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Abstract. Classification and Out-of-Distribution (OoD) detection in
the few-shot setting remain challenging aims, but are important for devis-
ing critical systems in security where samples are limited. OoD detection
requires that classifiers are aware of when they do not know and avoid
setting high confidence to OoD samples away from the training data dis-
tribution. To address such limitations, we propose the Few-shot ROBust
(FROB) model with its key contributions being (a) the joint classification
and few-shot OoD detection, (b) the sample generation on the boundary
of the support of the normal class distribution, and (c) the incorporation
of the learned distribution boundary as OoD data for contrastive neg-
ative training. FROB finds the boundary of the support of the normal
class distribution, and uses it to improve the few-shot OoD detection per-
formance. We propose a self-supervised learning methodology for sample
generation on the normal class distribution confidence boundary based
on generative and discriminative models, including classification. FROB
implicitly generates adversarial samples, and forces samples from OoD,
including our boundary, to be less confident by the classifier. By including
the learned boundary, FROB reduces the threshold linked to the model’s
few-shot robustness in the number of few-shots, and maintains the OoD
performance approximately constant, independent of the number of few-
shots. The low- and few-shot robustness evaluation of FROB on different
image datasets and on One-Class Classification (OCC) data shows that
FROB achieves competitive performance and outperforms baselines in
terms of robustness to the OoD few-shot population and variability.
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1 Introduction

In real-world settings, for Al-enabled systems to be operational, it is crucial to
robustly perform joint classification and Out-of-Distribution (OoD) detection,
and report an input as OoD rather than misclassifying it. The problem of de-
tecting whether a sample is in-distribution, i.e. from the training distribution,
or QoD is critical. This is crucial in safety and security as the consequences of
failure to detect OoD objects can be severe and eventually fatal. However, deep
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neural networks produce overconfident predictions and do not distinguish in-
and out-of-data-distribution. Adversarial examples, when small modifications of
the input appear, can change the classifier decision. It is an important property
of a classifier to address such limitations and provide robustness guarantees. In
parallel, OoD detection is challenging as classifiers set high confidence to OoD
samples away from the training data. In this paper, we propose the Few-shot RO-
Bust (FROB) model to accurately perform simultaneous classification and OoD
detection in the few-shot setting. To address rarity and the existence of limited
samples in the few-shot setting [1,2], we aim at reducing the number of few-shots
of OoD data required, whilst maintaining accurate and robust performance.

Training with outlier sets of diverse data, available today in large quantities,
can improve OoD detection [3,4,5]. General OoD datasets enable OoD generaliza-
tion to detect unseen OoD with improved robustness and performance. Models
trained with different outliers can detect OoD by learning cues for whether inputs
lie within or out of the support of the normal class distribution. By exposing
models to different OoD, the complement of the support of the normal class
distribution is modelled. The detection of new types of OoD is enabled. OoD
datasets improve the calibration of classifiers in the setting where a fraction of
the data is OoD, addressing overconfidence issues when applied to OoD [3,4].

The main benefits of FROB are that (a) joint classification and OoD detec-
tion is realistic, effective, and beneficial, (b) our proposed distribution boundary
is a principled, effective, and beneficial approach to generate near OoD samples
for negative training, and (c) contrastive training to include the learned nega-
tive data during training is effective and beneficial. Furthermore, the benefits
of performing joint multi-class classification and OoD detection are that (i) this
setting is more realistic and has wider applicability because in the real-world,
models should be both operational and reliable and declare an input as OoD
rather than misclassifying it, (ii) using discriminative classifier models leads to
improved OoD detection performance, and (iii) in the few-shot setting, discrimi-
native classifiers address the limited data problem with improved robustness. An
additional benefit of performing simultaneous classification and OoD detection
is that we take advantage of labelled data to achieve improved anomaly detec-
tion performance as they contain more information because of their labels and
classes. Knowing the normal data better, as well as learning how the data are
structured in clusters with class labels, helps us to detect OoD data better.

We address the rarity of near and relevant anomalies during training by per-
forming sample generation on the boundary of the support of the underlying
distribution of the data from the normal class. The benefit of this is improved
robustness to the OoD few-shot population and variability. Task-specific OoD
samples are hard to find in practice; in the real world, we also have budget limita-
tions for (negative) sampling. FROB achieves significantly better robustness for
few-shot OoD detection, while maintaining in-distribution accuracy. Aiming at
solving the few-shot robustness problem with classification and OoD detection,
the contribution of our FROB methodology is the development of an integrated
robust framework for self-supervised few-shot negative data augmentation on
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the distribution confidence boundary, combined with few-shot OoD detection.
FROB trains a generator to create low-confidence samples on the normal class
boundary, and includes these learned samples in the training to improve the per-
formance in the few-shot setting. The combination of the self-generated boundary
and the imposition of low confidence at this learned boundary is a contribution
of FROB, which improves robustness for few-shot OoD detection. The main ben-
efits of our distribution boundary framework are that it is a principled approach
based on distributions, it generates near-OoD samples that are well-sampled and
evenly scattered, these near negative data are strong anomalies and adversarial
anomalies [11,6], and these learned OoD data are the closest possible negative
samples to the normal class. This latter characteristic of our algorithm leads
to the tightest-possible OoD data description and characterization, and to self-
generated negatives that are optimal in the sense that no unfilled space is allowed
between the normal class data and the learned OoD samples. In this way, FROB
uses the definition of anomaly and the delimitation of the support boundary of
the normal class distribution, which are needed for improved robustness.

We achieve generalization to unseen OoD, with applicability to new unknown,
in the wild, test sets that do not correlate to the training sets. FROB’s evaluation
in several settings, using cross-dataset and One-Class Classification (OCC) eval-
uations, shows that key methodological contributions such as generating samples
on the normal class distribution boundary and few-shot adaptation, improve few-
shot OoD detection. Our experiments show robustness to the number of OoD
few-shots and to outlier variation, outperforming methods we compare with.

2 Proposed Methodology for Few-Shot OoD Detection

We propose FROB in Fig. 1 for joint classification and few-shot OoD detection
combining discriminative and generative models. We aim for improved robust-
ness and reliable confidence prediction, and force low confidence close and away
from the data. Our key idea is to jointly learn a classifier but also a generative
model that finds the boundary of the support of the in-distribution data. We
use this generator to create adversarial samples on the boundary close to the in-
distribution data. We combine these in a self-supervised learning manner, where
the generated data act as a negative class. We propose a robustness loss to clas-
sify as less confident samples on, and out of, the learned boundary. FROB also
uses few-shots of real OoD data naturally within the formulation we propose.
Loss function. We denote the normal class data by x where x; are the
labeled data, with labels y; between 1 and K. The few-shot OoD samples are
Z,,. The cost function of the classifier model, minimized during training, is

) 1 N eXP(fyi (XZ))
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Fig. 1: FROB training with learned negative sampling, O(z), and few-shot OoD.

where f(-) is the Convolutional Neural Network (CNN) discriminative model for
multi-class classification with K classes. The proposed objective cost function has
two loss terms and a hyperparameter. The two loss terms operate on different
samples for positive and negative training, respectively. The first loss term is
the cross-entropy between y; and the predictions, softmax(f(x;)); the CNN is
followed by the normalized exponential to obtain the probability over the classes.
The second loss term enforces f(-) to more accurately detect outliers, in addition
to performing multi-class classification. It is weighted by a hyperparameter, A.
FROB then trains a generator to generate low-confidence samples on the
normal class distribution boundary. Our algorithm includes these learned low-
confidence samples in the training to improve the performance in the few-shot
setting. We do not use a large general OoD dataset because general-purpose OoD
datasets lead to an ad hoc selection of outliers that try to approximate data
outside the support of the normal class distribution. Instead, we use negative
data augmentation and self-supervised learning to model the boundary of the
support of the normal class distribution. Our proposed FROB model generates
outliers via a trained generator O(z), which takes the form of a CNN. Here, O
refers to OoD samples, and z are samples from a standard Gaussian distribution.
The optimization of maximizing dispersion subject to being on the boundary is

g L 5zl .
arg minp j_LZz;#Z 0(z) = Oj(zj)||2 + vminj=1 2 ¢ 1|0(2) — x,|2
¥ exp(fi(O(z)) — fi(x)) (2)

12K S exp(fu(0(@) — fi(x))

where by using (2), we penalize the probability that O(z) has higher confidence
than the normal class. We make O(z) have lower confidence than x. FROB
includes the learned low-confidence samples in the training by performing (1)
with the self-generated boundary, O(z), instead of Z. Our self-supervised learn-
ing mechanism to calibrate prediction confidence in unforeseen scenarios is (2)
followed by (1). We perform distribution boundary data augmentation in a learn-
able manner and set this distribution confidence boundary as negative data to
improve few-shot OoD detection. This learned boundary includes strong and
specifically adversarial anomalies close to the distribution support and near high
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probability normal class data. FROB sets samples just outside the data distribu-
tion boundary as OoD. We introduce relevant anomalies to more accurately and
more robustly detect few-shots of OoD [2]. We detect OoD samples by generating
task-specific anomalous samples. We employ a nested optimization: an inner op-
timization to find O(z) in (2), and an outer optimization based on cross-entropy
with negative training in (1). For this nested optimization, if an optimum point
is reached for the inner one, an optimum will also be reached for the outer.
FROB, for robust OoD detection, performs negative data augmentation on
the support boundary of the normal class in a well-sampled manner. Specifically,
FROB performs OoD sample description and characterization. By using (2), it
does not allow for unfilled space between the normal class and the self-generated
OoD. The second loss term of our loss function in (2) is designed to not permit
unused and slack space between the learned negatives and the normal class data
[11,6]. Our learned near-OoD samples have low point-to-set distance as measured
by the second loss term of our proposed objective cost function shown in (2).
In the proposed self-supervised approach, the loss function for the param-
eter updation in the generator is (2). The first loss term is for scattering the
generated samples. This measure reduces mode collapse and preserves distance
proportionality in the latent and data spaces. The second loss term penalizes
deviations from normality by using the distance from a point to a set. The third
term in (2) guides to find the data distribution boundary by penalizing predic-
tion confidence and pushing the generated samples OoD. In the second term, we
denote the data by (x;, yj)jQ:p e.g. X; is a vector of length 3072 for CIFAR-10.
By employing (2) followed by (1), FROB addresses the question of what OoD
samples to introduce to our model for negative training in order to accurately and
robustly detect few-shot data and achieve good few-shot generalization. FROB
introduces self-supervised learning and learned negative data augmentation using
the tightest-possible OoD data description algorithm of (2) followed by (1). Our
distribution confidence boundary in (2) is robust to the problem of generators
not capturing the entire data distribution and eventually learning only a Dirac
distribution, which is known as mode collapse [6,7]. Using scattering, we achieve
sample diversity by using the ratio of distances in the latent and data spaces. In
addition, in (2), our FROB model also uses data space point-set distances.
FROB redesigns and streamlines the use of general QoD datasets to work
for few-shot samples, even for zero-shots, using self-supervised learning to model
the boundary of the support of the normal class distribution instead of using a
large OoD set. Such general-purpose large OoD sets lead to an ad hoc selection
of outliers trying to model the complement of the support of the normal class
distribution. The boundary of the support of the normal class distribution, which
FROB finds using (2), has and needs less samples than the entire complement
of the support of the data distribution that big OoD sets try to approximate.
Inference. The Anomaly Score (AS) of FROB for any queried test sample,
X, in the data space, during inference and model deployment, is given by

AS(f,x) = max exp(f1(%)) ’
(f ) 1=1,2,...,. K Z?:l eXp(fk(i)) (3)
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where [ is the decided class. If the AS of X has a value smaller than a predefined
threshold, 7, i.e. AS < 7, then x is OoD. Otherwise, x is in-distribution data.

3 Related Work on Classification and OoD Detection

General OoD datasets. Training detectors using outliers from general OoD
datasets can improve the OoD detection performance to detect unseen anomalies
[5]. Using datasets disjoint from train and test data, models can learn represen-
tations for OoD detection. Confidence Enhancing Data Augmentation (CEDA),
Adversarial Confidence Enhancing Training (ACET), and Guaranteed OoD De-
tection (GOOD) address the overconfidence of classifiers at OoD samples [3,4].
They enforce low confidence in a [, .-norm ball around each OoD sample. CEDA
employs point-wise robustness [13]. GOOD finds worst-case OoD detection guar-
antees. The models are trained on general OoD datasets that are, however, re-
duced by the normal class dataset. Disjoint distributions are used for positive
and negative training, but the OoD samples are selected in an ad hoc manner.
In contrast, FROB performs learned negative data augmentation on the normal
class distribution confidence boundary to redesign few-shot OoD detection.
Human prior. GOOD first defines the normal class, and then filters it out
from the general-purpose OoD dataset. This filtering-out process of normality
from the general OoD dataset is human-dependent. It is not practical and cannot
be used in the real world as anomalies are not confined to a finite labelled closed
set [15]. This modified dataset is set as anomalies. Next, GOOD learns the normal
class, and sets low confidence to these OoD. This process is not automatic and
data- and feature-dependent [10,11]. In contrast, FROB eliminates the need for
feature extraction and human intervention which is the aim of deep learning, as
they do not scale. FROB avoids application and dataset dependent processes.
Learned negatives. The Confidence-Calibrated Classifier (CCC) uses a
GAN to create samples out of, but also close to, the normal class distribution [9].
FROB substantially differs from CCC that finds a threshold and not the normal
class distribution boundary. CCC uses a general OoD dataset, U(y), where the
labels follow a Uniform distribution, to compute this threshold. This can be lim-
iting as the threshold depends on U(y), which is an ad hoc selection of outliers
that are located randomly somewhere in the data space. This leads to unfilled
space between the OoD samples and the normal class which is suboptimal. In
contrast, FROB finds the normal class distribution boundary and does not use
U(y) to find this boundary. Our distribution boundary is not a function of U(y),
as U(y) is not necessary. For negative training, CCC defines a closeness metric
(KL divergence), and penalizes it [11]. CCC suffers from mode collapse as it does
not perform scattering for diversity. Confidence-aware classification is also per-
formed in [9]. Self-Supervised outlier Detection (SSD) creates OoD samples in
the Mahalanobis metric [8]. It is not a classifier, and it performs OoD detection
with few-shot outliers. FROB achieves fast inference with (3), in contrast to [16]
which is slow during inference. [16] does not address issues arising from detecting
using nearest neighbours, while using a different composite loss for training.
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4 Evaluation and Results

We evaluate FROB trained on different image datasets. For the evaluation of
FROB, we examine the impact of different combinations of normal class datasets,
OoD few-shots, and test datasets, in an alternating manner. We examine the
generalization performance to few-shots of unseen OoD samples at the dataset
level (out-of-dataset anomalies), which are different from the training sets.

Metrics. We report the Area Under the Receiver Operating Characteristic
Curve (AUROC), Adversarial AUROC (AAUROC), and Guaranteed AUROC
(GAUROC) [3,14]. To strengthen the robustness evaluation of FROB and to
compare with benchmarks, in addition to AUROC, we also evaluate FROB with
AAUROC and GAUROC. AAUROC and GAUROC are suitable for evaluating
the robustness of OoD detection models focusing on the worst-case OoD de-
tection performance using l.-norm perturbations for each of the OoD image
samples. It uses the maximum confidence in the /,,-norm ball around each OoD
and finds a lower (upper respectively) bound on this maximum confidence. These
worst-case confidences for the OoD samples are then used for the AUROC.

To examine the robustness to the number of few-shots, we decrease the num-
ber of OoD few-shots by dividing them by two, employing uniform sampling.
We examine the influence of this on AUROC. Specifically, we examine the vari-
ation of AUROC, AAUROC, and GAUROC, which constitute the dependent
variables, to changes of the independent variable, which is the provided number
of few-shots of OoD samples. We examine the Breaking Point of our FROB al-
gorithm and of benchmarks; we define this point as the number of few-shot data
from which the QoD performance in AUROC decreases and then falls to 0.5.

Datasets. For the normal class, we use either CIFAR-10 or SVHN. For OoD
few-shots, we use data from CIFAR-10, SVHN, CIFAR-100, and Low-Frequency
Noise (LFN). To compare with baselines from the literature, for the general OoD
datasets, we use SVHN, CIFAR-100, and the same general OoD dataset as in
[3,5] but debiased, as in [18]. We evaluate our FROB model on the datasets
CIFAR-100, SVHN, and CIFAR-10, as well as on LFN and Uniform noise.

Model architecture. FROB uses a CNN discriminative model, as described
in Section 2. We also train and use a generator that takes the form of a CNN.
We implement FROB in PyTorch and use the optimizer Adam for training.

Baselines. We demonstrate that FROB is effective and outperforms base-
lines in the few-shot OoD detection setting. We compare FROB to the baselines
GEOM, GOAD, DROCC, Hierarchical Transformation Discriminating Genera-
tor (HTD), Support Vector Data Description (SVDD), and Patch SVDD (PSVDD)
in the few-shot setting, using OCC [1]. We also compare FROB to GOOD |3],
CEDA, CCC, OE and ACET [4], and [5]. For many-samples OoD, [3,5] use a
general OoD set, which is not representative of the few-shot OoD detection set-
ting. General OoD sets result in a nonoptimal ad hoc selection of OoD, especially
when operating on a fixed few-shot budget for sampling from the OoD class.

Ablations. We evaluate FROB for few-shot OoD detection with (v') the
learned distribution boundary, O(z), i.e. FROB. For ablation, we also evaluate
models that are trained without (—) O(z) samples which we term FROBInit.
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Table 1: OoD performance of FROB with the learned distribution boundary,
O(z), in AUROC using OCC and few-shots of 80 CIFAR-10 anomalies, and
comparison to baselines, [1]. FODS is FROB with the outlier OoD dataset SVHN.

NORMAL DROCC GEOM GOAD HTD SVDD PSVDD FROB FODS

PLANE 0.790 0.699 0.521 0.748 0.609 0.340 0.811 0.867

CARr 0.432 0.853 0.592 0.8800.601 0.638 0.862 0.861
BIrRD 0.682 0.608 0.507 0.624 0.446 0.400 0.721 0.707
Car 0.557 0.629 0.538 0.601 0.587 0.549 0.748 0.787
DEER 0.572 0.563 0.627 0.501 0.563 0.500 0.742 0.727
Doc 0.644 0.765 0.525 0.784 0.609 0.482 0.771 0.782
Froc 0.509 0.699 0.515 0.753 0.585 0.570 0.826 0.884
Horske 0.476 0.799 0.521 0.823 0.609 0.567 0.792 0.815
SHIP 0.770 0.840 0.704 0.8740.748 0.440 0.826 0.792

TRUCK 0.424 0.834 0.697 0.812 0.721 0.612 0.744 0.799

MEAN 0.585 0.735 0.562 0.756 0.608 0.510 0.784 0.802

4.1 Evaluation of FROB

Evaluation of FROB using OCC Compared to Baselines. We evaluate
FROB using OCC for each CIFAR-10 class against several benchmarks in the
few-shot setting of 80 samples [1]. FROB outperforms baselines in Table 1 which
shows the mean performance of FROB when the normal class is a CIFAR-10
class. We compare our proposed FROB model to the baselines DROCC, GEOM,
GOAD, HTD, SVDD, and PSVDD [1]. FROB with the self-learned O(z) outper-
forms baselines for few-shot OoD detection in OCC when we have budget con-
straints and OoD sampling complexity limitations. We also evaluate our FROB
model further retrained with the outlier OoD dataset SVHN, FODS, and show
that using the OoD set is beneficial for few-shot OoD detection using OCC.
Robustness of FROB to the number of few-shots. We evaluate FROB
with few-shots of OoD samples from SVHN in decreasing number, setting the
normal class as CIFAR-10. We experimentally demonstrate the effectiveness of
FROB, and the results are shown in Table 2 and Fig. 2. We evaluate FROB on
SVHN, as well as on CIFAR-100 and LFN, in Fig. 2 where the in-distribution
data are from the CIFAR-10 dataset while the OoD are from SVHN, CIFAR-100,
and LFN. Using FROB, the performance improves showing robustness even for
a small number of OoD few-shots, pushing down the phase transition point in
the number of few-shots in Fig. 2. When the few-shots are from the test set, i.e.
SVHN in Fig. 2, FROB is effective and robust for few-shot OoD detection.
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Table 2: OoD performance of FROB using the learned boundary, O(z), and
OoD few-shots, tested on SVHN. The normal class is CIFAR-10 (C10). The
second column shows the training data of OoD few-shots and their number.

MODEL OoD FEW-SHOTS TEST SET AUROC AAUROC GAUROC

FROB SVHN: 1830 SVHN 0.997 0.997 0.990
FROB SVHN: 915 SVHN 0.995 0.995 0.984
FROB SVHN: 732 SVHN 0.995 0.995 0.981
FROB SVHN: 457 SVHN 0.997 0.997 0.982
FROB SVHN: 100 SVHN 0.996 0.996 0.950
FROB SVHN: 80 SVHN 0.995 0.995 0.928

We experimentally demonstrate that first performing sample generation on
the distribution boundary, O(z), and then including these learned OoD samples
in our training is beneficial. The improvement of FROB in AUROC is because
of these well-sampled O(z) samples. The component of FROB with the highest
benefit is the self-generated distribution boundary, O(z). Our proposed FROB
model shows improved robustness to the number of OoD few-shots because with
decreasing few-shots, the performance of FROB in AUROC is robust and ap-
proximately independent of the OoD few-shot number of samples in Fig. 2.

Performance on Unseen Datasets. We evaluate FROB on OoD samples
from unseen, in the wild, datasets, i.e. on samples that are neither from the
normal class nor from the OoD few-shots. We examine our proposed FROB
model in the few-shot setting in Fig. 2 for normal CIFAR-10 with OoD few-shots
from SVHN, and tested on the new CIFAR-100 and LFN. These are unseen as
they are not the normal class or the OoD few-shots. The performance of FROB
in this OoD few-shot setting in Fig. 2 is robust on CIFAR-100 and on LFN.

Next, exchanging the datasets, FROB with the normal class SVHN, and a
variable number of CIFAR-10 OoD few-shots, is tested in Table 3 and in Fig. 3.
In Table 3, compared to Table 2, FROB achieves comparable performance for
normal class SVHN and few-shots of CIFAR-10, compared to for normal class
CIFAR-10 and few-shots of SVHN, in all the AUC-type metrics. According to
Fig. 3, when compared to Fig. 2, for the unseen test set CIFAR-100, FROB
achieves better AUROC for normal SVHN compared to for normal CIFAR-10.

Effect of domain and normal class. The performance of FROB in AU-
ROC depends on the normal class. In Fig. 3, the OoD detection performance
of FROB for small number of few-shots is higher for normal class SVHN than
for normal CIFAR-10 in Fig. 2. FROB is robust and effective for normal SVHN
on seen and unseen data. FROB is not sensitive to the number of few-shots for
few-shot OoD detection, when we have OoD sample complexity constraints.



10 N. Dionelis et al.
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Fig.2: FROB (normal C10) with SVHN OoD few-shots: AUROC and GAUROC.

Table 3: Evaluation of FROB for normal SVHN with the self-generated O(z)
and OoD few-shots, tested on CIFAR-10 (C10). According to the second and
third columns, the OoD few-shots and the OoD test samples are from C10.

MODEL OoD FEW-SHOTS TEST SET AUROC AAUROC GAUROC

FROB C10: 600 C10 0.996 0.996 0.982
FROB C10: 400 C10 0.994 0.994 0.964
FROB C10: 200 C10 0.996 0.996 0.967
FROB C10: 80 C10 0.991 0.991 0.951

OoD detection performance of FROB with OoD few-shots from the
test set. In Tables 2 and 3 we experimentally demonstrate that FROB improves
the AUROC and AAUROC when the few-shots and the test samples originate
from the same dataset. We also show that FROB achieves high GAUROC.

OoD detection performance of FROB, OoD few-shots and test are
different sets. More empirical results in Figs. 2 and 3 show that FROB also
improves the AUROC when the few-shots and OoD test samples originate from
different sets, i.e. LFN and CIFAR-100. This shows robustness to the test set.

OoD performance of FROB for OoD few-shots from the test set
but also adding a general OoD dataset. Table 4 shows the OoD detec-
tion performance of FROB for OoD few-shots from the test dataset, adding a
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Fig. 3: Evaluation of FROB using the learned distribution boundary, O(z), and
few-shot OoD samples from CIFAR-10 in AUROC. The normal class is SVHN.

Table 4: OoD performance of FROB using the learned O(z), OoD few-shots,
and a general OoD dataset following the procedure in [18,3] resulting in 73257
samples, evaluated on SVHN. The normal class is CIFAR-10. FS is Few-Shots.

OoD FS OvuTtLIER OoD TEST AUROC AAUROC GAUROC

SVHN: 1830 v/ SVHN 0.994 0.994 0.972
SVHN: 915 Vv SVHN 0.993 0.993 0.333
SVHN: 732 v SVHN 0.990 0.990 0.010
SVHN: 457 v SVHN 0.997 0.997 0.807
SVHN: 100 v SVHN 0.992 0.992 0.896
SVHN: 80 Vv SVHN 0.981 0.981 0.922
SVHN: 80 - SVHN 0.995 0.995 0.928

general-purpose OoD dataset [18,3,5]. Compared to Table 2, FROB without the
OoD dataset achieves higher AUC-metrics, and this is important. This happens
because of including our proposed self-generated distribution boundary, O(z), in
our training. Adding a general-purpose OoD dataset leads to far-OoD samples
which are not task-specific and might be irrelevant [17]. These far-OoD samples
from the general benchmark OoD dataset are far away from the boundary of the
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Fig.4: FROB for normal SVHN in GAUROC with O(z) and a variable number of
OoD CIFAR-10 few-shots, tested on CIFAR-100, CIFAR-10, and Uniform Noise.

support of the normal class distribution, have high point-to-set distance as mea-
sured by the second loss term of our loss function in (2), are unevenly scattered in
the data space, and are non-uniformly dispersed. Notably, in Table 2, compared
to Table 4, the AUROC of FROB for normal CIFAR-10 is 0.996 and 0.995 for
100 and 80 OoD few-shots from SVHN respectively, while the AUROC of FROB
with a general OoD dataset is 0.992 and 0.981 respectively. This is an important
finding implying that a general OoD dataset is not needed, and that FROB with
the self-generated O(z) achieves state-of-the-art performance for few-shot OoD
detection when the QoD few-shots originate from the test set. We hypothesise
that the general OoD set is not required because O(z) generates samples that
are out of the data distribution that well cover the space between these samples
and the normal (in-distribution) class. An external outlier OoD dataset likely
provides samples that are further out and dispersed, and not task-specific.

We have thus shown in Table 4 that when FROB with the learned boundary,
O(z), is used during training, then the use of a general OoD dataset is not needed.
Next, Fig. 4 shows the performance of FROB for normal SVHN and a variable
number of OoD CIFAR-10 few-shots. In Figs. 4 and 3, compared to Fig. 2, we
show that FROB achieves better performance for normal SVHN, compared to
for normal CIFAR-10, in all AUC-type metrics, on the unseen CIFAR-100.

FROB compared to baselines. We compare our proposed FROB model
to baselines for OoD detection. We focus on all the AUROC, AAUROC, and
GAUROC, on the robustness of the models, and on the worst-case OoD detection
performance using [,,-norm perturbations for each of the OoD data samples.
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Table 5: Performance of FROB with the self-generated O(z), normal class C10,
and general QoD set following the procedure in [18,3]. Comparison to baselines.

MODEL O(z) OoD DATASET TEST AUROC AAUROC GAUROC
FROB Vv SVHN:1830 SVHN 0.997 0.997 0.990
FROB [18,3],SVHN:1830 SVHN 0.994 0.994 0.972
CcCcC — SVHN SVHN 0.999 0.000 0.000
CEDA — [18,3] SVHN 0.979 0.257 0.000
OE — [18,3] SVHN 0.976 0.70 0.000
ACET - [18,3] SVHN 0.966 0.880 0.000
GOOD - [18,3] SVHN 0.757 0.589 0.569

We examine the OoD detection performance of the baseline models CCC,
CEDA, [5], ACET, and GOOD when using C10 as the normal class, a general
OoD dataset [18,3], and the SVHN OoD dataset. We evaluate these baseline
models on the SVHN set. FROB outperforms baselines, specifically when the
three evaluation metrics AUROC, AAUROC, and GAUROC are considered.

4.2 Ablation Studies

Removing O(z). We remove the learned distribution boundary, O(z), in a
model we term FROBInit. We compare with FROB using OoD few-shots from
SVHN, using 1830 samples, in Table 6. The OoD detection performance of FROB
in AUROC in Table 6 is 0.997 and that of FROBInit, which does not use the
learned boundary, O(z), is 0.847. FROB outperforms FROBInit in all AUC-
based metrics, by approximately 18% in AUROC and AAUROC and 36% in
GAURQOC. These results demonstrate the effectiveness and efficacy of FROB.
FROB generating the boundary, O(z), leads to robustness to the
number of OoD few-shots. Most existing methods from the literature are
sensitive to the number of OoD few-shots. We demonstrate this sensitivity in
Figs. 5 and 6, where we examine the performance of FROBInit which lacks the
generator of boundary samples by varying the number of few-shot outliers. We
also compare with FROB. Comparing Figs. 5 and 6 with Figs. 2 and 3, we see
that ablating O(z) leads to loss of robustness to a small number of few-shots.
In Figs. 5 and 6, the performance of FROBInit without the learned distribu-
tion boundary, O(z), is not robust for few-shot OoD detection, i.e. for few-shots
less than approximately 1800 samples. In Figs. 2 and 3, compared to Fig. 5,
FROB achieves robust OoD detection performance as the number of OoD few-
shots decreases. This indicates that O(z) is effective and FROB is robust to the
number of OoD few-shots, even to a small number of few-shot samples. We have



14 N. Dionelis et al.

1,00
0,90
0,80
0,70
0,60
0,50
0,40
0,30
0,20
0,10
0,00

AUROC

+ CIFAR-100 - SVHN ° LOW-FREQ NOISE

0 1000 2000 3000 4000 5000 6000 7000
FS SVHN (samples number)

Fig.5: OoD performance of FROBInit in AUROC, for the normal class CIFAR-
10, without O(z) and using OoD few-shots of variable number from SVHN.

Table 6: OoD performance of FROB with the learned distribution boundary,
O(z), and 1830 OoD samples from SVHN without and with a general OoD
dataset following the procedure in [18,3]. The normal class is CIFAR-10.

MODEL O(z) OoD row-sHors AUROC AAUROC GAUROC

FROB v" SVHN: 1830 0.997 0.997 0.990
FROBINIT —  SVHN: 1830 0.847 0.847 0.728

shown that when the self-generated distribution boundary, O(z), is not used,
the OoD performance in AUROC decreases as the number of OoD few-shots
decreases. The self-generated distribution boundary of FROB leads to a specific
selection of anomalous samples that do not allow unfilled space in the data space,
between the learned negatives and the normal class. FROB, because it generates
samples on the distribution boundary, shows a more robust and improved OoD
performance to the number of OoD few-shots when compared to FROBInit.
Further evaluation of FROBInit and its Breaking Point. To show
the benefit of our proposed FROB model using our learned distribution bound-
ary samples, O(z), in (2), we now continue the evaluation of FROBInit in this
ablation study analysis. We have demonstrated in Figs. 5 and 6 that the per-
formance of FROBInit without the self-produced O(z) data samples, when the
normal class is the CIFAR-10 dataset, with a variable number of QoD few-shot
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Fig.6: Performance of FROBInit, without O(z), in GAUROC for the normal
class CIFAR-10, and with a variable number of OoD few-shots from SVHN.

samples from the SVHN dataset, when evaluated on different image datasets,
decreases as the number of the few-shots of OoD data decreases.

The Break Point threshold at AUROC 0.5 is reached for approximately 800
few-shots for CIFAR-100. When the learned distribution boundary, O(z), is not
used, we do not achieve a robust performance for decreasing few-shots. The
performance falls with the decreasing number of few-shots: steep decline for low-
shots less than 1830 samples, tested on SVHN and on Low-Frequency Noise.

5 Conclusion

We have proposed FROB which uses the self-generated support boundary of the
normal class distribution to improve few-shot OoD detection. FROB tackles the
few-shot problem using joint classification and OoD detection. Our contribu-
tion is the combination of the generated boundary in a self-supervised learning
manner and the imposition of low confidence at this learned boundary leading
to improved robust few-shot OoD detection performance. To improve robust-
ness, FROB generates strong adversarial samples on the boundary, and enforces
samples from OoD and on the boundary to be less confident. By including the
self-produced boundary, we reduce the threshold linked to the model’s few-shot
robustness. FROB redesigns, restructures, and streamlines the use of general
OoD datasets to work for few-shot samples. Our proposed FROB model per-
forms classification and few-shot OoD detection with a high level of robustness
in the real world, in the wild. FROB maintains the OoD performance approxi-
mately constant, independent of the few-shot number. The performance of FROB
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with the self-supervised boundary is robust and effective. Its performance is ap-
proximately stable as the OoD low- and few-shots decrease in number, while the
performance of FROBInit, which is without O(z), sharply falls as the few-shots
decrease in number. The evaluation of FROB on several datasets, including the
ones dissimilar to training and few-shot sets, shows that it is effective, achieves
competitive state-of-the-art performance and generalization to unseen anoma-
lies, with applicability to unknown, in the wild, test datasets, and outperforms
baselines in the few-shot anomaly detection setting, in AUC-type metrics.
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