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Abstract. One of the basic ideas for anomaly detection is to describe
an enclosing boundary of normal data in order to identify cases outside
as anomalies. In practice, however, normal data can consist of multiple
classes, in which case the anomalies may appear not only outside such an
enclosure but also in-between ‘normal’ classes. This paper addresses deep
anomaly detection aimed at embedding ‘normal’ classes to individually
close but mutually distant proximities. We introduce a problem setting
where a limited number of labeled examples from each ‘normal’ class
is available for training. Preparing such examples is much more feasible
in practice than collecting examples of anomalies or labeling large-scale,
normal data. We utilize the labeled examples in a margin-based loss
reflecting the inter-class and the intra-class distances among the embed-
ded labeled data. The two terms and their relations are derived from
an information-theoretic principle. In an empirical study using image
benchmark datasets, we show the advantage of the proposed method
over existing deep anomaly detection models. We also show case studies
using low-dimensional mappings to analyze the behavior of the proposed
method.

Keywords: Deep Anomaly Detection - Generative Adversarial Networks
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1 Introduction

Deep anomaly detection (DAD) [8,11] has received strong interests in recent
years, but remains to be among the challenging tasks for deep learning. A basic
goal in DAD is to find a compact representation of the data observed under
‘normality’ such that unobserved ‘anomalies’ are more likely to be distant or
exhibit strong discrepancy from them.

GAN-based anomaly detection is a category of DAD, which learns the man-
ifold of normal data distribution and identifies anomalies primarily based on
the error between the original and an image reconstructed through a generator
network [14,18,1]. The deep data description models [12,13,9] are extensions
of one-class classification and support vector data description [15]. They form
a category of DAD which learns an embedding function and a data-enclosing
hypersphere with the minimum volume in the embedded space, with an implicit
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assumption that normal data comes from a single class or source. At testing, the
anomaly score is determined by the distance from the center of the hypersphere.

In practice, however, normal data can consist of multiple classes, and the
anomalies may appear not only outside its boundary but also in-between ‘normal’
classes. In such cases, the conventional approach to find a single enclosure of
normal data may increase the possibility of detecting anomalies outside, but
it can also increase the possibility of overlooking anomalies between classes. In
this paper, we alternatively attempt to find an embedding where each class is
condensed to a proximity, but at the same time mutually distant and dispersed.
It allows for a unified approach to detecting anomalies, as cases which appear
far from the nearby normal classes.

We propose a framework utilizing a small number of labeled examples, or
prototypes, from each ‘normal’ class. Practically, preparing a limited number
of labeled data is far less expensive than collecting examples of anomalies or
labeling large-scale normal data. The prototypes are used in a tune-up training,
after a pre-training using large-scale unlabeled data by generative adversarial
networks. This input setting differs from semi-supervised anomaly detection [13],
which takes few examples of anomalies for calibrating anomaly scores, and also
from few-shot learning [7] and out-of-distribution detection [9] which exploit a
large-scale, labeled dataset from related tasks.

The training in the proposed framework is driven by an information-theoretic
principle, which can formalize deep representation learning as a reduction of
intra-class distances and an expansion of the inter-class distances at a trade-off.
We propose a margin-based loss, which penalizes prototype pairs which increase
intra-class margins or reduce inter-class margins. We conduct an empirical study
to evaluate the proposed framework in comparison to existing DAD models and
to analyze its embedding of the normal classes.

The main contribution of this paper is two-fold: (1) an anomaly detec-
tion framework under a new setting, utilizing small-scale, labeled normal data
which are not practically expensive, (2) a margin-based loss derived from an
information-theoretic principle to integrate small-scale labeled data into deep
representation learning.

The rest of this paper is organized as follows. Section 2 describes the previous
studies on deep anomaly detection and the relation between the information
bottleneck and deep learning. Section 4 describes the technical details of the
proposed framework. Section 5 presents the empirical results and the analyses
from our experiments using public image datasets. We state our conclusion in
Section 6.

2 Related Work

2.1 Deep Anomaly Detection

Two primary purposes of deep learning models in anomaly detection frame-
works are: (1) reconstructing test samples and (2) providing distance metrics in
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the embedded space. The examples of (1) include deep autoencoders and GANs
[6]. In AnoGAN [14], the generator network G learns the normal data distribu-
tion manifold from which a test image X is reconstructed. The anomaly score
is given by the residual difference after minimizing the absolute difference with
the generated image X’. GANomaly [1], and Efficient-GAN based Anomaly De-
tection [20] similarly uses the reconstruction loss, after mapping the test image
to and from the embedded space using the encoder and the generator networks,
as anomaly scores.

The basis of measuring anomalousness by reconstruction error is that the
trained generator acquires a mapping from a uniform distribution to the normal
data distribution manifold [14, 1]. In cases that the test sample is an anomaly, the
image reconstructed by the generator should naturally deviate from the original
and towards the normal data distribution.

Deep-SVDD [12] is an extension of the support vector data description [15]
and an example of (2). It aims to learn an embedding in which the normal data
can be enclosed by a hyper-spherical boundary. The boundary defines a one-
class classifier, which identifies outliers based on the distance from its center.
Deep multi-sphere SVDD (DMSVDD) extended the idea to learn multiple hyper-
spheres, to addressed anomalies among multiple classes of normal data[5].

Multi-class Data Description (MCDD) [9] exploits the Deep SVDD model for
out-of-distribution detection (OOD). It trains a DNN such that the embedding
function f maps the labeled data onto the proximity of the centers of correspond-
ing classes. The in-distribution classes are modeled as Gaussian components in
the embedded space. Deep SVDD employs a max-margin loss for training, while
in MCDD, implementations with a max-margin loss and a GDA-based MAP loss
were introduced.

In our proposed model, we use GANs for pre-training an initial embedding,
and a margin-based loss for fine-tuning the embedding for anomaly detection.

2.2 Information Bottleneck

The information bottleneck (IB) [17,2] is a principle for signal encoding to
achieve a larger compression rate and a smaller distortion. It was adopted to
machine learning for finding a sparse representation of an input variable X,
which maintains the predictive power over an output variable Y. The sparseness
and the predictive power of the representation Z are measured by its statistical
dependence, i.e., mutual information, with respect to X and Y, respectively.
The IB principle is formalized as a minimization problem over a Lagrangian

L=1(X;2)-pI(Y;Z) (1)

where I(Y; Z) quantifies the amount of relevant information on Y. Since Z is
generated from X, I(X; Z) decreases as the rate of compression increases. The
multiplier 8 represents the trade-off between the two terms.

In [16], the IB principle was introduced to analyse the layer-wise compression
efficiency in DNNs. It was also employed in [13] for deriving a semi-supervised
training loss.
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[3] presented an analysis of the IB problem in a case where Y is the class
variable and Z is the d-dimensional deep representation from the embedding
function f : X — Z C R?, with several modeling assumptions on Z. The first
assumption is that the conditional distribution p(z|y) is an isotropic Gaussian
component for each class vy, i.e.,

p(z|y) = N(Z3Nyvay-[)
1 s
~ @ro2)ir P < 202

where p,, and o, denotes the class mean and standard deviation, respectively.
The marginal distribution p(z) is empirically approximated as an average of the

Dirac delta functions
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The mutual information I(Y; Z), which is equivalent to the expected Kullback-
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p(z]z) was defined as a probability that « is mapped to z, given the random-
ness of DNN such as batch normalization and dropouts. It was also modeled
by an isotropic Gaussian component centered at f(x) with a common standard
deviation &.
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The mutual information I(X;Z) then was rewritten as

[(X:2) = E, . [log p]g*(i"’;)}
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Based on (3), I(X;Z) was approximated as the sum of mutual distances
in the embedded space. From (2), I(Y;Z) increases as the class distribution
concentrates to its center, which broadly interprets as the reduction of the intra-
class distances. It was argued that by jointly minimizing I(X; Z) and 1(Y; Z), the
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Fig. 1. Original and reconstructed images

inter-class mutual distances will increase while the intra-class distances decrease,
by virtue of substantially larger class deviations o, compared to the deviation
of the randomness, &, after training.

Motivated by the above analysis from [3], we implement a margin-based
loss with a focus on the inter-class and intra-class properties for deep anomaly
detection.

3 DMotivating Example

In this section, we examine the behavior of GAN-based anomaly detection to
motivate the proposed framework. Adversarial training has several attractive
properties for anomaly detection. For example, GANs can learn deep repre-
sentation from ‘normal’ data in an unsupervised manner. A trained generator
network can be used to ‘reconstruct’ a test case, and its ‘error’ from the original
case can provide a natural anomaly score as mentioned in Section 2.1.

In the following, we describe a DAD process using the BIGAN [4] framework,
comprised of a generator, discriminator, and an encoder, used in EGBAD [19]
and GANomaly [1]. We conducted an unsupervised, adversarial training of Bi-
GAN in a standard setup for anomaly detection using the MNIST benchmark,
which is to remove one class designated as an ‘anomaly’ class from training and
compile the ‘normal’ data from the remaining classes.

After training, the test cases were initially mapped to a Euclidean space and
reconstructed back to an image using the encoder and the generator networks.
The examples of the original and the reconstructed images, from the setup that
the digit ‘1’ was designated as anomalies, are shown in Fig. 1.

The original images are shown in the first row while the reconstructed images
are shown in the second row. The images shown on the left half is those of digit
‘0’, a normal class, and the images on the right half are those of digit ‘1’, the
anomaly class, respectively.

Graphically, the reconstructed normal images resemble natural handwriting
while the reconstructed anomaly images exhibit unnatural forms, with subtle
resemblance of other digits. In terms of the pixel-wise comparison, however, the
reconstructed ‘anomalous’ images, are not substantially different from their orig-
inals. Meanwhile, the reconstructed normal images exhibit slight modifications
from their originals.
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Fig. 2. Anomaly score distributions

Fig. 2 compares the distribution of mean absolute errors between the original
and the reconstructed test images belonging to the normal and the anomalous
classes. There is a notable overlap of interquartiles between the two distributions.
In this case, it is therefore unlikely that the reconstruction errors as anomaly
scores produce a good detection performance.

The graphical results suggests that the learned manifold can include inter-
mediate patterns of different classes in the training data, since GANs learn a
mapping between a continuous, Euclidean unit space and a distribution man-
ifold. With a large variety in normal data, intermediate patterns may allow a
reconstruction of anomalous cases without significant error. We should also be-
ware of the class-wise bias over the reconstruction error, producing relatively
higher anomaly scores for classes with larger and more complex patterns.

Based on these preliminary analyses, we avoid the reconstruction and pixel-
wise comparison process but instead were motivated to find an embedding in
which the anomalies can be detected by the distances from the nearby ‘normal’
classes, thus consider a setting where typical examples of normal classes can be
utilized.

4 Prototype Data Description

In the previous section, we introduced our motivation to utilize labeled examples
of normal data into training and exploit distances in the embedded space in
testing. This section describes the framework which integrates these examples
into training based on an information-theoretic principle.

Generally, a set of normal data for training is large-scale and unlabeled as
the cost of observation under normality is small, but the reward for labeling
such data is also small to none. However, it can be feasible to collect a limited
number of examples from each class. Here, we assume such a small-scale dataset
comprised of K samples from each of IV classes, much like the setting of N-way-
K-shot learning, is available. The problem input thus consists of a large-scale,
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unlabeled normal dataset available for pre-training, and a set of labeled examples
for the tune-up training.

Let us denote the unlabeled dataset by X = {z;}}, and the set of labeled
data, or prototypes, by P = {(pj,yj)}jf-ixlN. N and K denotes the number of
classes and the number of prototypes for each class, respectively.

We represent by random variables X and Z, the structured input data, e.g.,
images, and their the embedding, respectively. The class variable Y takes a
value from Y = {1,..., N}. We denote the embedding function of a DNN with
parameters W by f: X — Z.

As referenced in Section 2.2, minimizing the information bottleneck loss in-
terprets to expanding inter-class distances and reducing intra-class distances at
a trade-off. The intra-class distances, represented as (2), are measured with re-
gards to class means and variances, reflecting the modeling assumption that the
class distributions are Gaussian components. For the task at hand, however, the
estimated parameters may not be robust given the small scale of the labeled
data.

Alternatively, we attempt to reduce the diameter of the class-enclosing con-
vex. Let R} denote the largest intra-class distance among samples of class c,

Re= max |f(p;; W) = fpe; W (4)

k.jyr=y;=c

As R} is equivalent to the diameter of the convex hull of the samples of
¢, we can minimize its volume and subsequently the intra-class distances, by
descending along the gradients of R} with regards to W. Note that the small
scale of the labeled data allows for computing the mutual distance matrix in a
feasible time. Still, it is inefficient to iterate the descent and the update for the
single largest distance, R}. We, instead, take the sum of intra-class, pair-wise
distances over a threshold Riptra, as a loss Lingea(W).

Lintra(W) = Z max {Oa Hf(pj§ W) - f(]%; W)H - Rintra} (5)

J,kyi=yk

By setting Rintra t0 & Gintra-quantile over the intra-class distances, (5) takes a
summation over the largest ¢ x N intra-class pairs. Using the gradients of (5)
achieves a substantially faster descent compared to using that of R}.

With regards to the inter-class distances, we look at (3), which can be ap-
proximated by the sum of all pair-wise distances in the embedded space. The
constants and the terms related to the variance 62 are irrelevant to the opti-
mization and can be ignored. Further, we take the homogeneous-class pairs out
of consideration, as a joint minimization with (2) should reduce the distances
between them as argued in Section 2.2.

The inter-class loss Lipter 1s defined to take a summation over the heterogeneous-
class pairs, which falls short of the inter-class margin threshold Rijter-

['inter(W) = Z max {07 Rinter - Hf(pja W) - f(pk7 W)H} (6)

Jky; Ay
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Rinter 18 set to a ginter-quantile among the inter-class distances. (6), thus, is
focused on penalizing pairs which correspond to relatively smaller inter-class
margins.

We minimize £ = Lintra + BLinter t0 increase the overall margins between
classes. For anomaly detection, it is intuitive to employ a margin-based loss,
as data near the boundaries of normal data or classes are more critical to the
detection performance compared to those near the class center. We will refer to
this framework as Prototype Data Description (PDD), as it models the enclosing
hull of normal-class prototypes.

At testing, we compute the anomaly score using kernel density estimation
(KDE) in the embedded space. Let P, = {f(p;) : y; = n} denote the set of em-
bedded prototypes with class label n, and D("g(z) the kernel density estimation
of z given Pn. A large density indicates a closeness to the prototypes of n.

We define a scaled density function a,, such that

_ D™ (f(x)) — Dl
Dr(r?a)x - D(n)

min

an(x)

with scaling parameters

DM = max  D,(z), D™ — min D, (2)

max min
z€ U P; z€UP;
Y\n v

In [?,7], the test cases were scored for open-set recognition using the distance
to the closest class-prototypes. In our study, we similarly use the inverse of the
largest scaled density of the test case x as the anomaly score.

A(z) = exp (— max an(ac)) (7)

5 Empirical Results

5.1 Setup

This section presents an empirical study for comparative and graphical evalua-
tion of PDD. We set up anomaly detection tasks using benchmark image datasets
following previous studies, by excluding one class designated as anomalies from
training. The training set is thus compiled from the remaining classes and the
performance is measured for the detection of the anomaly class samples in the
test set. The following experiments are conducted with three public datasets:
MNIST [21], Fashion-MNIST [22], and CIFAR10 [23]. Their properties are sum-
marized in Table 1.

1 A sample code of the PDD is provided in https://github.com/ProtoDD/pdd
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Table 1. Datasets

Dataset #Image Sizex Channels #Instances # Classes

MNIST 28 x 28 x 1 70,000 10
Fashion-MNIST 28 x 28 x 1 60000 10
CIFAR 32x32x3 60,000 10

As baselines for comparison, we conducted the same experiments using EG-

BAD [19], GANomaly [1], and MCDD [9]. EGBAD and GANomaly are baselines
of unsupervised GAN-based DAD, given only the ‘normal’ class images without
labels in training. MCDD is a baseline of data description and OOD, given the
same dataset but with complete labels of ‘normal’ classes in training. PDD is
given a 9-way, 20-shot labeled prototypes in addition to the same unlabeled
dataset. The prototypes were chosen randomly and removed from the default
training set. Note that PDD is at a disadvantage compared to the OOD model,
while at an advantage compared to the unsupervised DAD with regards to the
amount of supervising information used in training. For performance measures,
we compute the Area Under the ROC curve (AUROC) and the Area Under the
Precision-Recall Curve (AUPRC).
The baseline models were implemented based on their publicly available codes
. The hyperparameters of the baselines were determined by grid search around
the suggested values from their respective papers. The summary of the main
training parameters are shown in the appendix (Table 2).

The hyperparameters related to IB and KDE were empirically determined:
IB trade-off 8 = 3, KDE bandwith w = 10, distance quantiles gyt = 0.5,
Ginter = 0.25. The GAN-architectures for pre-training are shown in the appendix
(Tables 3 and 4). The training were conducted in a single-GPU environment
with a Tesla P100 with 16GB memory. The optimizer was ADAM with learning
rate 0.002.

234

5.2 Comparative Analysis

This section presents comparisons between performances of PDD and the base-
line models. We report the AUROC measures due to the low AUPRCs of the
baselines. The AUPRCs of the proposed model are reported in the next section.

Fig. 3 shows the comparisons with unsupervised DAD baselines on ten anomaly
detection tasks based on MNIST datasets. The markers indicate the mean over
ten repetitions, while the error bars indicate the standard deviation. Similarly,
Figs. 4 and 5 show comparisons over the tasks based on Fashion-MNIST and
CIFAR-10 datasets, respectively.

From Figs. 3-5, PDD has substantial advantage over GAN-based DADs in
these thirty tasks. Overall, EGBAD may not be adequate for handling multi-

2 https://github.com/houssamzenati/Efficient-GAN-Anomaly-Detection
3 https://github.com/samet-akcay/ganomaly
* https://github.com/donalee/DeepMCDD
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class normal data. It is omitted from Fig. 5 due to its low measures. Additionally,
PDD showed relatively small variances over the class designated as anomaly
while GANomaly showed high variance depending on the class.

The comparison between PDD and the OOD baseline are shown separately
in Figs. 6-8. The markers and the error bars respectively indicate the mean and
the standard deviation over ten repetitions in each task.

Over the thirty tasks, PDD and MCDD averaged AUC higher than 0.85.
MCDD generally showed larger variances than PDD, and neither outperformed
the other overall. We note that PDD shows comparable performances while
exploiting a limited amount of supervising information compared to MCDD.

The run time of PDD were 1.5 minutes per epoch on average. The run time
of the baselines in proportion to that of PDD were as follows: PDD:1.0, EGBAD:
0.56, GANomaly: 0.84, MCDD: 1.4.
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5.3 Ablation Study

In this and the following sections, we evaluate the impact of the IB-training by
quantitative and graphical comparison of the proposed model after pre-training
and after IB-loss training.

Figs. 9-11 show the comparisons of AUPRCs in the same thirty tasks as the
previous experiment. The markers indicate the means over ten repetitions, while
the error bars reflect the standard deviations.

The initial embedding by GANs produced comparative performances in sev-
eral tasks, but in many tasks it yields substantially low AUPRC measures. Over
the thirty tasks, IB-training achieves substantial improvements on top of the
initially acquired embeddings.

5.4 Graphical Analysis

This section presents graphical analyses on low-dimensional mappings of the
embedded images from typical cases. Figs. 12 and 13 show 2-D mapping of the
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MNIST test images after GAN pre-training and IB training, respectively. The
2-D mappings were generated by UMAP [10], in the setup where the anomaly
class is digit ‘1’, The "x’ markers of different colors indicate the embeddings of
respective classes. The black ‘+’ markers indicate the prototypes.

Fig. 13 shows that the class-wise distributions from MNIST can be identified
after pre-training, but they are mostly unseparated and few are overlapping at
that point. Meanwhile, from Fig. 13, the class distributions are evenly separated
and individually enclosed in different proximities after IB training.

The 2-D mappings of the Fashion-MNIST testset images after pre-training
and IB training are shown in Figs. 14 and 15, respectively. The black and colored
markers indicate the classes and the prototypes, and the anomaly class is digit
‘6’. Fig. 14 shows that most of the classes are overlapping with one or more other
class distributions after pre-training. In comparison, the classes in Fig. 15 shows
either some reduction in overlaps or increased separation. Note that groups of
classes with inherently similar patterns, e.g., {5: Sandal, 7: Sneaker, 9: Boots}
and {2: Pullover, 4: Coat}, are unseparated in 2-D, but their overlaps are reduced
substantially after IB-training.
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From many cases similar to those above, we can expect PDD to expand
the inter-class margins while gathering each class to a different proximity. The
graphical analysis also indicates that the KDE-based anomaly scores can be
effective for detecting anomalies that appear between separated normal classes.

Generally, not all normal classes can be separated. As seen in the Fashion-
MNIST experiment, when classes are intrinsically similar, they are embedded
to adjoint regions. We note that it is not the goal to cluster all independent
classes, and the capacity for anomaly detection will not necessarily be impaired
when similar classes are unseparated. Practically, if when classes are similar, e.g.,
shoes and boots, there may be instances which are hard to discern, but they are
unlikely to be considered anomalies.

6 Conclusion

In this paper, we addressed the task of anomaly detection in the presence of
multi-class, normal data, with a new, practically feasible input setting, utilizing
a small set of class prototypes. We implemented a deep neural network training
driven by an information-theoretic principle, with a loss based on intra-class
and inter-class distances among the prototypes. Our empirical evaluation showed
that the proposed method holds substantial advantages over unsupervised DAD
models and also is comparable to an OOD data description model in terms of
the performance measures. From the graphical analyses, the proposed model can
typically learn mutually distant and dispersed embedding of the class prototypes,
which enables its density-based anomaly scores.

Given that proposed model addresses a setting slightly different from those
of existing tasks, e.g., ODD and Unsupervised Anomaly Detection, building a
benchmark which is also practically relevant is an important future work.

Futhermore, we aim to understand its more practical characteristics such its
sensitivity to noise and the number of prototypes, the means and its impact of
selecting “good” prototypes.
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Appendix
Table 2. Summary of training parameters
MNIST Fashion-MNIST CIFARI10
BatchSize #Epochs BatchSize #Epochs BatchSize #Epochs

EGBAD 100 20 100 30 150 30
GANomaly 300 15 300 15 300 40
MCDD 150 40 150 40 200 80

PDD (pre-training) 200 20 100 40 200 30

PDD (IB training) 200 40 100 40 200 30
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Table 3. GAN architecture (MNIST /Fashion-MNIST)

(a) Generator (b) Discriminator
Layer unit Dout Layer unit Dout

Input 100 Input 28 x 28 x 1

Lin + BN + ReLU 7 x 7 x 512 Cnv+BN+LkReLU 28 x 28 x 8
CnvTr+BN+LkReLU 14 x 14 x 256 Cnv+BN+LkReLU 14 x 14 x 16
CnvTr+BN+LkReLU 14 x 14 x 128 Cnv+BN+LkReLU 7 x 7 x 32
CnvTr+BN+LkReLU 28 x 28 x 64 Cnv+BN+LkReLU 7 x 7 x 64

CnvTr+Tanh 28 x 28 x 1 Fltn+Lin+Sgmd 1

Table 4. GAN architecture (CIFAR-10)

(a) Generator (b) Discriminator
Layer unit Dout Layer unit Dout
Input 100 Input 64 x 64 x 3
ConvTr+BN+ReLU 4 x 4 x 512 Cnv+LkReLU 32 x 32 x 64
CnvTr+BN+ReLU 8 x 8 x 256 Cnv+BN+LkReLU 16 x 16 x 128
CnvTr+BN+ReLU 16 x 16 x 128 Cnv+BN+LkReLU 8 x 8 x 256
CnvTr+BN+ReLU 32 x 32 x 64 Cnv+BN+LkReLU 4 x 4 x 512

CnvTr+Tanh 64 x 64 x 3 Conv+Sgmd 1




