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Abstract. Vehicle traffic flow prediction is an essential task for several
applications including city planning, traffic congestion management and
smart traffic light control systems. However, recent solutions suffer in
outlier situations where traffic flow becomes more challenging to predict.
In this work, we address the problem of predicting traffic flow on different
intersections in a traffic network under the realistic assumption of having
outliers. Our framework, called OBIS, applies an existing LOF-based ap-
proach to detect outliers on each intersection in the network separately.
Based on the spatio-temporal interdependencies of these outliers, we in-
fer the correlations between intersections in the network. We use these
outlier-based correlations then to improve the predictability of existing
traffic flow prediction systems by selecting more relevant inputs for the
prediction system. We show that our framework considerably improves
the performance of LSTM-based models both under outlier scenarios and
also under normal traffic. We test our framework under two real-life set-
tings. In the first, we show how improving the predictability using our
framework reduces the overall delays of vehicles on an intersection with
a smart traffic light control system. In the second, we demonstrate how
OBIS improves the predictability of a real dataset from four trajectories
of intersections in the city of The Hague. We share the latter dataset
together with an implementation of our framework.

Keywords: Outlier Detection, Correlations, Dimensionality Reduction,
Traffic Flow Prediction

1 Introduction

Traffic flow modelling is a broad field with many applications, such as enabling
city planners to better regulate traffic in a city [16] or reducing and better man-
aging congestion [13]. Next to this, reducing the time spent in traffic jams is time
has always been in the interest of researchers and practitioners. In 2014, the US
economy lost around 160 billion dollars due to this lost time [15]. Improvements
in infrastructure benefit the economy and the well-being of humans. However,
upgrading the road capacity by increasing the amount of lanes can be expensive
and requires space, something that is often scarce in urban settings. In urban
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Fig. 1: A traffic network explaining the setting of the problem addressed in this
work. Top-k outliers are calculated locally on each intersection. The correlation
between the intersections is then checked based on the temporal correlations
between their top-k local outliers within a window w = 1 hour before and after
each top-k outlier of the target intersection.

settings, intersections managed by traffic light installations (traffic controllers)
are very common, but they are not always optimal. One way of decreasing con-
gestion and optimizing the traffic flow is to increase the efficiency of traffic
controllers, the intelligent systems that control the traffic lights [8]. Ineffective
traffic controllers can cause unnecessary delays (e.g. when there are less vehicles
than predicted on a specific lane). These kinds of problems can cause congestion.
If we can introduce more effective traffic controllers, we can reduce congestion,
average travel time and average amount of stops required in an intersection, and
as such create smoother and faster traffic flows.

In Figure 1, assume that the task is to predict the traffic flow on the target
intersection (A). To count the real number of vehicles flowing on each lane,
each intersection is equipped with several activation sensors that continuously
collect these values and forward them close to the real time to a prediction
model to estimate future traffic flows that are used by the intelligent traffic
controller of that intersection. The model used to predict the near-future values
of the traffic flow on intersection A can use previous readings on intersection
A merely. Obviously this might work, but not as effective as one aims to. The
dynamics in the traffic network allow for more connections between intersections.
As such, including the traffic flows on neighbouring intersections B, C, D & E
while predicting near-future values on A will add more context to the prediction
model and should intuitively improve the model prediction accuracy. This is
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however not a golden rule as some intersection readings might be contributing
much more noise to the prediction model than a useful input. Additionally, with
slightly complex traffic networks, it becomes almost impossible to know when to
stop including further intersections (e.g. is it meaningful to include the readings
from the far intersections R & Q?).

The problem we address in this work is how to decide which intersections are
“relevant”, such that their readings should be included in the prediction model
of a target intersection to maximize its accuracy. In Figure 1, those are inter-
sections marked in green. Due to the connectivity between traffic intersections,
deviating traffic situations, or outliers, in the traffic flow in intersection A can
propagate to intersection B (or the other way around). We use this propagation
of outliers from an intersection to another in our proposed framework to infer
the correlating intersections in an unsupervised setting. For each intersection,
we find its local outliers individually and in a later step we check the spatio-
temporal correlations between the outliers on different intersections. In Figure
1, the local outliers found on intersection B had a high temporal correlations
with the local outliers found on intersection A. Additionally B has a shorter
driving time to A than a specified threshold which makes it spatially correlated
to A. The outliers found on D are not temporally correlated with the ones found
on A, although it is a neighbouring intersection to A. Thus, we assume that D is
not a correlating intersection with A. The same applies for Q but the other way
around, although the temporal correlation is satisfied, it is not included because
the spatial threshold is not satisfied.

Existing traffic prediction models perform relatively well, except when they
have to handle an outlier traffic situation. By relaying outlier information to
the prediction model, we hope to be able to improve the general performance of
traffic prediction flow models. To this end, we propose OBIS, an Outlier-Based
Intersection Selection framework which aims to improve an existing intelligent
traffic controller that works on real intersections. The existing traffic controller
is a product of our industrial partner, Siemens Mobility.

This controller, called DIRECTOR, aims to minimize vehicle traffic delays
by using an LSTM-based model for predicting the queues in front of traffic
lights. However, it suffers from the limitations mentioned above as it focuses
only on the previous readings of the target intersection and the intersections
directly preceding it for predicting its future traffic flows. Additionally, it does
not perform well under outlier situations. Since both the code of DIRECTOR and
the readings from intersections are the ownership of Siemens, we additionally test
our method on a large open dataset from 30 real traffic intersections in the city
of The Hague collected for 2 years and 3 months and with a total of 7, 093, 440
readings (cf. Table 1). We share our implementation of OBIS which contains
additionally a link to The Hague dataset.

More precisely, the contributions of this work are: (1) we introduce a novel
outlier-correlation-based method, called OBIS, for improving the predictability
of traffic flows on intersections by selecting more relevant input, (2) we test OBIS
on the prediction models of DIRECTOR, a real intelligent traffic controller, (3)
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we show that the accuracy improvements introduced when using OBIS over DI-
RECTOR considerably reduces the delay time of vehicles on the intersections to
the half, (4) we additionally test OBIS on an open dataset from 30 intersections
in the city of The Hague with more than 7 Million readings and show that OBIS
increases the accuracy of an LSTM prediction model by 17.9% under outlier
situations and by 10.3% in general, and finally, (5) for reproducibility purposes,
we share an implementation of OBIS and The Hague dataset too.

The remainder of this paper is organized as follows: Section 2 introduces the
related work. Preliminaries and some notations are introduced in Section 3 after
which the main OBIS method is presented in Section 4. The applied scenarios
are introduced in Section 5, and then extensively experimented and evaluated
in Section 6. Section 7 concludes the paper with an outlook.

2 Related work

Density-based outlier detection is one of the most common unsupervised ways
to detect outliers due to its ability to compare the local outlierness values of
data points by using the reachability distance of a data point relative to those
of neighbouring data points. There are two main techniques for similarity-based
outlier detection and both are based on the nearest neighbours concept. The kNN
(k-nearest-neighbours) algorithm and the LOF (Local Outlier Factor) algorithm
[5]. There are many dialect techniques which are adapted versions of those two
base methods. For example, a kNN based algorithms is: kNN-weight [3] which
uses the sum of distances to reduce the variation and sensitivity to the parameter
k. Outlier Detection using Indegree Number (ODIN) [9] is a graph based kNN
algorithm that defines outlierness as a low number of in-adjacent edges in the
graph. An example of a LOF based algorithm is INFLO (Influenced Outlierness)
[10] which combats the problem of outlier estimation based on local neighbours
that occurs when a dense cluster is close to a data point in a sparse cluster. It
does so by considering both neighbours and reverse neighbours of a data point
when estimating its density neighbourhood for the LOF. Many more examples of
modified kNN and LOF algorithms exist. Research into those different techniques
has shown that the original LOF and kNN were still the state of the art in the
field of outlier detection [6]. The authors in [17] have designed an LOF-based
model that detects outliers over Probability Distributions of traffic flows [17].
A Flow Probability Distribution (FPD) [20] is a stream of multiple values that
show what proportion of the traffic happened at which time [17]. The assumption
here is that traffic is distributed in certain patterns which can be learned and
that a clear deviation from the pattern might mean that we have obtained an
outlier. To find these outliers, the work applies the LOF algorithm to the FPDs,
creating the FPD-LOF method. In the outlier detection phase of our framework,
we will apply an adapted version of FPD-LOF.

Traffic flow modelling has been thoroughly researched. Currently, due to the
high effectiveness on time series, LSTM-based architectures are one of the most
applied solutions in this field. In [19], several prediction techniques are tested
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and LSTM neural networks are considered the best option. LSTMs have also
been used for trajectory prediction, for all traffic participants (not just cars,
but bikes, pedestrians etc. as well) [12] [1]. In [11], the authors model traffic
using a Recurrent Neural Network that also applies Diffusion Convolution and
incorporates random walks on the road graph, better accounting for the spatial
structure of traffic modelling, finally leading to a significant increase in prediction
accuracy. However, in addition to traffic flow data, this technique requires traffic
speed and the distances between the intersections. Particularly the former is
not available in the majority of sensor settings on intersections. [14] expected
a slightly similar input but applied a hierarchical linear vector autoregressive
model and a relatively deep neural network to predict traffic flow. In [18], the
authors proposed a neural network based traffic prediction model to capture
region-level correlations, temporal periodicity and inter-traffic correlations.

In all of the previous applications, no attention was paid on outlier-based se-
lection of input traffic flow data to the prediction model. The information from
all intersections were considered when predicting near-future flow information
on any intersection in the network. Our work focuses on finding, for each target
intersection, the most relevant other intersections whose traffic flow is correlat-
ing with that of the target intersection. For checking the correlations between
intersections, we detect the outliers individually on each intersection using an
adapted method from the one presented in [17]. Consequently, we check the tem-
poral correlations between the outliers found on different intersections and use
that to decide on the list of correlating intersections in general. We show through
an extensive experimental evaluation on two real-life scenarios that this consid-
erably improves the predictability of models that blindly include traffic input
from all intersections in the network, in general but specifically during outlier
situations, where most delays occur. Similar to the most related literature, this
work will apply an LSTM-based model in the prediction part without claiming
any contribution on the model itself. Also because an LSTM-based architecture
that considers the data from the target stream data merely is already in use by
Siemens for the traffic flow prediction. This paper extends our proof of concept
results presented in [7] by broadening the correlation scope, applying two large
real-world datasets and including real KPIs beyond the prediction accuracy.

3 Preliminaries and Notations

The traffic data used in this work are sensor data from inductive loops on any
intersection from the set of intersections I. Those sensors are activated when
enough metal passes over them, such as a vehicle. Singular activations do not
tell us much about the patterns in the traffic, thus these sensor measurements
are aggregated every 5 minutes. The intersection that is controlled by the traffic
controller is called the Target Intersection and let us call it A (cf. Figure 1).
To control this intersection, models are trained to predict upcoming traffic. A
model is trained for each road leading to the target intersection. Intersections
that are along those roads form a trajectory, denoted as T . The intersections
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are then formally noted as TB , with B ∈ I being the name of an intersection
along trajectory T , and the target intersection is noted as TA, with A ∈ I. Thus,
only sensors that include data relevant to the trajectory are included in the
models, creating streams of aggregated activations (x) for each 5 minutes (h)
of relevant sensors at an intersection B. This stream is denoted by xhB .

Flow Probability Distributions (FPDs): to obtain representations of
traffic flows that make them comparable with each other, distributions of traffic
over a period of time H with a set number of time intervals h within H are
created. In this work, H = 1 hour and h = 5 minutes making 12 time intervals.
In short, those FPDs are sets of 12 values, with each value representing the
proportion of traffic of that hour within the time interval of 5 minutes. Let
FPD(HB) be the FPD for time period H on intersection B and let XHB

=〈
xhB1, xhB2, · · · , xhB H

h

〉
be a collection of aggregated traffic flow values xhB of

length H
h for intersection B, the FPDs are calculated as:

FPD(HB) =
〈 xh∑

XH

〉
,∀xh ∈ XH , h = 1, ...,

H

h
(1)

The Bhattacharyya distance measure: to compare FPDs, a distance
measure that compares two distributions should be applied. We use the Bhat-
tacharyya distance [4]. Given two distributions p(x) and q(x) with x ∈ X, the
Bhattacharyya distance DB between p(x) and q(x) is defined as:

DB(p(x), q(x)) = −ln(BC(p(x), q(x))) (2)

where BC(p(x), q(x)) =
∑

x∈X
√
p(x)q(x) is the Bhattacharyya coefficient for

discrete probability distributions. Other distance measures than DB can be also
applied [2].

The weekly intersection periodic pattern: in this work, we used the
domain knowledge to decide the length of the period after which a repetitive
traffic flow pattern on an intersection is expected. Intuitively, this is one week.
In particular, this is suitable when we choose H = 1 hour. This means that, for
instance, the traffic flow on a Tuesday between 9 AM and 10 AM is comparable
with all of the traffic flows of Tuesdays in the same period on the same inter-
section. A reading deviating from the other flows on some Tuesday 9 AM to 10
AM in the measurements on a specific intersection is an indication of an outlier.
As such, our task becomes to calculate for each intersection B, the distances
between the weekly hour flow probability distributions using DB. Note that it is
then to be expected that some of the found outliers are caused by holidays, days
with extreme weather or special events in the city. We have purposely considered
those outliers in our analysis, as we are still interested in how they correlate with
other outliers on other intersections under this unusual setting. An important
sub-goal of our work is to predict the traffic flow under abnormal scenarios.

Local Outlier Factor over FPDs: the LOF algorithm [5] is used to cal-
culate outlier scores of FPDs within an individual intersection. For an FPD
denoted as f̂ , let us use reachk to denote the reachability of f̂ to f̂k, the k
Nearest Neighbour FPD of f̂ .
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The Local Reachability Distance (LRD) of f̂ is defined as follows:

LRD(f̂) = 1/

(∑
f̂k∈kNN(f̂) reachk(f̂ , f̂k)

|kNN(f̂)|

)
with reachk(f̂ , f̂k) = max{DBkNN (f̂k),DB(f̂ , f̂k)} where DBkNN (f̂k) is the

distance from f̂k to its kNN for any f̂k ∈ kNN(f̂). The LOF score of f̂ is then
defined as:

LOF (f̂) =
1

|kNN(f̂)|

∑
f̂k∈kNN(f̂)

LRD(f̂k)

LRD(f̂)
(3)

Outlier Correlations and intersection Selection: to use these outlier
scores for selecting the right intersections, correlations are determined. For each
trajectory T , the Pearson correlation CAB is found between the target intersec-
tion TA and all other intersections in that T . Then, to select intersections, a
correlation threshold is determined, the intersections that meet the correlation
threshold are included in the prediction model. In practice, this means that the
intersections that are included in the prediction model often experience similar
outliers as the target intersection TA. Additional spatial filtering is performed
such that correlating intersections are considered only if they are spatially closer
than ε to the target intersection. With ε being the spatial threshold for all in-
tersections that are within a driving time of τ of the target intersection. The
list of included intersections is noted as IT . Optimizing the traffic controller can
be done by improving its main Key Performance Indicators (KPIs). For a traffic
controller, the most important KPIs are the delay and the amount of stops.

Fig. 2: The context with OBIS framework components in the upper row.

4 OBIS: Outlier-Based intersection Selection Framework

This section explains each part of the OBIS Framework for traffic controllers,
as shown in the upper row of Figure 2. We will explain each component and
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introduce all steps taken in the main parts of OBIS framework (not the pre-
processing) by referring to the psuedo-code in Algorithm 1. whose output is a list
of most relevant intersections ITA to be included in the prediction model of a target
intersection TA from a Trajectory T . As per Figure 2, traffic data is recorded

Algorithm 1: The main components of OBIS

Data: T, LOFscoresAH , Threshold, ε, w
Result: ITA

1 ITA = [ ] // Initialization ;
2 for each B ∈ T do
3 FPDsB = [ ];
4 for H ∈ XHi do
5 FPDsB+ = FPD(XHB ) // Eq. 1

6 end
7 Bha matrix = [ ] ;
8 for each FPDi ∈ FPDsB do
9 for each FPDj ∈ FPDsB do

10 Bha matrixij+ = DB(FPDi, FPDj) // Eq. 2

11 end

12 end
13 LOFscoresBH = LOF (FPDsB , Bha matrix)// Eq.3

14 end
15 for each B ∈ T do
16 CAB = Pearson(LOFscoresBH , LOFscoresAH , w) ;
17 /* calculate the correlations within a window w before & after

each top-k outlier of A */

18 if CAB > Threshold and dist(A,B) ≤ ε then
19 ITA+ = B ;
20 end

21 end

and stored as a historical dataset, sets of 1 hour with 5 minute aggregations,
so 12 values xhB for a flow XHB

per hour H. From there, Flow Probability
Distributions, FPDs are created as per Equation 1, in Line 5 of the algorithm.
These FPDs are compared with regards to the Bhattacharyya distance between
them (Line 10), after which the LOF algorithm is applied to find traffic flows
deviating from the norm on that intersection, which receive higher LOF scores
than inliers (Line 13). The Pearson correlations between those LOF scores and
the LOF scores of A are then calculated to find out which intersections’ outliers
correlate with those of the target intersection A (Line 17). Intersections that
sufficiently correlate are then selected and stored in ITA to be included included
in the predictive model of the traffic controller (Line 19) if they are spatially
closer than ε to the target intersection A.
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5 Applied Scenarios

The OBIS Framework is applied to two scenarios. First with DIRECTOR, the
traffic controller system which was provided by Siemens using a dataset collected
from a real intersection owned by Siemens. This allows for testing with the use
of a traffic simulator that can keep track of important KPIs such as the delay
and the number of stops. We refer to this scenario by the DIRECTOR scenario.
Second, OBIS is tested on a public dataset, provided by the city of The Hague in
a fully reproducible scenario, with the code and dataset publicly provided. For
this scenario, to which we refer to by The Hague scenario, only the prediction ac-
curacy can be taken into account, as we cannot test it with the traffic simulator
nor the traffic controller developed by Siemens. For both scenarios, the prepro-
cessing and output of the OBIS algorithm are the same, as described above. For
both scenarios, LSTM-based neural networks are used for prediction. The goal
is to achieve a lower prediction error while using the OBIS framework to decide
the input as compared to using input from: (a) all preceding intersections, (b)
no other intersections or (c) merely using the directly preceding intersection (the
default setting for the DIRECTOR traffic controller).
DIRECTOR Scenario: The target intersection here is called intersection I00.
A schematic overview of I00 is given in Figure 3. Each white box is an available
sensor. The numbers in front of the traffic lights indicate the signal group. This is
a set of lanes that are controlled by the same signal, e.g. two lanes crossing over
belong to the signal group for crossing over. Thus, for the traffic approaching
from the left in Figure 3, Signal Group 03 goes straight while Signal Group 02
goes left. DIRECTOR works by predicting the queues for each lane, with 3 mod-

Fig. 3: DIRECTOR: Target intersection I00 schematic overview.

els for the three trajectories for each road approaching the intersection. These
are the trajectories for this scenario and along these trajectories are intersections
which can be included in the trajectory’s model. The available intersections and
the trajectories are shown in Figure 4a. Firstly, the target intersection is inter-
section I00. The first trajectory, Trajectory 0, relates to the queues for Signal
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Groups 02 and 03 and is shown in green on the map, Trajectory 1 relates to Sig-
nal Groups 04 & 06 and is shown in red on the map, lastly Trajectory 2 relates
to Signal Groups 07 & 08, is shown in blue on the map. Thus, three prediction

(a) DIRECTOR
(b) The Hague

Fig. 4: Trajectory & intersection maps for DIRECTOR and The Hague scenarios.

models are working simultaneously, predicting queue lengths for each trajectory,
for the next 10 seconds. From these predicted queue lengths, DIRECTOR seeks
to optimize a scheme for the traffic lights by minimizing delay. This scheme
is simulated in a professional traffic simulator and the KPIs are recorded. The
characteristics of the dataset are available in Table 1.
The Hague Scenario: The Hague Scenario is meant to provide an additional
proof to the utility of the OBIS Framework and is fully reproducible. The dataset
features traffic data for 30 intersections, aggregated per 5 minutes. In this sce-
nario, only the prediction quality is assessed since the traffic controller DIREC-
TOR and the traffic simulator are owned by Siemens. Two trajectories are formed
and traffic data from vehicles heading up and down these trajectories is prepro-
cessed through the OBIS Framework. Figure 4b shows the intersections included
and the two trajectories found. Trajectory 1 is in blue and features all intersec-
tions in the South-West, with K198 being the target intersection for traffic going
South andK504 for traffic going North. Trajectory 2 is in green, withK206 being
the Southern target intersection and K703 the Northern.

An overview of the datasets used in this work is given in Table 1. Not
all data in the datasets could be used, as the sensors used sometimes have
noise, such as no activations for a long time or extremely high activations in
a short amount of time. We filtered all such noisy data from each dataset. An
access to The Hauge dataset is available under the implementation link here:
https://github.com/Tom-Mertens/OBIS.

https://github.com/Tom-Mertens/OBIS
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Table 1: The characteristics of the two datasets used in this work.

Name Intersections Start End Aggregation Interval

DIRECTOR 18 15-09-2019 16-09-2020 10 ms
The Hague 30 01-01-2018 31-03-2020 5 minutes

6 Experimental Results

To evaluate the performance of OBIS, several measures are used. Firstly, the
accuracy of the traffic predictions is measured with the Root Mean Squared
Error. Furthermore, the eventual performance of the traffic controller in the
DIRECTOR scenario is measured with regards to the KPIs: (i) the delay in
seconds, and (ii) the amount of required vehicle stops in the intersection. To
elaborately test OBIS, it needs to be proven that using it to select intersections is
beneficial to the prediction accuracy of the traffic prediction model and that this
increase in accuracy can also minimize the delay and amount of stops. Firstly,
the parameter tuning of the minimum correlation threshold is discussed, which
regulates which intersections will be included in the eventual prediction model.
Then, the models for both scenarios are discussed with a general perspective,
evaluating the performance in normal settings, before diving deeper into the
material and discussing the performance in outlier situations, which are most
important for the traffic controller KPIs delay and stops. Lastly, these two KPIs
are specifically discussed with regards to the simulated performance of the traffic
controller DIRECTOR.

Parameter Tuning To determine the correlation threshold for including an
intersection in the dataset, this section presents the correlations between the
LOF scores within Trajectory 1 in The Hague and also those within Trajectory
2 of the DIRECTOR Target Intersection I00 from the DIRECTOR dataset. The
correlations found in the The Hague dataset for Trajectory 1 (South) are shown
in Figure 5a. Highly correlating intersections are often close to each other. While
this result is not surprising, it is confirming the correctness of our concept. The
intersection that barely correlates with the rest of the dataset is K502, which is
also a bit outside of the trajectory; is only connected to the rest of the network
through K504 (cf. Figure 4b) . The correlation heatmap of Trajectory 2 of the
DIRECTOR dataset in Figure 5b is somewhat surprising. In particular, the
total lack of correlation for Intersection I02 with any other intersection which
is an intersection into the neighboring city. Further analysis indicated that this
is because of the reduction in the quality of the data which might be related to
noise or absence of the data during several outlier situations. We have chosen
to remove data points from I02 due to this reduced quality. For many other
intersections, the correlations do make sense, for example, I03 and I04 correlate
much more with target Intersection I00; these are other major gateways into the
city whose readings are almost complete in the dataset.
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(a) The Hague Trajectory 1 South.
(b) DIRECTOR Trajectory 2.

Fig. 5: Correlations for The Hague (a) and DIRECTOR (b) scenarios.

Table 2: Correlation threshold setting using MSE for The Hague scenario.

Threshold T 0 T 0.1 T 0.2 T 0.3 T 0.4 T 0.5 T 0.6 T 0.7 T 1.0

Trajectory 1 N 0.310 0.215 0.260 0.218 0.218 0.228 0.351 0.351 0.351
Trajectory 1 S 0.230 0.251 0.258 0.258 0.153 0.380 0.380 0.380 0.380
Trajectory 2 S 0.318 0.287 0.357 0.304 0.271 0.305 0.305 0.354 0.354
Trajectory 2 N 0.303 0.424 0.415 0.415 0.415 0.202 0.196 0.196 0.196

Average 0.29 0.29 0.32 0.30 0.26 0.29 0.31 0.32 0.32

To decide which intersections to include in the prediction model, a threshold
correlation level needs to be selected. The higher the threshold, the fewer inter-
sections to be considered in the model. Thus, for both datasets, many thresholds
are selected and models are trained. Eventually the models which perform the
best are selected. For the DIRECTOR model, prediction models are trained that
are also used by the traffic controller and these are more complex and deal with
time intervals of 10 seconds, while for the The Hague dataset, traffic for all in-
coming lanes of the target intersection is predicted per 5 minutes by the use of
a simple LSTM model. The introduced errors when trying different correlation
thresholds over the selected trajectories are listed in Table 2 for The Hague sce-
nario and in Table 3 for the DIRECTOR scenario. As can be seen, a threshold
of 0.4 constitutes the best results for for the The Hague scenario and a threshold
of 0.35 constitutes the best results for the DIRECTOR scenario. We chose those
values for the rest of our experiments. Tables 2 and 3 show some non-consistent
trends wrt the threshold. This is to be expected as OBIS aims at striking a
balance between the one extreme of using the readings of all intersections and
the other extreme of using only the readings of the target intersection.

Evaluation under normal settings Although OBIS is meant to mostly boost
performance during outlier situations, the performance in general should not suf-
fer. Thus, for The Hague scenario, the performance is compared to the threshold



Can we Learn from Correlations among Outliers? 13

Table 3: Correlation threshold setting using MSE for DIRECTOR scenario.

Threshold T 0.35 T 0.5 T 0.6 T 0.7 T 1.0

Trajectory 0 0.750 0.812 0.801 1.076 1.127
Trajectory 1 0.651 0.806 0.822 0.746 0.772
Trajectory 2 0.858 0.934 0.937 0.907 0.910

Average 0.753 0.851 0.853 0.910 0.936

1.0 (T 1.0) and threshold 0.0 (T 0.0) scenarios which are: adding no intersec-
tions, and adding all intersections respectively. For the DIRECTOR scenario,
it is compared to the original setting of the traffic controller, adding only the
intersection directly preceding the target intersection to the model. As seen in
Table 2, the average errors for T 1.0, T 0.0 and T 0.4 are, respectively, 0.32, 0.29
& 0.26. Using OBIS framework in this case yields an improvement of 10.3% over
the T 0.0 baseline. Thus, the T 0.4 threshold is significantly better than both
baselines, while also being much more efficient than the 0.0 threshold, since less
intersections are included.

For the DIRECTOR scenario, the modified director has a mean RMSE of
0.75, a slight improvement compared to the mean RMSE of the original DIREC-
TOR (0.79). The RMSEs for the original DIRECTOR and DIRECTOR + OBIS
(with T035) are listed in Table 4.

Table 4: RMSEs for DIRECTOR and DIRECTOR + OBIS.

DIRECTOR DIRECTOR+OBIS Difference (%)

Mean 0.791 0.753 4.7%
Trajectory 0 0.960 0.749 22.0%
Trajectory 1 0.661 0.648 2.0%
Trajectory 2 0.751 0.863 -14.8%

Thus, DIRECTOR + OBIS performs especially well on Trajectory 0 but is
lacking on Trajectory 2. With this improved prediction accuracy, DIRECTOR
should be better able to predict the length of the queue and therefore better
optimize the signal schedule to them.

Evaluation under outlier setting For all 4 trajectories in The Hague sce-
nario, the predictions of T0.4 are compared to the real values, the predictions for
T1.0 (Target intersection only) and for T0.0 (all intersections) and the errors are
recorded. T1.0 and T0.0 can be considered two baselines for the prediction. To
see how well the model is performing during outlier situations, for each model
the predictions from all three models are compared to the actual values in terms
of MSE, during the 5 largest outlier situations in the test set. The results are
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shown in Table 5. As can be seen, the 0.4 threshold is performing much better
than both baseline models. The T 0.4 threshold has a 17.9% lower error than
the best performing baseline, T 0.0. For Trajectory 2, it seems that including
just the target intersection also works quite well, this might be because these
are extreme outliers. On average, the T 0.4 threshold performs better.

Table 5: MSE for baseline models and T 0.4 model under top outliers setting.

Trajectory T 1.0 T 0.4 T 0.0

T1 North 0.776 0.371 0.532
T1 South 0.989 0.422 0.720
T2 South 0.195 0.704 0.585
T2 North 0.160 0.173 0.201

Mean 0.530 0.418 0.509

For the DIRECTOR scenario evaluation under outlier settings, one particular
outlier situation is tested and discussed, for which traffic simulations in AIMSUN
8.4 have been used. This is a three hour scenario from 15:00 - 18:00 on Tuesday
07-01-2019, where outlier traffic behaviour is heavily seen in the middle hour,
which got a high LOF score. The FPD for these hours is shown in Figure 6.

Fig. 6: FPDs for 07-01-2019 15:00 - 18:00. Outliers in middle flow.

KPIs for DIRECTOR In Table 6, the upper table shows the mean aggregated
delay in Seconds and the number of stops per model, the lower table sets them
apart per Signal Group (SG), showing the delay in Seconds and the amount of
stops.The OBIS-optimized DIRECTOR only has half the waiting time of the
original DIRECTOR, which is a considerable improvement. Even though the
accuracy in terms of RMSE actually decreased on Trajectory 2 (Signal Groups
7 & 8) as shown in Table 4, the performance in terms of KPIs is much better for
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Table 6: Aggregate simulation results (delay in seconds), SG = Signal Group.

Means Delay (s) Stops

DIRECTOR 442.7 186.5
DIRECTOR + OBIS 221.8 194

SG DIR+OBIS Delay (s) DIR Delay (s) DIR+OBIS Stops DIR Stops

02 10.3 230.2 162.0 156.0
03 355.4 628.9 219.0 205.0
04 137.7 305.9 171.0 172.0
06 401.5 482.1 192.0 187.0
07 285.5 635.9 219.0 197.0
08 140.1 373.1 201.0 202.0

the OBIS-optimized DIRECTOR. The number of stops is not always reduced
because of OBIS. To see how the models perform per hour, the stops and the
delay are aggregated per 3 minutes and for all lanes and signal groups. The
results can be seen in Figure 7a.

(a) Delay all Trajectories. (b) Delay Trajectory 1.

Fig. 7: Delay per 3 Minutes for (a) all trajectories and (b) Trajectory 1 alone.

To get a better insight, the means per hour can be found in Table 7. From
the table and the figures it becomes clear that the OBIS-optimized DIRECTOR
is better prepared to deal with outlier situations in terms of delay.

The outlier was on Trajectory 1, so to get a closer look at those results,
Figure 7b shows the delay per 3 minutes for Signal Groups 4 and 6 which belong
to Trajectory 1. DIRECTOR model incurs a large delay around 16:15, while the
OBIS-optimized DIRECTOR incurs much smaller delays for that peak.
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Table 7: Mean delay (D) in Seconds and stops (S) per hour for Trajectory 1.

Hour 15:00 16:00 17:00
Delay: D (s), Stops: S D (s) S D (s) S D (s) S

DIRECTOR 22.8 20.1 66.7 18.4 43.3 17.5
DIRECTOR + OBIS 26.8 20.3 17.6 18.8 22.3 19.2

7 Conclusion and Outlook

In this work, we proposed the OBIS Framework, which applies an existing LOF-
based approach to detect outliers on each intersection in the traffic network
separately. Based on the spatio-temporal interdependencies of these outliers, we
infer the correlations between intersections in the network. We use these outlier-
based correlations then to improve the predictability of traffic flow prediction
systems by choosing more relevant inputs to the system. We showed through an
extensive experimental evaluation that our framework considerably improves the
performance of LSTM-based models both under outlier scenarios and also under
normal traffic. The prediction accuracy during outlier situations was improved
by 19.7% over the baselines in the The Hague scenario and the delay KPI was
optimized by 50% in the traffic simulation of the DIRECTOR scenario.

In the future, we would like to investigate the traffic network dynamics and/or
the correlation settings that are potentially leading to the increase in the number
of stops after applying OBIS to DIRECTOR. Also, we would like to see whether
other outlier detection methods or distance metrics can be much more effective
than the Bhattacharyya distance. Recent results [2] indicate that the Earth
Movers distance is showing more promising results.
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