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Abstract. Boson Samplers are near-term quantum devices based on
photonic quantum technology, which can outperform classical computing
systems. This paper takes a hybrid circuit learning approach to utilize
boson samplers as a generative model called Variational Boson Sampling
(VBS). VBS introduces an optimizable parametric structure into the
evolution operator for boson sampling and uses the complete model as a
variational ansatz. To simulate working with real quantum devices, we
use gradient free-optimization methods to optimize the resultant circuit.
We experiment with this framework for problems in optimization and
generative modeling.
Index Terms— hybrid quantum-classical approach, quantum circuit
learning, boson sampling, parameterized quantum circuit

1 Introduction

Quantum computing is a computational paradigm that utilizes properties of
quantum systems such as superposition and entanglement for computational
tasks (Nielsen and Chuang, 2002). Research in quantum computing has led to the
discovery of quantum algorithms that achieve polynomial-time speedups compared
to classical methods on specific tasks. For example, Grover (1996) described a
sub-linear time algorithm for search in an unordered database. Similarly, Shor’s
algorithm (Shor, 1999) is capable of integer factorization in polynomial-time.
Quantum techniques have also been proposed for data-science tasks such as
regression fitting (Yu et al., 2019) and association rules mining (Yu et al., 2016).

While the prospect of significant speedup over classical computing remains the
most impactful aspect of quantum computing, the algorithms mentioned above
remain largely out of the reach of current quantum devices. Hence researchers
have explored options that use near-term devices and can achieve quantum
supremacy (Arute et al., 2019; Lund et al., 2017). Boson sampling (BS) (Aaronson
and Arkhipov, 2011) is a strong candidate for experimental demonstration of
quantum algorithmic supremacy.

However, while boson sampling (BS) provides an exponential quantum ad-
vantage and has been used for applications such as combinatorial optimization
(Arrazola and Bromley, 2018), there is some debate on its demonstrable advantage
in ’realistic’ applications (Bromley et al., 2021; Oh et al., 2021). Our goal in
this work is to provide examples of how BS can be used in ML applications,
specifically as a generative model.
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One effective approach for capturing quantum advantage is the so-called
hybrid quantum-classical (HQC) approach (McClean et al., 2016). The HQC
approach uses a combination of both quantum and classical resources. HQC based
models have been getting recent traction and have been used for applications like
supervised regression (Schuld et al., 2020; Yu et al., 2016), clustering (Otterbach
et al., 2017) and combinatorial optimization (Moll et al., 2018).

This work utilizes a similar hybrid circuit approach to use boson samplers for
generative models. Since the sampling distribution of a BS has an intractable
dependence on the interferometer design, we propose a specific parameterization
that allows exploration of the space of possible interferometers in a way that
is both universal and amenable to near term devices. We then train networks
following this design for a specific task by stochastic gradient-based minimization
of the task loss. We conduct experiments with Ising models and image generation
to evaluate the proposed scheme. The results show that this is a promising scheme
to deploy boson sampling in practical tasks.

2 Preliminaries and Related Work

2.1 Hybrid Quantum-classical Approach

A hybrid quantum-classical algorithm consists of a classical computer and a
quantum device running in a closed loop. Generally, the classical computer is
used to preprocess the input data. Next, the data is transferred onto an initial
quantum state that the quantum circuit acts upon. Finally, the output of the
quantum device is evaluated against the desired output (usually on the classical
computer). The resultant discrepancy between desired and actual output is
then fed back into the system to adjust the quantum device to optimize the
performance.

A standard HQC approach is based upon using a quantum circuit with
parameterized gates. Such models, known as Parameterized Quantum Circuits
(PQC), have demonstrated success in applications like supervised learning (Yu
et al., 2016; Liu et al., 2019), generative modeling (Zeng et al., 2019) and algorithm
learning (Morales et al., 2018) The PQC model most closely associated with this
paper is the quantum circuit born machine (QCBM) (Liu and Wang, 2018a).
Born machines can be used to efficiently generate fast mixing MCMC samples
via projective measurement (Liu and Wang, 2018a). They are also capable of
producing distributions that are classically intractable (Bouland et al., 2018).

2.2 Variational Quantum Born Machine

A QCBM uses a variational quantum circuit to encode and sample from the
probability distribution of a classical dataset. Given a set of D independent and
identically distributed samples tx1, ..., xDu from a target probability distribution,
the QCBM can be optimized to generate samples that approximate the unknown
target probability distribution. As shown in Figure 8a, the QCBM takes the prod-
uct state |0ybn and evolves it to the output state |ψφy by unitary transformation
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Upφq. A common and universal circuit layout includes a series of single-qubit
rotation gates and two-qubit CNOT gates. The rotation gates are parameterized
with rotation parameters Φ � tφdαu where d is the layer index and α indexes the
gate in a layer.

For each rotation gate Rα at level d, the vector φdα describe the three rotation
parameters which describe the complete rotation gate by

Rαpφdq � Rzpφdα,xqRxpφdα,yqRzpφdα,zqp1q

with Rmpφq � expp�iφσm
2

q and σm are the Pauli matrices. Samples can be
obtained by measuring the output state |ψφy in the computational basis which
will produce them by the probability | xx|ψφy |2

For machine learning applications such as classification, the output model
distribution pφpxq is then optimized to minimize the negative log-likelihood of
the observed data. The parameters are usually tuned via gradient descent though
other methods can also be deployed Wang et al. (2019).

2.3 Boson Sampling

The BosonSampling (BS) problem refers to sampling outcomes from a linear op-
tical network. The seminal paper of Aaronson and Arkhipov (2011) demonstrates
how the simulation of the probability distribution of indistinguishable photons
evolving in such a circuit is classically intractable. More specifically Aaronson
and Arkhipov (2011) define a model where N isolated photons are sent through
a m (m ¡ 2N) mode linear-optical circuit/interferometer. The interferometer is
described by a matrix U P Upmq, which transforms m input modes into m output
modes. An example circuit is depicted in Figure 1b. Let n̄ � |n1, n2, . . . nmy
denote the output pattern with nj photons in output j. The quantum state of
the output photons is given by :

|ψy � γn̄ |n1, n2, . . . nmy

γˆ̄n �
PermpUSq?

n̂!

where n̂! � n1!n2! . . . nm!. US is the submatrix of U obtained by selecting the
columns corresponding to input photons and rows corresponding to output
photons. The probability of a certain output is given by

Prpn̄q � |PermpUSq|2
n̄!

Perm here refers to the permanent of the matrix. Computation of the per-
manent is #P-complete (Valiant, 1979), which makes exact sampling from such
a circuit intractable. Further work (Morimae et al., 1998; Gogolin et al., 2013;
Bremner et al., 2011) provided further connections between boson sampling
and the polynomial hierarchy. Since a deterministic source of single photons as
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described in Aaronson and Arkhipov (2011) is physically challenging; variants
such as Lattice walk sampling (LWS) (Muraleedharan et al., 2019) and Gaussian
boson sampling (GBS) (Lund et al., 2014; Hamilton et al., 2017) have been
proposed. Recently, a quantum computing machine that uses Gaussian boson
sampling was used to demonstrate quantum supremacy and was faster than the
state-of-the-art classical supercomputers by a factor of 1014 (Zhong et al., 2020).

Recent research has also explored other applications of BS to solve diverse
problems. Guerreschi (2015) demonstrated that molecular vibronic spectra could
be efficiently generated using boson sampling. Arrazola and Bromley (2018)
showed that boson sampling could be utilized for approximating the densest k-
subgraph problem. Recently Huang et al. (2019) developed a quantum symmetric
encryption scheme built on boson sampling. A quantum signature protocol using
BS-based unitary operation (Gao et al., 2018) has been demonstrated by Feng
et al. (2020). Bosonic techniques have also been successfully used for graph
similarity-based tasks in machine learning (Schuld et al., 2020; Shankar and
Towsley, 2020).

The work most related to our article is by Banchi et al. (2020). They show
how under certain parameterization, the unbiased estimates of the gradients of
the parameters for a GBS device can be obtained directly via measurements
on the same device. Our work while also uses parameterized boson sampling
is similar in spirit to the variational learning of a quantum Born machine (Liu
and Wang, 2018b). Three other major differences from Banchi et al. (2020) are
instead of Gaussian Boson sampling we focus on the classical boson sampling
method, our approach is not restricted to the strict parameterizations and we
can use our approach for more generic applications rather than simple graph
based problems.

(a) (b)

Fig. 1: Born Machine and Boson Sampling scheme. a) depicts a Variational
QCBM circuit from Liu and Wang (2018b) with parameters φd b) depicts Boson
Sampling Scheme with evolution matrix U
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3 Variational Boson Sampling Circuits

This section presents a variational boson sampling (VBS) scheme that can be used
as a generative model for fitting a target distribution. We describe the general
VBS scheme before providing a flexible circuit design that remains efficient and
scalable by limiting the parameter growth as a polynomial function of the circuit
input size.

Fig. 2: Variational Boson Sampling scheme. (Left) The full circuit consists of
layers Rpφdq and Spθd, ϕdq blocks. (Right) A fixed VBS block analogous to the
variational QCBM circuit of Figure 8a

Figure 2 depicts the schematic of the VBS model. The VBS scheme treats the
quantum unitary in the BS scheme as a parametric function. This can be achieved
by decomposing the original unitary matrix into parametric gates. Any unitary
transform on n qubits can be decomposed into the product of multiple gates,
each of which acts on at most two qubits (Nielsen and Chuang, 2002). Similarly,
the m�m unitary transformation U in the BS model can also be decomposed
into a combination of phase-shifters and beam-splitters (which act as single-qubit
and two-qubit gates, respectively). Similar to a single qubit rotation gate, a phase
shifter Rpφq acts only on a single-mode by multiplying the amplitude αa of the
corresponding mode by eiφ. A beam splitter Spθ, ϕq on the other hand, acts on
two modes as follows:

Spθ, ϕq �
�

cos θ �e�iϕ sinpθq
e�iϕ sinpθq cos θ

�

This decomposition has the added advantage that now, both the input and
output modes of a VBS scheme can be coupled with a more standard PQC circuit
for further computation. The final probability of the output n̄ under this model
is given by:

PVBSpn̄|Ωq � |PermpUΩpn̄q|2
n1! � � �nm!

. (1)
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Here Ω refers to all the parameters used to define the operator UΩ. Specif-
ically Ω � tφk,θk,ϕku. The parameterized evolution operator UΩ is given by±
kpRpφkqSpθk,ϕkqq, and UΩpn̄q corresponds to the submatrix of UΩ obtained

by selecting only the non-empty input columns and non-empty output rows from
UΩ .

Next, we present a fixed structure design that is both flexible and minimizes
parameter explosion in the VBS scheme. We follow the design principle used by
Liu and Wang (2018b), as this structure can be efficiently simulated via tensor
networks. Each individual block of the VBS is a small-scale tensor network with
a sparse, primarily diagonal structure. These networks can be composed together
to form the larger unitary UVBS of the entire circuit.

Similar to the design of Liu et al. (2019) (see Figure 8a), our proposed circuit
is composed of blocks. Each block is composed of arrays of single-mode phase
shifters and binary-mode beam splitters stacked together (see Figure 2 Left).
First, the block applies an array of phase shifters Rpφlq applied to all modes.
The output is then presented to an entanglement layer composed of parametric
beam splitters Spθl,ϕlq.

The individual Rpφq and Spθ, ϕq blocks are composed of unary and binary
gates. Each Rpφq block consists of an array of unary rotation gates/phase shifters
that act on only one mode. Each Spθ, ϕq layer consists of two arrays of beam
splitter acting in a staggered way. An example of the combined composition of
gates is presented in Figure 2 Right.

If the VBS circuit has L layers and m modes, then the total gate complexity
of the circuit is mL phase shifters and mL beam splitters.

4 Experiments

Next, we try the aforementioned model for two tasks. The first task is to identify
the ground states of an Ising Hamiltonian. Our experiments show that the VBS
model can be trained to preferentially sample low-energy states from an Ising
model. For the second task, we train a classically augmented VBS on the digits
dataset (Alpaydin and Kaynak, 1998) to generate similar images. The results
show that for comparable latent dimensions the VBS scheme is as expressive as
Variational Autoencoders Kingma and Welling (2019).

4.1 Ising Model Optimization

An Ising model is essentially an energy model (or an unnormalized distribution)
for which the score function (or the log-likelihood) is of the following form:

Hpx̄q � �
¸
i

hixi �
¸
ij

Jijxixj , (2)

where x̄ � px1, x2, . . . , xmq and xk � 0, 1 i.e. x̄ is a binary vector. We are interested
in finding a model distribution that samples the state with the lowest energy
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(also known as the ground state) with high probability. This is a challenging
task, as finding such a state of a general Hpx̄q is NP-hard Lucas (2014). While
similar to sampling from an energy model, this task is closer to optimization as
we wish to find the lowest energy state. In this experiment the VBS parameters
(Ω) are updated so that it samples the minimum energy configuration with high
probability.

We follow the procedure of Banchi et al. (2020) and use our VBS model for
predicting cliques. Since a boson sampling scheme produces an output with an
integer number of bosons in different modes, the output of such a scheme can be
thresholded to a vector x̄ of binary variables for input to the Ising Hamiltonian.
The training loss is given by:

LpW q � Ex̄�PVBSp.|Ωq rHpx̄qs �
¸
x̄

Hpx̄qPVBSpx̄|Ωq (3)

where PVBSpx̄|Ωq is the distribution of Equation (1).
Similar to Banchi et al. (2020), we focus on the following Ising hamiltonian.

Given a graph G � pV,Eq with vertex set V and edge set E and an integer K:

HKpx̄q � λ

�
K �

¸
vPV

xv

�2

�
¸

pu,vqPE

xuxv (4)

where λ is a positive number and xv are binary variables. It is easy to prove
(Lucas, 2014) that for λ ¡ K the above Hamiltonian has ground state energy
E � �KpK�1q

2 if and only if there is a clique of size K in the graph G. To see
this note that the second term xuxv computes the number of edges between
the set of nodes corresponding to the binary vector x and for a clique of size
K will contribute KpK�1q

2 . On the other hand the first term tries to keep the
number of selected nodes to K. With a large enough λ, If the number of selected
nodes becomes more than K, then the increase in the first term is enough to
compensate for the reduction in the second term.

Following the procedure of Banchi et al. (2020) we use sampling to produce
binary strings that corresponds to the ground state of the aforementioned Ising
Hamiltonian. For each graph we set K as the size of the largest clique in the graph.
Furthermore we set λ � 2∆ where ∆ is the max degree of the graph. The success
rate is estimated as the fraction of times that the correct bit pattern is sampled
by the model in a 1000 samples, conditional on observing K output particles.
Training is done using an estimation of the gradient using the REINFORCE
algorithm (Williams, 1992), obtained with 200 samples per iteration.

We run VBS on the hamiltonian corresponding to the graphs experimented on
by Banchi et al. (2020). These experiment are on the specific graphs depicted in 3
followed by a bunch of random graphs from the Erdos-Renyi and Barabasi Albert
families (Figure 7). Figure 3(a) presents the training curve on a simple graph on
8 nodes with a clique size of 5. From the figure, it is clear that while the initial
probability of sampling the ground state is low; it steadily increases as training
progresses and is above 80% by the end. In Figure 3(b), a more challenging case
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Fig. 3: Success rate of sampling the ground state of the Ising model over time
for VBS and GBS. A max clique of size K � 5 is shown in red. In (a) there is a
single max-clique, while in (b) there are two max-cliques. Training is done with
200 samples per iteration.

with a degenerate ground model is presented. The underlying graph has ten
nodes and two max-cliques of size K � 5. One can observe from the charts for
both models VBS is able to outperform the trainable GBS approach of Banchi
et al. (2020). The added variability is primarily due to sampling at each step.
The figures also present the sampling variation (p=0.1) during different trials in
the run. It is clear that the GBS curve is statistically better than the VBS curve.

Next, the experiment is repeated with the aforementioned families of random
graphs. These results are presented in the Appendix (Figure 7). The first row
presents results on instances of random Barabasi-Albert graphs. These graphs
have many cliques of sizes three and four, leading to multiple local optimas. The
second row illustrates the result of training a VBS model on random Erdos-Renyi
graphs with ten vertices. We can observe that both GBS and VBS can with
high probability (¡ 80 � 90%) sample the energy minimum. However it is also
clear that the VBS trained model can sample the configuration corresponding to
largest clique in the graph with a higher success rate than the GBS approach. The
performance curves also make it clear from these results that the VBS behaviour
performance is fundamentally distinct from the GBS one ( e.g. see subfigures
2,5).

4.2 Generative Modelling/Image Generation

Next we use the VBS scheme to learn a simple generative model. For this
experiment, we used the test set of the UCI digits dataset (Alpaydin and Kaynak,
1998)1.

1 Available at https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits
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Fig. 4: Generative Model for Digit im-
ages

The UCI DIGITS dataset consists of
1797 data observations. Each observa-
tion is an 8 � 8 image of a handwrit-
ten digit. Since the simulation of a 64
photons BS scheme is not feasible on
classical machines, we use a low di-
mensional embedding approach. The
VBS model sample vectors from a 5-
dimensional latent space which then
constructs the images through a clas-
sical conditional generator. The com-
plete generative model is depicted in
Figure 9. In the figure, Y is a random
variable that denotes the training im-
ages, Z is a latent variable, and PΩ
is the distribution of Z parameterized
by Ω. The parameters Ψ are the pa-
rameters of the conditional generator.
z and y are used to denote samples of
the variables Z and Y respectively. We
follow the same experiment design on
5000 randomly selected samples from
MNIST.

In our experiments, we model the conditional distribution of the output Y
given the latent z as a Gaussian variable. The distribution of the latent variable
z is given by the output distribution of the Boson sampler. The combined
log-likelihood of an observation y is then given by:

Lpy;W, b,Ωq �
»
Npy;Wz̄ � b,ΣqPVBSpz;Ωqdz

Here Ω refers to the parameters of the VBS scheme (i.e Ω � tθ,φ,ϕu PVBS
is the induced distribution over z by Ω. z̄ refers to the normalized value of
z. Since z itself is a discrete distribution with the number of bosons in each
mode being a non-negative integer, we scale the output by its norm to make
it approximately continuous. This, in turn, determines the mean vector of the
Gaussian distribution N . Σ is assumed to be a diagonal matrix, and W, b are
parameters learned on a classical device. Hence in this case Ψ � tW,b,Σu
We assume that all observed images are independent draws from the generating
distribution. The total likelihood of the data is then just the product of likelihoods
for each observation.

We train the model to maximize the log-likelihood of the data with a variant
of the EM algorithm (Dempster et al., 1977). In the EM algorithm, each iteration
consists of repeated application of the E-step and the M-step. In the E-step, the
data log-likelihood conditioned on the observed variables is computed. On the
other hand, in the M-step, the likelihood obtained in the E-step is maximized with
respect to the model parameters. The Monte-Carlo Expectation Maximization
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(a) (b)

Fig. 5: Test likelihood across different training iterations trained generative model
described in Section 4.2 with 5 dimensional latent space. Left (a) presents the
number on DIGITS dataset, while (b) shows results on a subset of MNIST

(MCEM) algorithm (Wei and Tanner, 1990) is a variant of the classic EM; often
used for high-dimensional data or when the integral required in the E-step is
intractable. The key difference between the two is that the MCEM uses a Monte-
Carlo approximation to the conditional expectation during the E-step. Since
computing the exact output distribution of the BS scheme is generally intractable,
while quantum devices can sample from it easily, MCEM is a better choice for
training such models. Specifically the Q function for the MCEM algorithm in
our case is given by:

QpΩt|Ωt�1, yq � Ez�PVBSpΩt�1q logNpy;Wz̄ � b,Σq (5)

�
¸

zi�PVBSpΩt�1q

logNpy;Wz̄i � b,Σq (6)

where the sum is over samples zi drawn from PVBS. This Q function is then opti-
mized by gradient descent to estimate Ω. Similar to REINFORCE, monte-carlo
EM adds extra variability and generally requires lower learning rate for smooth
learning. However these problems are not as significant for these experiments as
the likelihood loss is dominated by the decoder terms instead of the prior.

We also compare our results against a VAE (Kingma and Welling, 2019) with
the same sized latent space and a linear decoder like in the VBS model. A linear
decoder was chosen as such a model with Gaussian prior provides an exactly
computable likelihood. One can use more complex decoder models for better
sample quality, but our goal in this work is simply a working BS based generative
model. Both models were trained with Adam optimizer with a learning rate of
5e-4.

Note that under a Gaussian prior the given generative model corresponds
exactly to the PCA decomposition of the data, which can be analytically computed.
We present this exact likelihood (pPCA MLE value) in Figure 5. Furthermore
given the low latent dimensionality, a generic prior and the significantly higher
contribution from the conditional model, the learnt VBS based distribution in this
case is expected to be similar to the PCA decomposition. This can be seen from
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Figure 5, where we plot the data log-likelihood as learnt by the PCA, VAE and
VBS models. We can also observe that the VBS model improves the likelihood
by around 3%

(a)

(b)

Fig. 6: Samples generated by the trained generative model described in Section
4.2 with 5 dimensional latent space. Upper rows (a) presents samples from the
VBS model and lower rows (b) shows sample from a linear VAE model.

The samples from both VAE and VBS runs are presented in Figure 6. The
upper rows present samples from the VBS model trained with MCEM. On the
lower rows we have samples from the baseline linear VAE. It is evident from
the image quality that a 5-dimensional latent space is too small. However this
is primarily a function of the decoder. For example, MNIST has high quality
reconstructions from a two dimensional latent space with a non-linear decoder 2.

2 https://github.com/lttsh/VariationalAutoEncoder-MNIST

https://github.com/lttsh/VariationalAutoEncoder-MNIST
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On the other hand a linear decoder with (a gaussian conditional generator) is
equivalent to PCA and produces similarly diffused images. However, even with
the blurred images, the digit-like structure of these sampler is clear. A qualitative
examination shows that both the VBS and the VAE models produces samples of
a similar nature. Combined with the likelihood results, this experiment provides
evidence that the VBS model is at least as powerful as a VAE in this setting.

5 Conclusion

In this paper, we demonstrate that boson sampling can be used to solve practical
problems in machine learning and optimization. Towards this goal, we developed a
hybrid quantum-classical variational scheme labeled Variational Boson Sampling
(VBS). VBS introduces an optimizable parametric structure into the boson
evolution operation and uses that as a variational ansatz. We then experiment with
this framework for training VBS distributions for problems in ising optimization
and generative modelling.

For optimization, we tried an algorithm where the VBS is used to generate
samples that can be mapped to the states of an Ising model. We then use
REINFORCE (Williams, 1992) to get stochastic gradients of the parameters
device in order to maximize the probability of sampling the ground state of the
Ising model. In generative modelling, we show that a VBS-based scheme trained
using an EM algorithm is competitive with a VAE (Kingma and Welling, 2019)
of similar capacity. While sampling based methods do add extra variability in
learning, we do not believe this to be a major issue as physical implementation
of a VBS is extremely time-efficient in producing samples. For example current
quantum devices can draw 105 samples per second (Vaidya et al., 2020). As such
neither variability nor the total runtime for training VBS scheme is likely to be
high.

Our results have shown that the VBS scheme can be used to implement algo-
rithms for practical problems; we hope this sparks more research into variational
boson sampling ansatz in the future. One future research direction is formalizing
cases when a VBS-based scheme outperforms alternative algorithms such as VQE
(Wang et al., 2019) or QAOA (Farhi et al., 2014) for standard qubit based devices.
Another potential research direction is to develop schemes to approximate the
gradients of the scheme using a quantum device. Finally recent work (Ostaszewski
et al., 2021) has used deep Q-learning to optimize larger quantum circuits, and
using such techniques can be of potential use in improving training for boson
sampling as well.
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Fig. 7: Success rate over time as the training progresses, as in Figure 3, Graphs
(a),(b),(c) are random Barabasi-Albert graphs with ten vertices, built starting
from a clique of five vertices and attaching new vertices, each connected to
three random nodes. Graphs (d),(e),(f) are random Erdos-Renyi graphs with ten
vertices and probability p � 0.5 of adding an edge between pairs of vertices.
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(a)

Fig. 8: Variational QCBM circuit architecture from Liu and Wang (2018b) with
parameters φd
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