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Abstract. In package-handling facilities, boxes of varying sizes are used
to ship products. Improperly sized boxes with box dimensions much
larger than the product dimensions create wastage and unduly increase
the shipping costs. Since it is infeasible to make unique, tailor-made
boxes for each of the N products, the fundamental question that con-
fronts e-commerce companies is: “How many K << N cuboidal boxes
need to manufactured and what should be their dimensions?” In this pa-
per, we propose a solution for the single-count shipment containing one
product per box in two steps: (i) reduce it to a clustering problem in
the 3 dimensional space of length, width and height where each cluster
corresponds to the group of products that will be shipped in a particular
size variant, and (ii) present an efficient forward-backward decision tree
based clustering method with low computational complexity on N and
K to obtain these K clusters and corresponding box dimensions. Our
algorithm has multiple constituent parts, each specifically designed to
achieve a high-quality clustering solution. As our method generates clus-
ters in an incremental fashion without discarding the present solution,
adding or deleting a size variant is as simple as stopping the backward
pass early or executing it for one more iteration. We tested the efficacy
of our approach by simulating actual single-count shipments that were
transported during a month by Amazon using the proposed box dimen-
sions. By just modifying the existing box dimensions and not even adding
a new size variant, we achieved a reduction of 4.4% in the shipment vol-
ume, contributing to the decrease in non-utilized, air volume space by
2.2%. The reduction in shipment volume and air volume improved sig-
nificantly to 10.3% and 6.1% when we introduced 4 additional boxes.

Keywords: Box size selection, Clustering, Decision-trees, Product ship-
ments

1 Introduction

E-commerce companies often deliver their product in brown corrugated boxes.
Though there is a constant strive towards package free shipping due to envi-
ronmental concerns, many product characteristics like its fragility, hazardous
nature, sensitivity to public disclosure (e.g. adult diapers) precludes them from
being shipped without any packaging to avoid degraded customer delivery expe-
rience. In these circumstances, the best approach is to keep packaging wastage to
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a minimum. One of the principal contributors to such packaging wastage is the
size of the packaging material, a.k.a, the box dimensions in which the products
are shipped. For instance, if the box dimensions are much bigger than the prod-
uct dimensions, the non-utilized empty space is often stuffed with filler material
like dunnages to keep the product in position, creating added waste. The image
in Fig. 1 drives this point home.

Further, such empty spaces negatively impact the number of products that
can be simultaneously transported, as the size of the individual boxes determine
the quantity of shipments that can be loaded onto a container. Hence, the ship-
ment cost per product is directly proportional to the volume of the box in which
it is sent, which may be huge compared to the product volume. The ideal solu-
tion is to manufacture N boxes, one for each of the N products, with dimensions
exactly matching the corresponding product dimension. However, this is practi-
cally infeasible due to the high fixed cost associated with making new box sizes
alongside the operational difficulty involved in scaling the packaging process for
a large number of box sizes, as they need to be placed in separate shelves, all
in the vicinity of each other. Hence the problem of reducing the empty spaces
within the box naturally breaks down into the following two sub-problems:

1. How many K << N boxes need to be manufactured, bearing in mind the
fixed cost and operational scalability?

2. Given that K boxes are manufactured, what should be their dimensions so
that the overall shipment volume is minimized?

Fig. 1. Product shipped in a huge box causing excessive wastage.

1.1 Contributions

In this work, we propose an efficient algorithm to solve the problem of deciding
the box dimensions of K boxes. Once the sizes are determined and the boxes
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made accordingly, it makes practical sense to ship every product in a box that
fits it snugly with minimum air volume, as it reduces both the wastage and
the shipping cost. We show that given K, the problem reduces to a clustering
problem of grouping products into K clusters where each cluster specifies the
set of products that will be shipped in the same sized box. Akin to K−means
[1], determining the globally optimal solution for the clusters in computationally
intractable as the problem is NP−complete. To this end, we propose a novel,
forward-backward decision tree based method to determine theK clusters, which
alongside simple heuristics like product-cluster reassignment and iterative di-
mension refinement as explained in Sec. 4 is able to arrive at a very good local
minimum of our objective namely, minimize the overall shipment volume across
all product shipments.

The theoretical time complexity of our algorithm is analyzed and derived to
be O(KN logN +NK2) as discussed in Sec. 5. The sub-quadratic growth rate
of O(N logN) w.r.t. the number of products N is critically important from the
scalability perspective, as the number of products sent in boxes could potentially
be in hundred-thousands in established e-commerce companies like Amazon.
This is the foremost advantage of our method when compared to techniques
based on genetic algorithms [20], [7]. As the total shipment volume will steadily
decrease with increasing K from the fact that more size options are available to
ship the product, the best K is that value where the benefit from the decreased
shipment volume is maximum compared to the cost of increased fixed cost and
operational hindrance. As it may not be feasible to bring these benefits and the
costs into a comparable scale, we propose to set K as the elbow-point where
the decrease in shipment volume plateaus with increasing K, as traditionally
followed in K−means clustering [9].

2 Prior work

One of the earliest references that studies the box-size problem in detail is [19],
where the problem is described as selecting the optimum number and sizes of
boxes that minimizes the total shipment, warehousing and related costs. A pos-
sibly large of set of boxes are initially created so that for every product, there
exists at least one snugly fitting box where the difference between the box di-
mensions and the product dimensions are less than a chosen threshold τ . These
size variants are then consecutively eliminated till the desired number of boxes
are reached. This largely heuristic-driven algorithm is not designed to optimize
any objective function and hence the final sets of box sizes obtained are generally
sub-optimal.

In the recent past, genetic algorithms have been used to address the box-
sizing problem. Specifically, Wong et. al in [20] introduce the use of multi-
objective genetic algorithms (MOGA) to choose optimal box sizes for combined
orders and demonstrate an application of their method to an actual industrial
problem in [10]. These methods are designed to choose box dimensions where
multiple items can be packed into a single box. We henceforth refer to them
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as multis where the orientation, the order, and the number of allowable items
that can be packed into the same box influences the box dimensions. As major-
ity of shipments in e-commerce conglomerates are singles where each box holds
only one product, in our present work we deal only with single-count shipments.
Hence the approach developed in [10] is less useful in our setting.

The MOGA technique with a problem definition very similar to ours is ex-
plored in [7] under the ambit of genetic algorithms which we pit against our clus-
tering based method in Sec. 6.2. The work in [7] also present an optimal dynamic
programming solution for one-dimensional variant of the box-sizing problem,
which as explained in Sec. 6.1 is used as the baseline. Generally, these evolution-
ary methods are very time-consuming and not scalable as many different sets of
candidate solutions (box dimensions) must be evaluated individually to choose
the most optimal box dimensions among them. The subsequent generations of
possible dimensions are not instantiated from the view point of minimizing the
overall shipment volume. Rather, they are created as minor modifications of the
parent solution (crossover and mutation) and are explicitly evaluated which is
computationally very expensive.

The problem for fixing the box dimensions is studied in different fields with
different names. In the apparel industry, it is called the standardization problem
and is framed as finding standard sizes for a given population, while minimizing
the adaption loss due to mismatch in dimension. The work in this field [4],
[14], [16] focuses on solving the problem mainly for one-dimension using the
distribution of the population and the interval bisection method [17], [15] with
different loss functions to find the optimal sizes.

The box sizing can also be treated as a special case of the assortment or
catalogue problem, where the goal is to optimally choose a subset from a large
discrete set of possible sizes to stock, taking into consideration the space and
inventory costs along with the demand for a particular size. The survey work
in [12] presents a detailed review of the methodologies designed for the assort-
ment problem in the last 50 years. In particular, it identifies the sizing problem
as a special case and discusses the techniques proposed in [3] in this regard.
The author in [12] notes that while [3] does present an extension for solving the
sizing problem in two-dimensions, its success is highly dependent on the dimen-
sions of the products being correlated, which does not necessarily hold in the
e-commerce industry. The work in [11] analyzes the uncapacitated and capaci-
tated versions of the logit product assortment problem of a retail operation and
proposes a computationally feasible branch-and-cut algorithm. Other recently
developed approaches for determining the box sizes include [13] and [21].

3 Reduction to clustering

In order to reduce the shipment volume, it is logical that frequently sold prod-
ucts be shipped in size variants which are very close to their product dimension.
Hence the selection of the best size variants depends on two factors: (a) the
dimensions of the N product that are shipped in the boxes, (b) the expected
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number of shipments per product, a.k.a the sales velocity. Recall that our goal
is to determine the box dimensions {lk, wk, hk}, k ∈ {1, 2, . . . ,K} for the K
different size variants will be introduced. Denote {lj , wj , hj} as the product di-
mensions of the product j for j ∈ {1, 2, . . . , N} and let sj be its sales velocity.
In most cases, the past shipment data can be leveraged to closely approximate
sj . Identifying the optimal size dimensions is tantamount to determining the set
of products that will be shipped in each of the box size variant. Given any such
partition of the products into K clusters, let Ck denote cluster k containing Nk
products. The cluster Ck represents the group of products that will be shipped
in the same size variant k. Then, it is easy to see that the optimal dimensions
for the box k, namely {lk, wk, hk} having the least shipment volume will equal
the largest length, width and height of the products in Ck, i.e. lk = max

j∈Ck

lj ,

wk = max
j∈Ck

wj , and hk = max
j∈Ck

hj . Identifying the best size variants reduces to

a clustering problem, where the goal is to cluster N products into K clusters
with the primary objective of reducing the total volume shipped. Let xjk be the
binary membership variable determining whether product j is shipped in the
box k. The overall shipment volume can be mathematically expressed as:

V (X) =

N∑
j=1

sj

K∑
k=1

xjk

(
max
j
xjklj ×max

j
xjkwj ×max

j
xjkhj

)
(3.1)

where the j, kth entry of the binary matrix X is xjk. Our aim is to minimize
V (X) subject to the binary constraints:∑

k

xjk = 1 ∀j, xjk ∈ {0, 1} ∀j, k.

As V (X) strictly decreases with increasing K, we solve for different K and select
K as the elbow-point where we see diminishing returns with increasing K [9].

4 Solution methodology

Obtaining the global optimal solution for the clustering formulation in eq.(3.1)
in the 3 dimensional space of length, width and height is computationally in-
tractable because of the binary constraints on the membership variables xjk.
Instead, we propose the following decision tree based forward-backward algo-
rithm to obtain a good local minimum. In each iteration, our method obtains C
clusters (size variants) in an incremental fashion by using the C−1 clusters from
the previous iteration as the starting point. Among the C − 1 size variants, we
then split one of the size variant into 2 to obtain C different boxes. As the cur-
rent C − 1 size variants are akin to the leaf nodes in a binary tree out of which
one is chosen to be split further, our algorithm closely resembles the decision
tree based methods [5]. However as explained below, our method is composed
of multiple constituents, each of them meticulously designed to minimize the
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specific objective in eq.(3.1). In the experimental section we highlight the utility
of each of these parts. We obtain K clusters when the algorithm completes.

Our algorithm primarily consists of 4 operations that are performed in a
specific order to reach the final optimal box-dimensions. They are: (1) Cluster
splitting, (2) Product reassignment, (3) Iterative refinement and (4) Cluster
combination. Below we discuss these operations in detail.

4.1 Cluster splitting

The process of selecting and segmenting a cluster k, denoted by Ck, of Nk prod-
ucts into two clusters of left and right child nodes, with the intention of mini-
mizing the total volume shipped is called cluster splitting. The volume for Ck is

Fig. 2. Tree Created By Cluster Splitting

the smallest box size that can fit every product in the cluster multiplied with
the number of shipments in the cluster i.e.,

V (k) =

(
max
j∈Ck

lj

)(
max
j∈Ck

wj

)(
max
j∈Ck

hj

)∑
j∈Ck

sj

 (4.1)

and the total volume across all clusters is V =
∑C
k=1 V (k). The aim is divide

one of the current C − 1 clusters, say Ck, into two child clusters Lk and Rk,
assign a subset of the Nk products to Lk and the remainder to Rk so that the
total volume shipped is minimized. Finding the optimal solution would require
examining every possible segmentation of the products, resulting in a compu-
tationally intractable time complexity of O(2Nk). Instead, we propose a greedy
search method that finds a good local minimum.

Each cluster can be split across 3 possible dimensions of length, width and
height to obtain new left and right child nodes. For instance, if we decide to
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split the size variant k containing Nk products on the length (l) dimension, then
the objective is to decide the cut point τk,l so that the subset of products with
length less than or equal to τk,l will be assigned to left node Lk,l and products
with length greater than τk,l to Rk,l. For each of the C − 1 clusters and the 3
dimensions, we will individually determine the cut points τk,dim that maximally
decreases the net shipment volume. In other words, choose the cut point τk,dim
that results in maximum gain, where the gain is given by:

Gain(k, dim) = V (k)− [V (Lk,dim) + V (Rk,dim)]

for dim ∈ {l, w, h}. The best dimension to split Ck is the one whose corresponding
optimum cut point results in the maximum gain compared to splitting with the
other two dimensions. The gain corresponding to the best dimension is the gain
for splitting the cluster Ck and is given by: Gain(k) = argmaxdim Gain(k, dim).
That cluster with the maximum gain will be split into 2 on the best dimension
at the optimum cut point, to obtain C size variants.

The optimum cut point τk,dim for each dimension can be determined in
O(Nk logNk), by first sorting the Nk products in the increasing value along
that dimension and then performing a left to right sweep of Nk − 1 possible cut
point values. The usage of max-heaps for other two dimensions to keep track of
the largest product dimensions in the left and right child clusters, produced for
each choice of Nk−1 cut points, limits the complexity to be within O(Nk logNk).
Since we will be evaluating each of the C clusters, the overall complexity of this
step is

∑C
k=1O(Nk logNk) = O(N logN), as

∑C
k=1Nk = N . Our approach can

be generalized to a multi-way partition of the parent cluster into more than 2
child nodes, instead of just splitting Ck into Lk and Rk. However, the time com-
plexity will be O(N2) even for 3-way splits and the method will not be scalable
for large N .

4.2 Product reassignment

As mentioned earlier, once we have partitioned the products into C clusters,
the box dimensions for the cluster Ck will equal the largest length, width and
height among the products in Ck. However, it is possible that products are not
assigned to the most optimum box that snugly fits them and minimizes the
shipment volume. So for each product, we will reassign it to that Ck whose box
dimensions individually are at least as large as the product dimension and the
box volume is closest to the product volume. The reassignment step is composed
of iterating over each product and selecting the best cluster Ck in terms of lowest
shipment volume and involves a linear time complexity of O(NC).

4.3 Iterative refinement

Given a set of box dimensions, it may be possible to tweak some of them by
a small amount to arrive at a new set of box dimensions that lead to more
efficient packing. Iterative refinement is a process that tests out this possibility by
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refining the box dimensions in a greedy manner. Each iteration of the algorithm
works as follows. Assume that at iteration t, we have a clustering solution with
the expected overall shipment volume volume Vt computed as per eq. (3.1).
Our objective is to obtain an improved clustering solution with volume cost
Vt+1 at iteration t+ 1 by moving exactly one product between two clusters such
that the difference in volume between successive iterations namely, Vt − Vt+1 is
maximized. To this end, note that the dimension of any box k can be changed
only by moving the product with the largest length, width or height in Ck to
a different cluster. So we have a maximum of three product choices per Ck and
the chosen product can be moved to other C − 1 clusters. In total, we have
3(C − 1)C options to move one product between two clusters. We will evaluate
all these O(C2) options, compute the gain in volume reduction for each of them,
and greedily select the one that gives the minimal overall shipment volume Vt+1

at iteration t + 1. If a product is moved from cluster Ck1 → Ck2 , then then the
reduction in volume equals: Vt− Vt+1 = Vt(k1) + Vt(k2)− [Vt+1(k1) + Vt+1(k2)],
where Vt(k) is the kth cluster volume (eq.(4.1)) at iteration t. Note that, we
need to evaluate all the O(C2) combinations only for the very first iteration.
For subsequent iterations, the volume reduction gains need to be computed only
among C \ {k1, k2} × {k1, k2} and between k1 and k2 which are only 2C − 3
new evaluations. Each evaluation is O(1), equal to the time to compute eq.(4.1)
with the decreased (increased) sum of sales velocity on Ck1 (Ck2) as a product j
with sales velocity sj is moved from Ck1 → Ck2 , and with either the present or
the second largest product dimensions in Ck1 depending on which dimension(s)
change and perhaps new largest product dimensions in Ck2 . The algorithm stops
at iteration T when all the possible moving options only increases the current
shipment volume Vt.

The computational complexity of this step can be computed as follows. At
the beginning, we construct a max-heap for each Ck containing Nk products
in O(Nk), one for each of the 3 dimension, to track the products with largest
dimensions which could potentially be moved to other clusters. As

∑C
k=1Nk =

N , the total pre-processing time involved is O(N). Once a product is moved
from Ck1 → Ck2 , decreasing for instance the length lk1 of Ck1 , we respectively
delete the product from the 3 max-heaps for Ck1 and push these products to the
max-heaps maintained for Ck2 , so that the products with largest dimensions in
the modified clusters Ck1 and Ck2 are updated. While the delete operation in Ck1
for the max-heap corresponding to the length will be O(1), as only the root needs
to be popped out, the delete operation for other two heaps could potentially be
O(Nk1). However, the push operations into the 3 max-heaps for Ck2 will all be
O (logNk2). Hence the total computation complexity is O(N+C2+(C+N)∗T )
where we discount O(logN) << N .

4.4 Cluster combination

Cluster combination is the process of moving from C packaging boxes to C − 1
packaging boxes by combining the pair of clusters that produce the least ad-
ditional increase in total volume shipped. We iterate over all the CC2 possible
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combination and select that pair {Ck1 , Ck2} that gives the least total volume
shipped when merged. The utility of this process may not be immediately ap-
parent and will become clear in the next section. As we search over all possible
pairs each in O(1), the time complexity for evaluation is O(C2) and the final
merging operation is O(1).

4.5 Final algorithm

Having explained the constituent parts of our solution, we proceed to put these
parts together and describe the actual algorithm. Recall that our objective is
to find K clusters that minimize eq. ( 3.1). Our algorithm has two high-level
phases, the forward pass and the backward pass. The forward pass is similar
to the divisive clustering method [18], incrementally building up the tree using
clustering splitting to generate K̃ ≥ K clusters. This process is visualized in
Fig. 2. The backward pass, following a process akin to agglomerative cluster-
ing [8], sequentially combines these K̃ clusters into the required K groups.

Creating more than the required number of clusters and then combining them
in a bottom-up fashion tends to explore the solution space better leading to an
improved clustering solution. For instance, let CC denote the set of C clusters
obtained in the forward step. Say a cluster Ck ∈ CC is further split into Lk
and Rk to get C + 1 clusters. It could be possible to combine Lk or Rk with
another cluster Ck̂ ∈ CC to produce a new clustering solution CnewC of C clusters
which may be superior to the original solution CC . We test this hypothesis in
Sec. 6, by comparing results with and without the backward pass and notice
an improvement in performance in its presence. The beginning point K̃ for the
backward pass is a hyper-parameter, chosen following the process described in
Sec. 4.6.

As the iterative refinement tries to greedily refine and improve the current
clustering solution without changing the number of clusters, it is invoked follow-
ing both cluster splitting and cluster combination subroutines. Whenever the
box dimensions change either because of the split or merge operations, or are
refined by moving products between clusters, the product reassignment step en-
sures that product are placed in the best-fitting box. Hence it is invoked after
each cluster split, cluster combination, and iterative refinement steps.

The forward pass starts off with one cluster, setting C = 1 containing all
the products. The dimensions of this box will equal the corresponding largest
dimension among all the products. The best possible split for every cluster is
evaluated using the cluster splitting method and the cluster that leads to maxi-
mum reduction in shipment volume is broken into 2. At this point we have moved
from C to C +1 clusters. After reassigning the products to better-fitting boxes,
we iterative refine and fine-tune the dimensions of the C + 1 boxes, followed by
the product reassignment step as the box dimensions may have changed. This
entire procedure is repeated till we reach K̃ ≥ K clusters.

The backward pass begins at K̃ clusters proceeding in a bottom-up fashion.
After reducing the number of clusters by 1 through merging the best two pairs
using the cluster combination method, the products are reassigned, the clusters
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are refined by moving one product between two clusters in successive iterations
to further optimize the box dimensions, followed by one more reassignment step.
This agglomerative procedure is repeated till we reachK clusters. The maximum
value of {l, w, h} in each of the final K clusters will be the dimensions of the
corresponding size variants.

4.6 Hyper-parameter selection

The only hyper-parameter in our algorithm is the beginning point K̃ for the
backward pass. Each K̃ may produce different size variants once once we reachK
clusters from below. To choose the best K̃, we pursued the following validation
process. We considered the actual single-count shipment data containing one
product per box that occurred in a different time period, referred to as the
validation set, and simulated these shipments by sending products in snugly-
fit boxes whose dimensions are obtained by starting the backward pass on the
training shipment set at a position K ′. On the simulated shipments, we then
determined the percentage of air in the box ξ as per eq.(6.1) defined below. We
set K̃ to that value of K ′ for which the K clusters and the corresponding K box
sizes lead to minimum ξ in the validation data set. It is important to note that
the box dimensions are determined from the training set and their performance
is evaluated on a different, unseen validation data set.

5 Time complexity analysis

Denote K̃ = αK for some α independent of N and K and let the iterative refine-
ment step be executed for a maximum of Tmax iterations. The time complexity
for the forward pass equals:

O

(
αK∑
C=1

N logN +NC +N + C2 + (C +N) ∗ Tmax

)
= O

(
KN logN +NK2 +K3 + (K2 +KN) ∗ Tmax

)
.

Similarly, for the backward pass it will be:

O

(
αK∑

C=K+1

C2 +NC +N + C2 + (C +N) ∗ Tmax

)
= O

(
K3 +NK2 + (K2 +KN) ∗ Tmax

)
.

As K << N and Tmax is a constant independent of N and K, the overall time
complexity can be succinctly stated as O(KN logN +NK2). It is worth empha-
sizing that the computational complexity of only O(N logN) on the number of
products N , makes our algorithm scalable to even millions of products.
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6 Experiments

Recall that our primary goal is to decide on the number and the sizes of the
boxes, so that they snugly fit the products, minimizing the non-utilized space in
each shipment and thereby the overall shipment volume. In order to determine
the extent of empty space —the air in the box— across all shipments, we use
the metric ξ described as follows. Let STE denote the number of shipments that
occurred in test time period TE, equal to the sum of sales velocity of the products
during that interval. This interval TE could be any non-overlapping period in the
future, different from both the time TR of the training shipments which are used
to learn the box dimensions and the validation period. Given the K box sizes,
we first associated each product shipment i with the most snugly-fitting box
and computed the product and box volumes, pvi and bvi respectively. Defining

P =
STE∑
i=1

pvi and V =
STE∑
i=1

bvi to be the total product and shipment volumes, we

determine the % air-in-box, denoted by ξ, by:

ξ ≡ 100×
(
1− P

V

)
. (6.1)

As V ≥ P , ξ ∈ [0, 100), where a value close to 0 is indicative of the best pos-
sible box-dimensions across all products and a value near 100 is the worst case
scenario.

As P is a constant, it is clear that ξ and V are commensurable and minimizing
V (X) in eq. (3.1) is tantamount is achieving smallest value for ξ in eq. (6.1). The
business sensitive nature of the shipment volumes precludes us from disclosing
their actual values. Hence we report the%air-in-box metric in all our experiments
results. Since ξ and V are directly related, the inferences made using ξ are
straight away applicable to V and vice versa.

The principal aim of our experiments is to answer the following question: “For
different methods/variants, how does ξ vary with K?” To this end, we study the
following variants of our clustering method to underscore the role played by each
of different subroutines and compare it with two competing approaches.

1. Our algorithm in its entirety that includes all the 4 constituent parts namely,
cluster splitting, product reassignment, iterative refinement and the cluster
combination involved in the backward pass.

2. An alternative that comprises of the only forward pass to highlight the value
addition from the backward phase.

3. Exclusion of the iterative refinement step both in the forward and the back-
ward passes.

4. Another alternative that does not involve the product reassignment in both
the phases.

5. The Genetic Algorithm (GA) based algorithm proposed in [7] tailored to our
setting.

6. As a baseline, we also implemented the 1D clustering method on the product
volumes as described below.
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6.1 Baseline method

Instead of clustering in the 3 dimensional space of length, width and height, we
project the products into the single dimensional volumes vj = ljwjhj and then
cluster these N volumes {v1, v2, . . . , vN} into K clusters such that the following
alternative objective function is minimized:

Ṽ (X) =

K∑
k=1

(
max
j
xjkvj

) N∑
j=1

xjksj , (6.2)

subject to the binary constraints on xjk. The one dimensional clustering formu-
lation can be solved in O(N2K) using Dynamic Programming method [6], [7].
As before, the clustering output determines those set of products that will be
shipped in a particular box variant k, whose dimensions will equal the largest
length, width and height among the products in that cluster Ck.

6.2 Set-up and results

We considered about 2 million shipments, each containing one product, that oc-
curred during June 2019, for training. Our training data setDTR = {lj , wj , hj , sj}Nj=1

is the set of 4-tuples for about N = 75, 000 products, containing its length lj ,
width wj , height hj and number of shipments sj known as the sales velocity.
These products are currently shipped in K = 14 boxes of different dimensions.
We set July 2019 as our validation period V D to determine the starting point
K̃ as described in Sec. 4.6.

We evaluated the performance of each of the 4 different variants, the GA
based approach [7] and the baseline method using the %air-in-box metric ξ
on the test set shipments DTE , that took place in August 2019, for values of
K ∈ {12, 13, . . . , 19, 20}. The size of DTE was about 2 million shipments. For
everyK we determined the value of K̃ following the process described in Sec. 4.6.
The plot in Fig. 3 shows the ξ values computed on the validation data setDV D for
different starting points K̂, and for different K box dimensions determined from
the training shipments DTR. We would like to emphasize that generating the
graph in Fig. 3 is computationally not expensive. When performing a backward
pass starting from a point K̂, the box dimensions (as a function of K̂) for all the
values of K ≤ K̂ can be obtained along the way after merging the chosen two
clusters in the group CK+1 of K + 1 clusters to get the set CK of K clusters. It
is not necessary to repeat this step once for each value of K, corresponding to
the starting point K̂. From Fig. 3 we note K̃ = 44 as a good point to being the
backward phase for most values of K.

Setting K̃ = 44, we gauged the performance of the 6 methods. In Fig. 4 we
show the %air-in-box values computed on the test shipments DTE for each of
these methods, across differentK values. The horizontal line in red is the value of
the metric ξcurr = 60.5% for the test shipments when products are shipped in the
currently used 14 box sizes. It is important to bear in mind that after manually
analyzing the shipping data over several months, the current dimensions for 14
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Fig. 3. The % air-in-box for different back-
tracking starting points.

Fig. 4. Evaluation of the 4 variants, the
genetic algorithm and the baseline meth-
ods.

Fig. 5. (i) Top: Comparison of box dimen-
sions, (ii) Bottom: Volume share distribu-
tion

Fig. 6. Box usage distribution on the test
shipments DTE

Fig. 7. Sensitivity of box dimensions to change in training data DTR



14 K. S. Gurumoorthy et al.

boxes are carefully handpicked to minimize %air-in-box. So any improvement
over ξcurr is of high significance. As expected, our complete method plotted in
black, containing all the 4 sub-parts has the least %air-in-box among all variants,
for all values ofK barringK = 15. The minor deviation atK = 15 is because the
variant without the iterative refinement step, circumstantially had a marginally
better local minimum value of 57.5% compared to our complete algorithm whose
ξ = 57.7%. While each constituent part contributes to decreasing the shipment
volume, the product reassignment step is the most valuable, as ξ increases by
more than 1% in its absence. Even with 13 boxes, 1 less than the current usage
of 14, our method has a lower ξ value of 59.9% compared to ξcurr and decreases
further to ξ = 58.3% at K = 14.

The baseline method, where we perform clustering in the one-dimensional
projected space of product volumes, invariably performs poorly with a very high
ξ value of 90.8% even at K = 20 and is a poor alternative for the actual objective
function in eq.(3.1). Though the GA based approach performs better with respect
to the baseline, it consistently yields higher %air-in-box values compared to our
clustering based technique even after multi-starting the method from 5 different
initial population size of 200, where each population is a set of K box sizes,
and choosing the best out of the 5 solutions based on cross-validation using the
shipments in DV D. The primary reason why GA based methods may result in
poor local minimum is that subsequent generations of possible dimensions are
not necessarily produced from the perspective of minimizing the overall shipment
volume, but are instantiated by crossing-over the parent dimensions which could
be sub-optimal.

In top half of Fig. 5 we ordered the boxes by their volume, and compared the
dimensions of the currently used 14 boxes against the sizes variants suggested
by our algorithm. In the bottom part we show the volume share of these boxes,
where we plot %volume of shipments sent in each of the size variant. By slightly
increasing the box dimensions of a box C, our method shifts a large amount
of product volume from box C + 1, leading to smaller total shipment volume
and lesser wastage of non-utilized space in the box. A prominent case of this
observation is C = 10, where by increasing the dimensions of box 10, a huge
share is taken out of the larger volume box 11.

On simulating the actual shipments in DTE using the 14 box sizes produced
by our method instead of the presently used size variants, we observed the overall
shipment volume V to decrease by 4.4%, translating to shipment cost savings of
tens of millions of dollars even in emerging marketplaces. As the elbow point oc-
curs at K = 18 we recommend the usage of 18 size variants, where we estimated
the shipment volume to reduce substantially by 10.3% and %air-in-box by 6.1%
compared to the currently used 14 box sizes. Looking into the shipment share
distribution plot in Fig. 6, where the boxes are numbered in increasing order
of their volume and we plot the % shipments sent in each of them, we notice a
skewed distribution in the sense that 88.1% shipments are sent in smaller boxes
(number ≤ 8) and the usage of large boxes (≥ 9) are reserved only for 11.9%
shipments.
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6.3 Low sensitivity to training data

Further, we analyzed the sensitivity of our algorithm to the choice of train-
ing shipments DTR, to study whether changing those leads to drastically dif-
ferent box dimensions. We independently executed our algorithm using 3 non-
overlapping months of shipment data as DTR for the same hyper-parameter value
of K̃ = 44, and obtained 3 sets of K box-dimensions for different values of K.
As before, we simulated the test shipments DTE on these 3 sets of K boxes and
computed the %air-in-box shown in the top-half of Fig. 7. We observe that the ξ
values, across different values of K, vary very little over different training sets. In
the bottom-half of Fig. 7, we compare the box dimensions of the corresponding
14 boxes obtained from each training set and again do not see any significant
variations. These results strongly point to the fact that our method favorably
has low sensitivity, equivalent to a low model variance [2], w.r.t. changing the
training shipments.

7 Conclusion

We proposed an approach for determining the box sizes used to ship products.
After reducing it to an equivalent clustering problem, we presented a decision-
tree based algorithm containing forward and backward phases, coupled with
steps like product reassignment, iterative refinement etc. to arrive at the best
dimensions for K boxes. In addition to minimizing the overall shipment volume
leading to substantial savings in shipment cost, our algorithm also contributes
to a greener environment by keeping the wastage as low as possible. Further,
addition or deletion of a size variant is as straightforward as stopping the back-
ward pass early or continuing it for one more iteration, as our method creates
clusters in an incremental fashion without discarding the present solution.

Extending our approach to handle multis containing more than one product
in the same shipment is a challenging task as they depend on: (i) type, the num-
ber of products and their dimensions that are shipped together (ii) the order and
the orientation in which products are packed in the box. Deeper understanding
of customer purchase patterns is required to identify such product groups that
are bought and shipped collectively. Sparsity in the data further compounds this
problem, as the number of shipments of large product groups are highly likely to
be few in number. These are fruitful avenues that require further investigation.
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