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Abstract. The actor-critic RL is widely used in various robotic control
tasks. By viewing the actor-critic RL from the perspective of variational
inference (VI), the policy network is trained to obtain the approximate
posterior of actions given the optimality criteria. However, in practice,
the actor-critic RL may yield suboptimal policy estimates due to the
amortization gap and insufficient exploration. In this work, inspired by
the previous use of Hamiltonian Monte Carlo (HMC) in VI, we propose to
integrate the policy network of actor-critic RL with HMC, which is termed
as Hamiltonian Policy. As such we propose to evolve actions from the base
policy according to HMC, and our proposed method has many benefits.
First, HMC can improve the policy distribution to better approximate
the posterior and hence reduce the amortization gap. Second, HMC can
also guide the exploration more to the regions of action spaces with
higher Q values, enhancing the exploration efficiency. Further, instead of
directly applying HMC into RL, we propose a new leapfrog operator to
simulate the Hamiltonian dynamics. Finally, in safe RL problems, we find
that the proposed method can not only improve the achieved return, but
also reduce safety constraint violations by discarding potentially unsafe
actions. With comprehensive empirical experiments on continuous control
baselines, including MuJoCo and PyBullet Roboschool, we show that the
proposed approach is a data-efficient and easy-to-implement improvement
over previous actor-critic methods.
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1 Introduction

In continuous control, actor-critic RL algorithms are widely used in solving
practical problems. However, searching optimal policies can be challenging due to
instability and poor asymptotic performance. Specifically, most previous methods
of actor-critic RL, such as KL regularization [32,33] and maximum policy entropy
[27], essentially solve RL in the framework of variational inference (VI) [22],
which infers a policy that yields high expected return while satisfying prior
policy constraints. However, from this perspective, the policy network essentially
performs amortized optimization [11,22]. It means that most actor-critic RL
algorithms, such as soft actor-critic (SAC) [14], optimize a network to directly



output the parameters of policy distribution which approximate the posterior
given the input state and optimality. While these schemes have improved the
efficiency of VI by encoder networks [19,29,26], the output distribution of learned
policy can be sub-optimal and far away from the target posterior, due to the
insufficient expressivity of the policy network [8,17]. This suboptimality is typically
defined as the amortization gap [8], resulting into a gap in the RL objective.

The Hamiltonian Monte Carlo (HMC) has been used to improve VI in statistics
[4,42]. In this work, by leveraging the advantages of both VI and HMC [31,40], we
propose to initialize Hamiltonian dynamics (HD) with samples from an optimized
variational distribution, so that we can break the expressive limitation of the
variational distribution and hence fill in the amortization gap. Specifically, we
propose to use HD to evolve the actions sampled from the policy network, so as
to better approximate the target posterior and sample the actions with higher
Q values, improving the efficiency of the exploration. We call this new policy
integrated with HD as Hamiltonian policy. The proposed method offers several
benefits. First, the gradient information in Hamiltonian policy can make the
exploration more directionally informed, avoiding sampling too many actions in
opposite directions. Moreover, the randomness of momentum vectors in HD can
help sampled actions to jump over the local optima and make the agent to explore
more unknown parts of the state space. Further, the proposed leapfrog operator
in Hamiltonian policy, which generalizes HMC via gated neural networks, can also
increase the expressivity of the base policy network and adapt to the changing
target distribution defined by Q function. Finally, in safe RL tasks, we find that
the Hamiltonian policy can not only improve the achieved return by boosting
the exploration, but also reduce the safety constraint violations by discarding
potentially unsafe actions according to Lyapunov constraints [5,6].

Using empirical experiments, we evaluated the proposed method across a
variety of benchmark continuous control tasks such as OpenAI Gym using the
MuJoCo simulator [38] and the realistic PyBullet Roboschool tasks [7]. We show
that the proposed method improves upon representative previous methods such
as SAC [12] and SAC with normalizing flow policy [25], achieving both a better
convergence rate and expected return. Additionally, we also empirically verify
the advantage of our method in safe RL problems.

In experiments, we conduct ablation study of the proposed leapfrog and
sensitivity analysis on hyper-parameters. Additionally, we also compare the
proposed method with iterative amortization policy optimization [24]. And
the action distribution of Hamiltonian policy is also visualized to show the
improvement of expressivity.

2 Preliminary

In this section, we are going to introduce reinforcement learning (RL) as an
Markov Decision Process (MDP). Then the constrained MDP and the solution
based on Lagrangian method are introduced. We also formulate the RL problem
in the framework of variational inference. Finally we briefly review the Soft



Actor-Critic (SAC) [14] and Hamiltonian Monte Carlo (HMC) [28] as building
blocks of the proposed method.

2.1 Markov Decision Process

We consider Markov decision processes (MDP) as (S,A, penv, r), where st ∈ S
and at ∈ A are the state and action at time step t, with the corresponding
reward rt = r(st, at). The state transition of the environment is governed by
st+1 ∼ penv(st+1|st, at), and the action is sampled from the policy distribution,
given by the policy network πθ(at|st) with parameters θ. The discounted sum of
rewards is denoted as R(τ) =

∑
t γ

trt, where γ ∈ (0, 1] is the discounted factor,
and τ = (s1, a1, . . .) is a trajectory. Thus, the distribution over the trajectory is

p(τ) = ρ(s1)

T∏
t=1

penv(st+1|st, at)πθ(at|st) (1)

where the initial state is drawn from the distribution ρ(s1). The objective of RL
is to maximize the expected discounted return Ep(τ)[R(τ)]. At a given time step
t, one can optimize this objective by estimating the accumulated future returns
in the summation using an action-value network [26,14], denoted as Qπ(s, a) in
terms of a policy π.

2.2 Constrained MDP and Lagrangian Method

Safety is an important issue in RL problems. We use constrained MDP (CMDP)
to model RL problems in which there are constraints on the cumulative cost.
The CMDP extends MDP by introducing a safety cost function and the as-
sociated constrained threshold, which is defined as (S,A, penv, r, c, d0) where
c(s) ∈ [0, Cmax] is a state-dependent cost function and d0 ∈ R>0 is an upper-
bound on the expected cumulative safety cost in one episode. In addition to
Qπ, we use another action-value network to approximate the accumulated future
safety costs C(γ) := E[

∑
t γ

tct], denoted as QC,π.
The Lagrangian method is a straightforward method to solve CMDP, by

transforming it to a penalty form, i.e., maxθ minλ E[
∑
t γ

t(r(st, at)−λc(st)|πθ, s0].
The parameters θ and λ are jointly optimized to a saddle-point. The policy
parameters θ are optimized by a policy gradient algorithm, while the multiplier
λ is updated iteratively as λ←− [λ+ η(JπC − d0)]+, where JπC is the discounted
sum (or average sum) of safety costs in previous episodes.

2.3 Reinforcement Learning via Variational Inference

Recently a surge of works have formulated reinforcement learning and control
as probabilistic inference [9,39,37,3,22]. In these works, the agent-environment
interaction process is formulated as a probabilistic graphical model, then reward
maximization is converted into maximum marginal likelihood estimation, where



the policy resulting the maximal reward is learned via probabilistic inference.
This conversion is accomplished by introducing one or more binary optimality
variables O. Since calculating the likelihood of optimality O requires intractable
integral over all the possible trajectories, variational inference (VI) is adopted
to lower bound the objective, where a variational distribution q(τ |O) is learned
to approximate the posterior of trajectory given the optimality, yielding the
evidence lower bound (ELBO) [22]. The ELBO of the likelihood of optimality O
can be written as below,

log p(O = 1)

≥
∫
q(τ |O)

[
log p(O = 1|τ) + log

p(τ)

q(τ |O)

]
dτ

= Eq[R(τ)/α]−DKL(q(τ |O)‖p(τ))) (2)

where DKL(·‖·) denotes the KL divergence. Only model-free RL is considered here.
We can simplify the ELBO in (2) by cancelling the probability of environmental
dynamics. Then we can get the objective of policy optimization as below [22],

J (q, θ) = E(st,rt)∈τ,at∼q

[ T∑
t=1

γtrt − α log
q(at|st,O)

πθ(at|st)

]
(3)

Specifically, at time step t, this objective can be written as

J (q, θ) = Eq[Qq(st, at)]− αDKL(q(at|st,O)‖πθ(at|st)) (4)

Hence, with πθ as action prior, policy optimization in the framework of VI [14,22]
is to find optimal q maximizing the objective J (q, θ) in (4).

2.4 Soft Actor-Critic

Soft Actor-Critic (SAC) [14] is a state-of-art off-policy RL algorithm widely used
in many applications, especially in robotic problems with continuous actions and
states. SAC can also be formulated from the perspective of variational inference.
When using uniform distribution U = (−1, 1) as the action prior πθ in (4), the
objective of SAC can be formulated as the state-action value function regularized
with a maximum entropy,

L(q) = Est∼ρq
[
Eat∼qQq(st, at)− α log q(at|st)

]
. (5)

where q is the variational distribution of action. Here ρq is the state distribution
induced by policy q, and α is the temperature parameter which is introduced to
improve the exploration. In this work, we are going to build the proposed method
upon SAC. The optimal solution of (5) is p̄α(a|s) ∝ exp(Q(s, a)/α) which is also
the target policy distribution.



2.5 Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC) is a popular Markov chain Monte Carlo
(MCMC) method for generating sequence of samples, which converge to be-
ing distributed according to the target distribution [28]. Inspired by physics,
the key idea of HMC is to propose new points by simulating the dynamics of a
frictionless particle on a potential energy landscape U(x) induced by a desired
target distribution p(x), where p(x) ∝ exp(−U(x)). This simulation is done in the
formulation of Hamiltonian dynamics (HD). Specifically, HD is a reformulation of
physical dynamics whose states can be described by a pair (x, v) of d-dimensional
vectors, where x is the position vector and v is the momentum vector. The
dynamics of the system over time, i.e., the HD, is described by the Hamiltonian
equations:

dx

dt
=
dH

dx
,

dv

dt
= −dH

dv
(6)

where H(x, v) is the Hamiltonian of the system, defined as the total energy of the
system. In the physical context of HMC, the motion of the frictionless particle
is governed by the potential energy U(x) and kinetic energy K(v). Since the
Hamiltonian is the total energy here, we have H(x, v) = U(x) +K(v), which is
independent of time step due to the conservation of energy. The kinetic energy
can be described as K(v) = βvT v/2 where β is the mass of the particle, and the
momentum vector is distributed as p(v) ∝ exp(−βvT v/2) [40].

The analytic solutions of HD (6) can determine three important properties
of HMC algorithm, i.e., reversibility, volume preservation and Hamiltonian con-
servation. The reversibility means that the mapping Ts from the state (xt, vt)
at time t to some future state at time t+ s(s > 0) is one-to-one and reversible.
The volume preservation implies that the transformation based on HD conserves
the volume in state space, i.e., applying Ts to some region results in another
region with the same volume. Finally, the Hamiltonian H(x, v) stays constant
with time, i.e., dH/dt = 0, which is called Hamiltonian conservation.

The HD described in (6) is typically simulated by the leapfrog operator [21,28],
of which the single time step can be described as

v
1
2 = v − ε

2
∂xU(x); x′ = x+ εv

1
2 ; v′ = v

1
2 − ε

2
∂x′U(x′); (7)

which transforms (x, v) to (x′, v′). We can see that transformations in (7) are
all volume-preserving shear transformations, where in every step only one of
variables (x or v) changes, by an amount determined by the other one. Hence
the Jacobian determinant of (7) is simply 1 and the density of transformed
distribution p(x′, v′) is tractable to compute.

3 Related Work

There have been a lot of previous works on improve policy optimization in
recent years. To optimize the Q-value estimator with an iterative derivative-
free optimizer, Qt-opt [16] uses the cross-entropy method (CEM) [30] to train



robots to grasp things. Entropy regularization is another active field in policy
optimization Recent work introduces entropy regularization into approximate
policy iteration approaches [14,41]. The authors in [1] show the impact of entropy
regularization and empirically the effectiveness of the entropy regularization on
smoothing the optimization landscape.

However, there are less recent works on gradient-based policy optimization
[15,34,2,24]. They are specifically designed for model-based RL [15,34,2]. Nor-
malizing flow [12,35,25] is another method to improve the policy optimization,
by increasing the expressivity of the policy network. But none of them include
gradient information, so that exploration is not sufficient in some environments.
Another significant challenge with this approach is the Jacobian determinant in
the objective, which is generally expensive to compute. Previous methods make
the Jacobian determinant easy-to-evaluate at the sacrifice of the expressivity
of the transformation, where the determinant only depends on the diagonal
[20,35,25], limiting the exploration in the RL process.

4 Methodology

In this section, we first formulate the proposed policy optimization method in
the framework of variational inference (VI), and then propose a new leapfrog
operator to quickly adapt to the changes of the target distribution during the
learning. Finally implementation considerations and algorithms are introduced.
We also introduce the application of Hamiltonian policy in safe RL in Section 4.4
of Appendix.

4.1 Hamiltonian Policy Optimization

We call the method of using Hamiltonian policy into RL as Hamiltonian pol-
icy optimization (HPO). A feature of HPO is that a momentum vector ρ is
introduced to pair with the action a in dimension da, extending the Markov
chain to work in a state space (a, ρ) ∈ Rda × Rda . Specifically, the momentum
vector ρ has Gaussian prior N (ρ|0, β−10 I), and the action a follows the uniform
prior U(−1, 1)da , where β0 is a hyper-parameter which determines variance of
ρ. According to the discussion in Section 2.3 and 2.4, the target distribution in
HPO, i.e., target posterior of action and momentum vector, can be written as

p̄α(a, ρ|s) ∝ exp
(
Qπθ (s, a)/α

)
N (ρ|0, β−10 I) (8)

Therefore, following Section 2.5, the target potential function and momentum
kinetic energy can be written as Uθ(s, a) := −Qπθ (s, a)/α and K(ρ) := β0

2 ρ
T ρ.

The core innovation of HPO is to evolve a and ρ via Hamiltonian dynamics
(HD) in (6), where HD is approximated by steps of deterministic transitions
(leapfrog in (7)), so that the evolved actions would likely better approximate the
target posterior.

In Hamiltonian policy, given input state s, the initial action a0 and momentum
vector ρ0 are sampled as (a0, ρ0) ∼ πθ(·|s)N (0, β−10 I) where πθ is the base



s a0 ∼ N (·|µ(s), Σ(s))

ρ0 ∼ N (0, β−1
0 I)

a1
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Fig. 1. Diagram of the Hamiltonian policy and proposed leapfrog operator. The HMC
box represents one step leapfrog operator.

policy network. Then, by using leapfrog operator in (7) to simulate HD, since
Uθ(s, a) := −Qπθ(s, a)/α, action and momentum are evolved iteratively by the
leapfrog (HMC step) as below,

ρk+1/2 = ρk +
ε

2
�∇Qπθ (s, ak)/α

ak+1 = ak + ε� ρk+1/2

ρk+1 = ρk+1/2 +
ε

2
�∇Qπθ (s, ak+1)/α (9)

where ∇ is the differentiation taken with respect to a, ε ∈ R is the learning step
size, and k = 0, . . . ,K − 1. Then by evolving initial action a0 for K leapfrog
steps, the action aK is applied to the environment finally. The working process is
shown in Figure 1(a)

Denote the k-th leapfrog step described above as (ak, ρk) := Φkθ,h(ak−1, ρk−1).
We can see that each leapfrog step still has unit Jacobian. Therefore, based on
the change of variable formula in probability distribution, the joint distribution
of action and momentum variables after K steps of leapfrog can be expressed as

qKθ,h(aK , ρK) = q0θ,h(a0, ρ0)

K−1∏
k=0

∣∣det∇Φk+1
θ,h (ak, ρk)

∣∣−1
= πθ(a0|s)N (ρ0|0, β−10 I) (10)



where (aK , ρK) are action and momentum evolved by K HMC steps. Hence the
density of output action and momentum vector becomes tractable to compute,
facilitating the policy entropy regularization in SAC-style algorithms.

In the framework of VI, the policy optimization objective of HPO is the
ELBO (2). Since ELBO can be written as the difference between the log of target
distribution and log of variational distribution [19], we can write the ELBO for
HPO as below,

LELBO(θ, h; s) = E(a0,ρ0)[log p̄α(aK , ρK |s)− log qKθ,h(aK , ρK)] (11)

The policy network parameters are denoted as θ and parameters in HMC are
denoted as h.

Finally, combining (8), (10) and (11) together and ignoring terms not related
with θ and h, the objective of HPO, i.e., the expectation of ELBO over all the
visited states, can be written as

J (θ, h) = Es∼ρπθ

[
Qπθ (s, aK)− α log πθ(a0|s)−

αβ0
2
ρTKρK

]
(12)

where ρπθ is the state distribution induced by the policy πθ. Note that α is
the temperature parameter tuned in the same way as SAC [14]. And Qπθ is
approximated by a target critic network which is not related with θ and is
periodically updated in the learning process [12].

4.2 Proposed Leapfrog Operator

Since HMC with conventional leapfrog (9) converges and mixes slowly, some
past works proposed to use neural networks to generalize HMC [22,23]. However,
since Q networks are changing in RL, the techniques proposed in [22,23] cannot
be used here. Based on our empirical study, the direction variable, binary mask
and exp operation therein [22,23] can make the policy optimization unstable,
degrading the RL performance.

Instead, we propose to use a gating-based mechanism to generalize the conven-
tional leapfrog operator (9) and design a new leapfrog operator, which integrates
gradient information via both explicit and implicit approaches. The explicit ap-
proach is to directly use the primitive gradient same as (9), whereas the implicit
approach is to use an MLP Th to transform the primitive gradient, state and
action together. Then the gradient information from both explicit and implicit
approaches are combined by a gate σh. The motivation behind is to improve
the policy expressivity by MLP Th and control the numerical stability by gate
σh, making the policy distribution quickly adapt to the changes of Q networks
during the learning process.

The inputs of Th and σh include normalized gradients, action and state, where
the state is optional and can be ignored in some environments. Therefore, the
proposed leapfrog operation, transforming from (ak, ρk) to (ak+1, ρk+1), can be



written as

ρk+1/2 = ρk −
ε

2
� (σh(s, ak, g)� g

+(1− σh(s, ak, g))� Th(s, ak, g))

ρk+1 = ρk+1/2 −
ε

2
� (σh(s, ak+1, g

′)� g′

+(1− σh(s, ak+1, g
′))� Th(s, ak+1, g

′)) (13)

where g := −∇Qθ(s,ak)
‖∇Qθ(s,ak)‖ , g

′ := −∇Qθ(s,ak+1)
‖∇Qθ(s,ak+1)‖ and ak+1 = ak + ε � ρk+1/2. This

process is shown in Figure 1(b). Since only one variable (ρ or a) is changed in
every update, the proposed leapfrog operator (13) still keeps the properties of
reversibility and unit Jacobian, so that the distribution of (aK , ρK) in (10) is
still tractable.

4.3 Implementation and Algorithms

In implementation, we build the Hamiltonian dynamics (HD) simulated by
leapfrog steps on top of the policy network. Specifically, we only use one hidden
layer for the base policy network πθ, so the number of parameters of our model
is much smaller than that of models in previous papers [12,13,24] which use two
hidden layers in the policy network. The proposed RL algorithm is built on top
of SAC, where the Gaussian policy is replaced by Hamiltonian policy and the
policy optimization objective in (12) is used. It is termed as SAC-HPO. The
process of producing actions from Hamiltonian policy is shown in Figure 1(a).
The details of the algorithm are presented in Algorithm 1 and Algorithm 2.

Algorithm 1 Hamiltonian Policy Optimization
1: Denote at, st as the action and state at timet; Denote the replay buffer as B;
2: Initialize θ, h
3: for t = 1, 2, . . . do
4: Sample at ∼ πθt(·|st)
5: Obtain aKt , ρKt = fKHMC(st, at; θt, ht)
6: Apply aKt , and obtain next state st+1

7: Store the experience tuple (st, a
K
t , st+1) into B

8: Sample a minibatch of transitions Dt from B
9: Update the Q network by Dt

10: Update θ and h by optimizing J (θ, h) in (12) with minibatch Dt
11: end for

4.4 Safe Reinforcement Learning with Hamiltonian Policy

In addition to regular RL, we also find the proposed method can be used in safe
RL to reduce the safety violations. The general idea is to iteratively sample many
actions by HMC until sampled action satisfies the Lyapunov constraint.



Algorithm 2 fKHMC(s, a; θ, h), β0, ε

1: Sample ρ0 ∼ N (0, I)
2: Set ρ0 ←− ρ0 · 1√

β0

3: for k = 1, . . . ,K do
4: Obtain ρk+1/2 by the first equation in (13)
5: Update ak = ak−1 + ε� ρk+1/2

6: Obtain ρk+1 by the second equation in (13)
7: end for
8: Return aK , ρK

Algorithm 3 Hamiltonian Policy in safe RL; s, πθ, β0, ε,K, d0
1: Sample a0 ∼ πθ(·|s), ρ0 ∼ N (0, β−10 I)
2: for k = 0, . . . ,K − 1 do
3: Transform (ak, ρk) to (ak+1, ρk+1) by the proposed leapfrog (13)
4: if (ak+1, ρk+1) satisfies Lyapunov constraint (14) then
5: Return ak+1, ρk+1

6: end if
7: Sample ρ̃ ∼ N (0, β−10 I), and update ρk+1 ←− ρk+1 + ρ̃
8: end for
9: Return aK , ρK

It is already proved that under the Lyapunov constraint, the policy can be
guaranteed to satisfy the safety constraint [5,6]. It transforms the trajectory-
wise safety constraint to a state-wise constraint [6]. Specifically, the Lyapunov
constraint is expressed as

QC,πB (s, a)−QC,πB (s, πB(s)) < ε̃ (14)

where
ε̃ = (1− γ) · (d0 −QC,πB (s0, πB(s0))) (15)

where πB is the reference policy which is the updated policy in last iteration,
QC,πB is the accumulated safety costs in terms of policy πB , s0 is the initial state
and γ is the discounting factor of the MDP.

However, in previous work [5,6], the sampled actions are projected to satisfy
the Lyapunov constraints based on the linear approximation of the cost critic
QC,πB , which is inaccurate in practice since the action may not have a linear
relationship with the future costs. In this paper, we propose to use Hamiltonian
policy to iteratively sample actions until the Lyapunov constraint is satisfied, so
that potentially unsafe actions can be discarded in this process.

When interacting with the environment, for every sampled action, the agent
first uses Lyapunov-constraint to predict its safety violation. If the Lyapunov-
constraint is satisfied, it is applied into the environment. Otherwise, the sampled
action will be updated by the leapfrog operator to get the next sampled action,



until it satisfies the Lyapunov constraint. So, HMC here can not only boost the
exploration by randomness and gradient information, but also improve safety in
exploration by sampling actions iteratively until the safety (Lyapunov) constraint
is satisfied. The application of Hamiltonian policy in safe RL is summarized in
Algorithm 3. Note that compared with regular RL, a difference of Hamiltonian
policy used in safe RL is that the random noise is injected into momentum
variables in every leapfrog step, rather than initial step only.

(a) HalfCheetah-v2 (b) Walker2d-v2 (c) Hopper-v2 (d) Ant-v2

(e) Humanoid-v2 (f) Humanoid Py-
Bullet

(g) Flagrun PyBul-
let

(h) Flagrun Harder
PyBullet

Fig. 2. The learning performance comparison over 8 tasks. All the curves are averaged
over 5 random seeds, where shadowed regions are standard deviations.

5 Experiment

In experiments, the Hamiltonian policy is applied into soft actor critic (SAC),
so the proposed method is denoted as "SAC-HPO". The environments in our
experiments are diverse, ranging from OpenAI Gym MuJoCo [38] to the realistic
Roboschool PyBullet suit [7,10]. We empirically evaluate the proposed method
from many perspectives. First, SAC-HPO is compared with the primitive SAC
[14] and SAC-NF [25] to show our advantage over classical SAC and normalizing
flow policy. In Section 5.2, we show the advantage of Hamiltonian policy in two
MuJoCo environments with safety constraints, comparing with SAC-Lagrangian
[36,6]. In addition, we conduct ablation study on the proposed leapfrog operator
in Appendix 1, and the shape of action distribution after leapfrog steps in Section
5.3, verifying its non-Gaussianity and improvement of expressivity the sensitivity
analysis of hyper-parameters in Section 5.3.

1 https://arxiv.org/abs/2103.12020

https://arxiv.org/abs/2103.12020


5.1 Continuous Control Tasks

We compare SAC-HPO with SAC and SAC-NF on eight continuous control
tasks. SAC is chosen because it is a fundamental learning method in actor-critic
RL. SAC-NF is selected since it is a representative and widely-used method
which adopts normalizing flow policy to improve the exploration. We use the
official implementation of SAC [14]. And we try our best to implement SAC-NF
according to [25], where the policy network is one-layer MLP with 256 hidden
units and ReLU activation and radial normalizing flow is adopted. The learning
curves are shown in Figure 2, where first five tasks, corresponding from Figure
2(a) to Figure 2(e), are from the MuJoCo suite and the other three are from
Roboschool PyBullet.

All the methods use the same architecture for Q networks, hyper-parameters,
and tuning scheme for the temperature α. The critic (Q) networks follows the
same architecture as [14], i.e., two-layer fully-connected neural networks with 256
units and ReLU activation in each layer, where two Q networks are implemented
and trained by bootstrapping. All networks are updated by Adam optimizer [18]
with the learning rate of 3e-4. The batch size for updating policies and critics is
256, and the size of replay buffer is 106. In SAC, the policy network consists of
two fully-connected hidden layers with 256 units and ReLU activation.

In SAC-HPO, actions are evolved by HD simulated by leapfrog operations
(13) for K ∈ {1, 2, 3} steps. The base policy only has one hidden layer with 256
units and ReLU activation. Neural networks in proposed leapfrog (Th and σh) are
simple MLPs having one hidden layer with hn hidden units and ELU activation.
The variances of the momentum vector (β0) should be different for training
and exploration, denoted as βtr

0 and βexp
0 respectively. In most experiments, we

find the variance of momentum ρ0 in exploration should be larger than that in
training, i.e., βtr

0 < βexp
0 , which can improve exploration efficiency. Besides, it is

important to make networks Th and σh in leapfrog small, which can stabilize the
learning process. Hyper-parameters used in SAC-HPO are shown in Table 1 in
Appendix, including number of leapfrog steps (K), number of hidden units in Th
and σh (hn), momentum variances for training and exploration (βtr

0 and βexp
0 ),

update rate in leapfrog (ε), and temperature parameter (α).
All results in Figure 2 show the evaluation performance. Evaluation happens

every 10,000 environmental steps, where each evaluation score (accumulated
rewards in one episode) is averaged over 10 runs. The values reported in the plots
are smoothed by exponential moving averaging (EMA) with a window size of 5,
equivalent to averaging every 50,000 steps to improve comparability. We can see
that the SAC-HPO outperforms SAC and SAC-NF in terms of both convergence
rate and performance.

5.2 Safe Reinforcement Learning

In this section, we evaluate the performance of Hamiltonian policy in safe RL
problems. The environments in this section are Ant-v2 and HalfCheetah-v2 in
MuJoCo suite. At each step the robot selects the amount of torque to apply
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Fig. 3. Learning performance of Hamiltonian policy in safe RL.

to each joint. In Ant-v2, the safety constraint is on the amount of torque the
robot decided to apply at each time step [36]. Since the target of the task is to
prolong the motor life of the robot, the robot is constrained from using high
torque values. This is accomplished by defining the constraint d0 as the average
torque the agent has applied to each motor. The constraint threshold on torques
is set to be 25 in each episode. In HalfCheetah-v2, the safety constraint is that
the speed of the robot should be less than 1, i.e., the constraint cost is 1[|v| > 1]
at each time step [6]. The constraint threshold d0 is on the discounted sum of
safety costs in each episode, which is set to be 10.

In experiments, we learn critic networks for both return and accumulated costs
(safety violations), denoted as Q(s, a) and QC(s, a) respectively. Both Q and QC
are realized by two-layer MLP with 256 hidden units and ReLU activation in
each layer.

The baseline is the Lagrangian-based SAC [6] which introduces a Lagrangian
multiplier λ to balance between return and safety costs, shorted as SAC-Lagrangian.
The policy learning objective is maxθ Es∼B,a∼πθ(·|s)[(Q(s, a) − λQC(s, a)) −
α log πθ(a|s)]. And the multiplier is updated as λ←− [λ+ η(JπθC − d0)]+ where
η = 0.1. Specifically, in Ant-v2, JπθC is the average sum of safety costs averaged
in recent episodes, while in HalfCheetah-v2, JπθC is the discounted sum of safety
costs averaged in recent episodes.

In SAC-HPO, the Lyapunov constraint is written as (14), where reference
policy πB is the policy updated in the last iteration, and QπB , QC,πB are target
value networks of return and safety costs which are periodically updated in typical
actor-critic RL algorithms. The working process of Hamiltonian policy in safe RL
is summarized in Algorithm 3 in Section 4.4. In SAC-HPO, the policy learning
objective is in the same form as (12), where Qπθ is replaced by QπB + λQC,πB
and λ is updated in the same way as SAC-Lagrangian. The policy network and
hyper-parameters of the SAC-HPO are same as Section 5.1, except that the
maximum number of leapfrog K is set to be 10 which is larger than that in
regular RL problems, and in practice the number of leapfrog steps taken actually
is usually much smaller than K.

The performance comparison is presented in Figure 3, showing that our method
not only improves the average return, but also reduces the safety violations. In
safe RL, the learning objective contains Q + λQC instead of Q, where λ is
changing in every learning iteration. Hence, since the target posterior of actions



in (8) is defined in terms of Q+λQC , the amortization gap in policy optimization
is more significant than that in regular RL due to the rapid changes of λ. So
HMC is more necessary here to make the sampled actions better approximate
the target posterior. Moreover, iterative HMC sampling can discard potentially
unsafe actions until safe actions are sampled. So, Hamiltonian policy can achieve
more significant performance improvement in safe RL tasks than that in regular
RL tasks.

5.3 Analysis

In this section, we conduct ablation study, sensitivity analysis and investigate the
shape of the policy distributions evolved by HD. Ablation study and sensitivity
analysis are in Appendix.

(a) 270K Step (b) 580K Step (c) 880K Step

Fig. 4. The shape of policy distribution in Ant-v2. The dimensions of action are shown
as x and y labels. The color bar is for Q values. βexp

0 = 1 for every step.

Visualization of Policy Distribution In Figure 4, we visualize the action
distributions of Hamiltonian policy (actions evolved by HMC) at different envi-
ronmental steps, where x and y axes represent two different action dimensions.
Specifically, in Figure 4, the red dots represent 1000 actions sampled from the
policy distribution evolved by leapfrog steps (13). For comparison, the blue dots
represent 1000 actions sampled from the base policy network πθ directly, which
are Gaussian and are not evolved by HMC. The contour of Q values is shown as
background for reference, which is drawn by triangular interpolation method. In
Figure 4, comparing red and blue dots, we can see that HMC can evolve actions
sampled from the base policy more towards regions with higher Q values, making
sampled actions more directionally informed and hence improving exploration effi-
ciency. We can also observe that policy distribution evolved by leapfrog operators
can be highly non-Gaussian and have larger variance with much broader effective
support. Besides, there are still some actions evolved to regions with similar or
lower Q values, so that a reasonable trade-off of exploration and exploitation
can be reached. That is why the exploration of RL agent can be boosted by
Hamiltonian policy and the learning performance can be improved.



6 Conclusion

In this work, we propose to integrate policy optimization with HMC, evolving
actions from the base policy network by Hamiltonian dynamics simulated by
leapfrog steps. In order to adapt to the changes of Q functions which define the
target posterior, we propose a new leapfrog operator which generalizes HMC via
gated neural networks. The proposed method can improve the efficiency of policy
optimization and make the exploration more directionally informed. In empirical
experiments, the proposed method can outperform baselines in terms of both
convergence rate and performance. In safe RL problems, the Hamiltonian policy
cannot only improve the achieved return but also reduce the number of safety
constraint violations.
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