixed
shortest path we cannot shatter three points, we get an upper bound on the VC
dimension based on shortest path covers.

Proposition 15. The VC dimension of geodesically convex sets in a graph is
upper bounded by the size of the minimum shortest path cover 2|S∗|.

Note that |S∗| ≤ `(G) as any (Dijkstra-based) shortest-path tree with k leaves is
a spanning tree and can be covered with k shortest paths.

4.1 Learning k-intersections of halfspaces

In Euclidean space, any convex set can be represented as an intersection of a
set of halfspaces. As general convex sets in Euclidean space have infinite VC
dimension [25], a common way to bound the complexity is to only look at convex
sets that can be represented as the intersection of k halfspaces. The parameter k
linearly determines the VC dimension [25].

In general, not all convexity spaces have the property that all convex sets are
intersections of halfspaces. Take for example the geodesically convex halfspaces
in the complete bipartite graph K2,3. The graph only has the two halfspaces
(∅, V (K2,3)), while each vertex and edge on its own is convex. This property is
actually exactly captured by the S3 separation axiom.

Proposition 16 (van de Vel [38]). Convex sets in a convexity space (X, C)
can be represented as an intersection of a set of halfspaces if and only if (X, C) is
an S3 convexity space.

For any hypothesis space H define Hk∩ = {h1 ∩ · · · ∩ hk | h1, . . . , hk ∈ H} for
k ∈ N. Let (X, C) be a convexity space and denote its halfspaces as CH . As
X ∈ CH , we have Ck′∩H ⊆ Ck∩H for all k′ ≤ k. Note that, Proposition 16 implies
that for finite S3 convexity spaces there is some k ∈ N such that C = Ck∩H . For any
hypothesis space H, the VC dimension of Hk∩ is bounded by O(k log kVC(H))
[12]. Additionally for finite X we can again use the Sauer-Shelah Lemma and get

VC(Hk∩) ≤ log |Hk∩ | = k log(|H |) = O(k log(|X|VC(H))) = O(kVC(H) log |X|) .

Hence, applying Halving results in the following bound.
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Proposition 17.

M1/2

(
Ck∩H

)
= O(kVC(CH) log min{|X|, k} log |X|)

Applying this to k-intersections of halfspaces in graphs gives:

Theorem 18. Let G = (V,E) be a graph and (V, C) a graph convexity space on
G. Halving achieves the following mistake bound:

M1/2

(
Ck∩H

)
= O(k tw(G) log min{|X|, k} log |X|) .

On S3 graphs we additionally get:

Corollary 19. Let G = (V,E) be a graph and (V, C) an S3 graph convexity space
on G. Let k ∈ N such that C = Ck∩H . Halving achieves the following mistake bound:

M1/2(C) = O(k tw(G) log min{|X|, k} log |X|) .

The two previous bounds for Halving are difficult to use as to the best of our
knowledge there is no obvious way to compute or upper bound k for a given
S3 graph convexity space. Also, the minimum k required to achieve C = Ck∩H is
non-trivial to compute. In this last paragraph of the section, we discuss how to
make Halving adaptive, in the sense that if the target hypothesis C∗ is in Ck′∩H
for some k′ ∈ N which we do not know, we still get a bound linear in k′ instead
of the globally required k. This can be achieved using the standard doubling trick
[10]. It works by assuming that k belongs to {2i−1, . . . , 2i} for i ∈ [dlog ke] and
iteratively applying Halving to the hypothesis space H2i . Each time the whole
hypothesis space H2i is not consistent anymore with the labels seen so far, the i
is increased by one. We call this approach ADA -1/2, for adaptive Halving, and it
achieves the following mistake bound.

Proposition 20. Let H be a hypothesis space such that ∅ = H0 ⊆ H1 ⊆ H2 ⊆
· · · ⊆ H. ADA -1/2 achieves the following bound if the target hypothesis H is in
Hk for some unknown k ∈ N:

MADA -1/2(H) ≤
∑

i∈[dlog ke]

log |H2i \H2i−1 | .

Applied to k-intersections of halfspaces in graphs we achieve:

Corollary 21.

MADA -1/2(Hk∩) = O(k tw(G) log min{|X|, k} log |X|) .

The additional constant factor to achieve the adaptive variant is negligible
compared to standard Halving on the set of all convex sets C, where the required
number of halfspaces k could be even linear in |X|, for example, on a star graph.
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5 Discussion

We discuss efficiency aspects of Halving and how to generalise it to the agnostic
case. We compare our results to previous bounds in online learning on graphs
and show how we can use the closure algorithm in our setting.

Efficient Halving by sampling All discussed Halving based algorithms in
this paper are in general not efficient. In particular, computing the weighted
majority vote is in many cases hard. One possible way around this issue is to use
the randomised version of Halving. It samples a consistent hypothesis uniformly
at random and uses it for prediction of the current point xt. This simple strategy
RAND -1/2 is already enough to achieve the Halving bound in expectation.

Proposition 22 (Littlestone and Warmuth [29]).

E[MRAND -1/2(H)] ≤ ln |H | .

Thus, if we can sample uniformly at random from the version space we achieve
Halving’s bound in expectation. As a simple example, let us compare Halving
and Rand-Halving on the simple learning problem of halfspaces on a path P .
Standard Halving enumerates the whole version space of size O(|V (P )|), while
Rand-Halving only needs to sample a number in [|V (P )|], which can be achieved
with O(log |V (P )|) random binary draws; an exponential increase. However in
general, sampling uniformly at random from a version space is a non-trivial
task. Boley et al. [4] and Ganter [17] discuss sampling general convex sets in the
context of frequent pattern mining and formal concept analysis. Nevertheless,
their results are also applicable in our context. [4] shows that in general it is hard
to sample a convex set uniformly at random, which corresponds to sampling a
consistent convex hypothesis. Under additional assumptions they construct a
Markov chain with polynomial mixing time and also discuss various practically
efficient heuristics. Applying these techniques in our context is future work. A
potential way to overcome the hardness might be to approximate sample, that is,
only close to uniform, which still would provide an O(log |H |) bound.

Agnostic online learning In the agnostic version of the problem, we drop the
realisability assumption, hence the opponent is allowed to use arbitrary labels
yt for t ∈ [T ] for some T ∈ N. In this more general online learning model it
is essentially hopeless to bound the number of mistakes, as the opponent can
always set yt 6= ŷt. Because of that, typically the regret is studied instead in
agnostic online learning. The regret for any particular sequence x1, x2, . . . of an
randomised algorithm A with predictions At(xt) = ŷt is

RA(H) = E

 max
x1,...,xT

∑
t∈[T ]

1{ŷt 6=yt} −min
h∈H

∑
t∈[T ]

1{h(xt) 6=yt}

 ,
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where the expectation is taken over the random predictions of the algorithm A.
Hence, we compare the performance of algorithm A with the best fixed hypothesis
from a given hypothesis space H in hind-sight.

Ben-David and Pál [2] have proven that there exists an algorithm A achiev-
ing the optimal regret RA(H) ≤

√
1/2 ln(|H |)T . This means that if we let

{x1, . . . , xT } = V for some graph G = (V,E) we get the regret bound RA(H) ≤√
1/2 ln(|H |)|V | if each vertex xi appears only once. Note that in the realisable

case we achieved bounds O(log |V |) (not considering other parameters), while
here in the agnostic case we get O(

√
|V |). If we can expect that there is some

hypothesis in H that performs rather well, say

min
h∈H

∑
t∈[T ]

1{h(xt)6=yt} ≤M
?

for some known M? ∈ N, we can significantly improve the bound to

RA(H) ≤
√

2M? Ldim(H) + Ldim(H) .

For small M? this asymptotically matches the realisable bound. By using the
standard doubling trick [10] we can achieve almost the same bound without
knowing M?. This bound allows learning in the following special case. Assume
the target hypothesis h∗ is a vertex set that is a positive convex set but with at
most M? labels flipped to negative. That is, there exists h ∈ C which predicts
everywhere positive where h∗ predicts positive, but can additionally predict at
up to M? many points positive, where h∗ is negative. Let CM? be this space
of noisy convex sets containing each set C ∈ C with all possible at most M?

label flips. That is |CM? | = O(|C||X|M?

). Applying adaptive Halving achieves a
mistake bound similar to the the regret-based analysis:

MADA -1/2(CM?) = O((VC(C) +M?) log |X|) .

5.1 Comparison to cut-based learning

Common bounds in online learning on graphs do not make any hypothesis-space-
based assumption and instead depend on the cut-size ΦG(y) =

∑
v,w∈E(G) 1{y(v)6=y(w)}

of the labelling y. Let H̃c be the hypothesis space of labellings with bounded
cut-size ΦG(y) ≤ c. The VC dimension of H̃c can be bounded linearly by c,
VC(H̃c) ≤ 2c+ 1 [26]. By applying Halving to this hypothesis space we get the
bound O(c log |V |) [22]. Again, we can use the doubling trick to get the same
bound without knowing the correct value of c.

Proposition 23.
MADA -1/2(H̃c) = O(c log |V |) .

Herbster et al. [21] proved that the majority vote in H̃c is NP-hard, based on
the fact counting label-consistent min-cuts is #P-hard. This makes the existance
of an efficient and exact Halving algorithm for H̃c unlikely.
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Comparing with our bounds, we see that the cut-size c now has the same
role as previously r(G) or tw(G) in our bounds. Note however, that our bounds
are label-independent, that is, under the halfspace or convexity assumption they
hold for any labelling. Cut-size based bounds are complementary and depend on
the actual labelling.

The problem of online learning on graphs was introduced by Herbster et al.
[23]. They bound the number of mistakes as 4ΦG(y)d(G) bal(y), where bal(y) =
(1− 1/|V (G)||

∑
yi|)−2 is a balancedness term. The efficient Pounce algorithm

[20] achievesthe mistake bound O(ΦG(y)(log |V (G)|)4) for unweighted graphs,
almost matching the near-optimal bound of Halving. In parallel to these works,
Cesa-Bianchi et al. [7] first developed an efficient and optimal algorithm for online
learning on trees and showed that Halving on trees actually also asymptotically
achieves the optimal bound, which can be much smaller than O(c log |V (G)|).
The authors then generalised these ideas to general graphs [9] and achieved under
mild assumptions an efficient algorithm that is optimal up to a log |V (G)| factor.
We refer to [9] and [21] for an overview and in-depth discussion.

The convexity or the halfspace assumption are orthogonal to the standard
assumption of small cut-size. For example, on a 2×k grid, we can have halfspaces
corresponding to the two 1× k halves, that have a cut of size k. That means that
the convexity or halfspace assumption can lead to strong bound in situations
where the cut of the labelling might be large. However, assuming a small cut
can also improve our bounds. For example, the shortest path cover based bound
can be changed to O(min{|S|, ΦG(y)} log d(G)), as we only have to do at most
min{|S|, ΦG(y)} binary searches.

6 Conclusion

In this paper, we have studied online learning of halfspaces and general convex sets
on graphs. On the one hand, we discussed that Littlestone’s Halving algorithm
achieves near-optimal bounds in general convexity spaces, yet is inefficient in
general in its standard form. On the other hand, we have used shortest path covers
to achieve a simple and efficient algorithm, which is however not optimal in many
cases. For the special case of geodesic halfspaces on graphs with bounded cbm(G),
we proposed an algorithm with near-optimal mistake bound and quadratic
runtime. We have discussed general lower bounds and specific worst-case examples.
In the case of halfspaces we argued that general, increasingly stronger lower
bounds are achieved through the separation axioms S1, . . . , S4. We looked at the
special case of k-intersections of halfspaces and discussed an adaptive version of
Halving using the well-known doubling trick. Finally, we compared our bounds to
previous label-dependent mistake bounds and discussed potential extensions to
the agnostic case. As future work, we are looking into more general efficient and
near-optimal algorithms, more relaxed assumptions on the labels, and multi-class
online learning on graphs.
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