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Abstract. Significant advances in weakly-supervised semantic segmen-
tation (WSSS) methods with image-level labels have been made, but they
have several key limitations: incomplete object regions, object bound-
ary mismatch, and co-occurring pixels from non-target objects. To ad-
dress these issues, we propose a novel joint learning framework, namely
Saliency Map and Visual Word Encoder (SMVWE), which employs
two weak supervisions to generate the high-quality pseudo labels. Specif-
ically, we develop a visual word encoder to encode the localization map
into semantic words with a learnable codebook, making the network
generate localization maps containing more semantic regions with the
encoded fine-grained semantic words. Moreover, to obtain accurate ob-
ject boundaries and eliminate co-occurring pixels, we design a saliency
map selection mechanism with the pseudo-pixel feedback to separate the
foreground from the background. During joint learning, we fully utilize
the cooperation relationship between semantic word labels and saliency
maps to generate high-quality pseudo-labels, thus remarkably improv-
ing the segmentation accuracy. Extensive experiments demonstrate that
our proposed method better tackles above key challenges of WSSS and
obtains the state-of-the-art performance on the PASCAL VOC 2012 seg-
mentation benchmark.

Keywords: Weakly-supervised semantic segmentation · Saliency map ·
Visual word encoder · Pseudo labels.

1 Introduction

Semantic segmentation aims to predict pixel-wise classification results on im-
ages, which is one important and challenging task of computer vision. With the
development of deep learning, a variety of Convolutional Neural Network (CNN)
based semantic segmentation methods [7,8] have achieved promising successes.
However, they require a large number of training images annotated with pixel-
level labels, which is both expensive and time-consuming. Thus, various weakly
supervised semantic segmentation (WSSS) methods have attracted increasing
interest of researchers. Most existing WSSS studies adopt image-level labels as
the weak supervision of the segmentation model, in which a segmentation net-
work is trained on images with less comprehensive annotations that are cheaper
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to obtain than pixel-level labels. The image-level WSSS methods usually perform
semantic segmentation through generated pseudo-labels as weak supervision. In
general, using a classification network to generate class activation maps (CAM)
[46] containing object localization maps, which can be as initial pseudo labels
to achieve the semantic segmentation performance [35,4]. However, the classifi-
cation network has the ability to classifity, which does not locate the integral
extents of target objects, leading to the generated CAM that typically only cover
the most discriminative parts of target objects. Thus, during the process of pro-
ducing pseudo labels, WSSS will be confronted with the following key challenges:
i) the extents of the target objects can not be covered completely [46], ii) the
localization map is unable to obtain accurate object boundaries [22], and iii)
the localization map contains co-occurring pixels between target objects and the
background [23]. These three aspects in pseudo labels are important to the final
semantic segmentation performance [35,4].

Recently, many WSSS methods have been proposed to focus on tackling
these issues. According to different issues, existing methods can be divided
into three categories. To address the incomplete object region issue of pseudo-
labels, researchers utilize the pixel-affinity based strategy [2,1] or erasing strategy
[10,22,25] to enlarge the receptive field and discover more discriminative parts for
target objects. However, they only focus on the object coverage extents, and ne-
glect that accurate object boundaries are benefit for semantic annotation. Thus,
in order to address the object boundary mismatch issue, researchers propose to
use the idea of explicitly exploring object boundaries from training images [13,9]
to keep coincidence of segmentation and boundaries. Due to some co-occurring
pixels exist in between the foreground and the background [11], these meth-
ods still lack of the clue to explore the correlation between the foreground and
the background, thus they are unable to correctly separate the foreground from
the background. In order to alleviate the co-occurring pixels issue between the
foreground and the background, most existing WSSS methods use the saliency
map [23,36,37,26,19,38,34,15] to induce processing the background, reducing the
computation burden of the segmentation model and helping the segmentation
model distinguish coincident pixels of non-target objects from a target object.
However, these WSSS methods directly utilize the saliency maps from off-the-
shelf saliency detection models as the clue of co-occurring pixels, which is easy
to separate the foreground from the background, but such a way is not beneficial
to that the segmentation model generates self-saliency maps, leading to a not
end-to-end manner training process.

In this paper, our goal is to overcome these challenges of WSSS with image-
level labels by improving the performance of the localization map generated by
the classification network. For this purpose, we propose a novel joint learning
method for WSSS, namely saliency map and visual word encoder (SMVWE),
to simultaneously learn semantic word labels and saliency maps. As shown in
Figure 1, we design a visual word encoder to help the classification network learn
the semantic word labels, leading to that the generated localization map could
cover more integral semantic extents of target objects. Due to the image-level
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WSSS task is unable to directly use the semantic word labels, we use an unsu-
pervised way to generate their vector representations in each forward pass, i.e.,
each semantic word in a trainable codebook utilizes the manhattan distance to
encode the feature maps from the classification network. In such a way, it alle-
viates the sparse object region problem, but does not separate their boundaries
from the background effectively. Thus, we design a saliency map selection mech-
anism to address inaccurate object boundaries and co-occurring pixels among
objects, where the saliency maps from off-the-shelf saliency detection models are
used as pseudo-pixel feedback. Specifically, the classification network based on
image-level labels performs semantic segmentation for L target object classes and
one background class, thus generating L foreground localization maps and one
background localization map to represent the saliency maps. To obtain accurate
object boundaries and discard the co-occurring pixels, we compare our generated
saliency maps with off-the-shelf groundtruth saliency maps by a saliency loss,
producing more effective saliency maps to improve the quality of final pseudo
labels. Moreover, we also use the multi-label classification losses containing the
image-level label prediction and the semantic word label prediction, which com-
bine with the saliency loss to optimize our proposed model, thus generating
higher-quality pseudo-labels for training the semantic segmentation network.

In summary, our main contributions are three folds:

– We propose a novel joint learning framework for WSSS, namely saliency
map and visual word encoder (SMVWE), which learns from pseudo-pixel
feedback by combining two weak supervisions, thereby effectively preventing
the localization map from producing wrong attention regions.

– We develop a visual word encoder to generate semantic word labels. By
enforcing the classification network to learn the generated semantic word
labels, more object extents could be discovered, thus alleviating the sparse
object region problem.

– We design a saliency map selection mechanism to separate the foreground
from the background, which could capture precise object boundaries and
discard co-occurring pixels of non-target objects, remarkably improving the
quality of pseudo-labels for training semantic segmentation networks.

2 Related Work

2.1 Weakly-Supervised Semantic Segmentation

Existing weakly-supervised semantic segmentation methods using image-level la-
bels mainly focus on two types of algorithms, including single- and multi-stage
methods. Single-stage methods [17,27,30,31] could achieve the semantic segmen-
tation of images through a high-speed and simple end-to-end process. For exam-
ple, RRM [43] proposes an end-to-end network to mine reliable and tiny regions
and use them as ground-truth labels, then combining a dense energy loss to
optimize the segmentation network. SSSS [3] adopts local consistency, semantic
fidelity, and completeness as guidelines, proposing a segmentation-based network
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and a self-supervised training scheme to solve the sparse object region problem
for WSSS. Though these methods are effective for semantic segmentation, they
barely achieve high-quality pseudo-labels to improve the segmentation accuracy.

Moreover, existing multi-stage methods generally perform the following three
steps: (i) generate an initial localization map to localize the target objects;
(ii) improve the initial localization map as the pseudo labels; and (iii) using
generated pseudo-labels to train the segmentation network. Recently, many ap-
proaches [19,23,34] are devoted to alleviate the incomplete object region problem
during generating pseudo-labels process. For example, adversarial erasing meth-
ods [18,36] help the classification network learn non-salient regions features and
expand activation maps through erasing the most discriminative part of CAMs.
Instead of using the erasing scheme, SEAM [35] proposes the consistency regu-
larization on generated CAMs from various transformed images, and designs a
pixel correlation module to exploit the context appearance information, leading
to further improvement on CAMs consistency for semantic segmentation. ScE [4]
proposes to iteratively aggregate image features, helping the network learn non-
salient object parts, hence improving the quality of the initial localization maps.
To improve the network training, MCOF [34] mines common object features
from the initial localization and expands object regions with the mined features,
then using saliency maps to refine the object regions as supervision to train
the segmentation network. Similarly, the DSRG approach [19] proposes to train
a semantic segmentation network starting from the discriminative regions and
progressively increase the pixel-level supervision using the seeded region grow-
ing strategy. Moreover, MCIS [32] proposes to learn the cross-image semantic
relations to mine the comprehensive object pattern and uses the co-attention to
exploit context from other related images, thus improving localization maps to
benefit the semantic segmentation learning. In this work, we also focus on seman-
tic segmentation with image-level supervision and aim to improve the quality of
the initial pseudo labels.

2.2 Saliency Detection

Saliency detection (SD) methods generate the saliency map that separates the
foreground objects from the background in an image, which is benefit for many
computer vision tasks. Most existingWSSS [36,37,26,38,15] methods have greatly
benefited from SD that exploits the saliency map as the background cues of
pseudo-labels. For example, the MDC method [38] uses CAMs of a classifica-
tion network with different dilated convolutional rates to find object regions,
and uses saliency maps to find background regions for training a segmentation
model. STC [37] trains an initial segmentation network using the saliency maps
of simple images, and uses the image-level annotations as supervision informa-
tion to improve the initial segmentation network. Moreover, some methods [5,40]
integrate class-agnostic saliency priors into the attention mechanism and utilize
class-specific attention cues as an additional supervision to boost the segmenta-
tion performance. SSNet [42] jointly solves WSSS and SD using a single network,
and makes full use of segmentation cues from saliency annotations to improve
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Fig. 1. Overview of the proposed method. We develop a visual encoder module to
encode the feature map from the classification network into semantic words with a
learnable codebook, covering more object regions. Moreover, we design a saliency map
selection mechanism to separate the foreground from the background. The proposed
model is jointly trained based on the classification loss and the saliency loss.

the segmentation performance. Different from these saliency-guided methods,
our SMVWE method generates self-saliency maps using localization maps and
utilizes off-the-shelf saliency maps as their pseudo-pixel feedback, while most ex-
isting methods directly use the off-the-shelf saliency map to guide the generation
process of the pseudo labels, which is not benefit to tackle the co-occurring pixel
problem.

3 Proposed Method

3.1 Motivation

Our SMVWE mainly focus on these two comprehensive information containing
the target object location from the localization map and the boundary informa-
tion from the saliency map. Firstly, we explore more fine-grained labels in the
training procedure, namely semantic word labels, to supervise the classification
network, making the network discover more semantic regions, thus the generated
localization map could be more accurate for covering the object parts. Then, we
employ the saliency map as pseudo-pixel feedback to the localization maps from
both the foreground objects and the background. Next, we will explain how
SMVWE can tackle the sparse object coverage, inaccurate object boundary and
co-occurring pixel problems in image-level WSSS.

The image-level WSSS task is unable to directly use the semantic word la-
bels, so we use an unsupervised way to generate their vector representations in
each forward pass, i.e., each semantic word in a trainable codebook utilizes the
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manhattan distance to encode the feature maps from the classification network.
In such a way, it alleviates the sparse object region problem, and improves the
accuracy of the generated localization map.

To tackle the inaccurate object boundary and co-occurring pixel problems,
we first use the L+ 1 localization maps encoded by the semantic word labels to
generate the foreground object map and the background map, then these gen-
erated saliency map are evaluated by a saliency loss using off-the-shelf saliency
maps, addressing the boundary mismatch and assigning the co-occurring pixels
of non-target objects to the background. Thus, our method can better separate
the foreground objects from the background.

Lastly, the objective function of SMVWE is formulated with three parts: two
multi-label classification losses from semantic word labels and image-level labels
respectively, and the saliency loss from the generation process of the saliency
map. By jointly training the three objectives, we can combine the localization
map encoded by semantic word labels with the saliency map to generate higher-
quality pseudo labels.

3.2 Semantic Word Learning

The localization map generated from the classification network only covers the
most discriminative extents of objects. The reason is that the goal of the clas-
sification network is essentially classification ability, not localization map gen-
eration. Thus, we propose a visual word encoder (VWE) module to enforce the
classification network to cover integral object regions via the semantic word la-
bels.

Due to only image-level labels in the WSSS task can be employed to annotate
pixels in images, no extra labels are available. For this reason, we employ the
codebook to encode the extracted convolutional feature map M ∈ RC×H×W to
specific semantic words, where C denotes the channels, W and H denote width
and height, respectively. Then, the manhattan distance is used to measure the
similarity between the pixel at position i in M and the j-th word in codebook
B ∈ RN×K , where N is the number of words and K is the feature dimension.
The similarity matrix D can be formulated as below:

Dij = manhattan(M i,Bj) = |M i −Bj | (1)

After obtained D, we use softmax to normalize row-wise, then computing
the j-th word in codebook B represents the semantic probability of the i-th pixel
in feature map M .

P ij = softmax(Di) =
exp(Dij)∑N

n=1 exp(Din)
(2)

The semantic word Zi with the maximum probability will be denoted the
semantic word label for M i, where the index of the maximum value in the i-th
row of P ij is denoted as:
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Zi = argmaxP ij (3)

Then, we use a N -dimensional vector zword to denote the semantic word
label of the image I, where zword

j = 1 if the j-th word is in Z, and zword
j = 0,

otherwise. zword will make the classification network discover more semantic
extents of target objects during the training procedure.

If employing the histogram distributions of each semantic word generated
by counting their frequencies to represent the feature map, it will lead to non-
continuities and make the training process intractable [28]. Thus, we compute
the soft frequency of the j-th word by accumulating the probabilities in P :

eword
j =

1

H ·W

H·W∑
i=1

P ij (4)

where eword
j denotes the appearance frequency of the j-th word in M . As shown

in Figure 1, eword will model the mapping relations between semantic words and
image-level labels. Moreover, inspired by [28], we will set the codebook B as a
trainable parameter, which makes it could be learned automatically via the back
propagated gradients.

3.3 Saliency Map Feedback

In WSSS, utilizing the saliency map is a common practice to better provide the
information of object boundaries. Different from existing methods that make
full use of the off-the-shelf saliency map as a part of their feature maps, our
method generates the saliency maps using the foreground localization map and
the background localization map, where the off-the-shelf saliency map is only
used as the pseudo-pixel feedback by a saliency loss.

First, generating a foreground map F fg ∈ RH×W by aggregating the local-
ization maps of target objects, and performing the inversion of a background
map F bg ∈ RH×W generated by the background localization map to represent
the foreground map. Then, we use F fg and F bg to generate the saliency map
F s.

F s = (1− µ)F fg + µ(1− F bg) (5)

where µ ∈ [0, 1] is a hyper-parameter to adjust a weighted sum of the foreground
map and the inversion of the background map.

Moreover, our method also addresses the saliency bias during generating the
foreground map and the background map. Because the saliency detection model
obtains the saliency map via different datasets, the saliency bias is inevitable.
Thus, we introduce an overlapping ratio strategy [42] between the localization
map and the saliency map to address this issue, i.e., the i-th localization map
F i is overlapped with the groundtruth saliency map F

′

s more than δ%, which
is classified as the foreground, otherwise the background. The foreground map
and the background map are represented as follows:
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F fg =

L∑
i=1

zi · F i · 1[φ(F i,F
′

s) > δ] (6)

F bg =

L∑
i=1

zi · F i · 1[φ(F i,F
′

s) ≤ δ] (7)

where zi ∈ RL is the binary image-level label and φ(F i,F
′

s) is used to compute
the overlapping ratio between F i and F

′

s. We first use Ci and Cs to represented
the binarized maps corresponding to F i and F

′

s respectively. For example, at
the pixel Q in F , CN (Q) = 1 if FN (Q) > 0.5; CN (Q) = 0, otherwise. Then,
using φ(F i,F

′

s) = |Ci ∩Cs|/|Ci| to compute the overlapping ratio δ% between
F i and F

′

s.

3.4 Jointly Learning of Pseudo Label Generation

Our method generates the pseudo labels by two comprehensive information, i.e.,
semantic word encoding and saliency map, they respectively focus on different
issues in WSSS task. To tackle sparse object region problem, we train the clas-
sification network on the localization map M through predicting the semantic
word label zword, where the global average pooling is used to compute the se-
mantic word score sword = conv(fgap,Wword), and Wword denotes the weight
matrix. We use the multi-label soft margin loss [29] to compute the classification
loss for semantic words as follows:

Lcls(s
word, zword) =

1

L

L∑
i=1

[zword
i log

exp(sword
i )

1 + exp(sword
i )

+ (1− zword
i )log

1

1 + exp(sword
i )

]

(8)
where zword is obtained by Eq.3, L is the number of image classes.

To model the mapping relations between semantic words and image classes,
we use an 1 × 1 conv layer with weight matrix Ww2i to transfer the semantic
word frequency eword into the class probability space, where the predicted score
and the ground-truth image label are denoted by pw2i and zimg, respectively.
Thus, the loss function Lcls(p

w2i, zimg) is formulated as the same form as Eq.8.
Then, we utilize the saliency map to tackle inaccurate object boundaries and

co-occurring pixels, where the average pixel-level distance between the ground-
truth saliency map F

′

s and the generated saliency map F s is employed to cal-
culate the saliency loss.

Lsal =
1

H ·W

∥∥∥F ′

s − F s

∥∥∥2 (9)

where F
′

s is obtained from the off-the-shelf saliency detection model PFAN [45]
trained on DUTS dataset [33].



Charge Own Job: SMVWE for Image-Level Semantic Segmentation 9

The overall loss of our proposed method is finally represented as the sum of
the aforementioned loss terms.

Ltotal = Lcls(s
word, zword) + Lcls(s

w2i, zimg) + Lsal (10)

where Lsal mainly focuses on updating the parameters of L target object classes
and one background class, while Lcls only evaluates the label prediction for L
target object classes, excluding the background class.

4 Experiments

4.1 Experimental Setup

Datasets and Evaluation Criteria. Following previous works [21,42], we eval-
uate the proposed method on the PASCAL VOC 2012 semantic segmentation
benchmark [12]. PASCAL VOC 2012 consists of 21 classes, i.e., 20 foreground
objects and the background. Following the common practice in semantic segmen-
tation, we use the augmented training set with 10,582 images [16], validation set
with 1,449 images and testing set with 1,456 images. For all experiments, the
mean Intersection-over-Union (mIoU) is used as the evaluation criteria.
Implementation Details. The ResNet38 [39] is employed as the backbone net-
work to extract feature maps. The classification network is trained via the SGD
optimizer with a batch size of 4. Besides, we set the initial learning rate to 0.01
and decrease the learning rate every iteration with a polynomial decay strategy.
The number of semantic words is set to 256. The images are randomly rescaled
to 448×448. For the segmentation networks, we adopt DeepLab-LargeFOV (V1)
[6] and DeepLab-ASPP (V2) [7], where VGG16 and ResNet101 are their back-
bone networks, i.e., VGG16 based DeepLab-V1 and DeepLab-V2, and ResNet101
based DeepLab-V1 and DeepLab-V2.

4.2 Ablation Study and Analysis

To validate the effectiveness of our proposed method, we conduct several ex-
periments to analyze the effect of each component in the proposed method. For
all experiments in this section, we adopt the DeepLab-V1 with VGG-16 as the
segmentation network and measure the mIoU on the VOC 2012 validation set.

Dealing with Sparse Object Region
To validate whether the proposed VWE can cover more object regions in the
input images reasonably, we compute the mIoU of the semantic word labels on
the PASCAL VOC 2012 validation set. As shown in Table 1, it shows that the
codebook can distinguish different semantic words reasonably and the proposed
VWE can work effectively for encoding different objects of an image. Compared
with existing methods, our VWE module can obtain higher performance on
most objects for semantic segmentation, and brings an improvement of 0.9%
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Table 1. Comparison with representative methods on the sparse object region problem.
The best three results are in red, blue and green, respectively.

Method bkg aero bike bird boat bottle bus car cat chair cow table

AffinityNet [2] 88.2 68.2 30.6 81.1 49.6 61.0 77.8 66.1 75.1 29.0 66.0 40.2
MCOF [34] 87.0 78.4 29.4 68.0 44.0 67.3 80.3 74.1 82.2 21.1 70.7 28.2
SSNet [42] 90.0 77.4 37.5 80.7 61.6 67.9 81.8 69.0 83.7 13.6 79.4 23.3
SEAM [35] 88.8 68.5 33.3 85.7 40.4 67.3 78.9 76.3 81.9 29.1 75.5 48.1
CIAN [14] 88.2 79.5 32.6 75.7 56.8 72.1 85.3 72.9 81.7 27.6 73.3 39.8

Ours (VWE) 89.2 75.7 31.1 82.4 66.1 61.7 87.5 77.8 82.8 32.3 81.4 34.5

Ours (SMVWE) 90.8 77.9 31.6 89.4 56.9 57.8 86.4 77.9 82.9 32.3 76.9 52.5

Method dog horse mbk person plant sheep sofa train tv mIoU

AffinityNet [2] 80.4 62.0 70.4 73.7 42.5 70.7 42.6 68.1 51.6 58.4
MCOF [34] 73.2 71.5 67.2 53.0 47.7 74.5 32.4 71.0 45.8 60.3
SSNet [42] 78.0 75.3 71.4 68.1 35.2 78.2 32.5 75.5 48.0 63.3
SEAM [35] 79.9 73.8 71.4 75.2 48.9 79.8 40.9 58.2 53.0 64.5
CIAN [14] 76.4 77.0 74.9 66.8 46.6 81.0 29.1 60.4 53.3 64.3

Ours (VWE) 77.4 77.6 76.7 75.1 51.2 78.7 42.7 71.8 59.6 65.4
Ours (SMVWE) 80.7 80.3 81.8 74.3 44.5 80.7 54.7 68.8 60.5 67.5

Table 2. Comparison with representative methods on the inaccurate object boundary
problem using the SBD set of the VOC 2012 validation set.

Method Recall (%) Precision (%) F1-score (%)

CAM [46] 22.3 35.8 27.5
SEAM [35] 40.2 45.0 42.5
BES [9] 45.5 46.4 45.9

Our SMVWE 62.3 76.5 69.4

(65.4% vs 64.5%) compared to the state-of-the-art method [35]. Thus, under the
supervision of the generated semantic word labels, our proposed method can
cover more object extents, which effectively addresses the sparse object-region
problem and improves the performance of the localization map.

Dealing with Inaccurate Boundary and Co-occurring Pixel
Inaccurate boundary problem. To evaluate the boundary quality of pseudo-
labels, our method compares with representative methods [9,35,46] by using the
SBD set of the VOC 2012 validation set, where the SBD set containing boundary
annotations is benefit to test the boundary quality of pseudo labels through the
Laplacian edge detector [9]. As shown in Table 2, we use the evaluation metrics
of recall, precision, and F1-score to demonstrate that our method remarkably
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Fig. 2. Comparison with representative methods on the co-occurring pixel problem.
The lower confusion ratio denotes the better, and the higher IoU denotes the better.

outperforms other methods. Figure 3 shows our some visualization results, which
validate that our method works well on tackling the object boundary mismatch
problem.

(a)

(b)

(c)

Fig. 3. Qualitative segmentation results on PASCAL VOC 2012 validation set. (a)
Original images, (b) groundtruth and (c) our SMVWE. Segmentation results are pre-
dicted by ResNet101 based DeepLab-V2 segmentation network.

Co-occurring pixel problem. To measure the ability of our method on ad-
dressing the co-occurring pixels problem, we compare the performance of our
method with representative methods (i.e., CAM [46], SEAM [35], ICD [13],
SGAN [40]) by IoU and confusion ratio evaluation criteria, where the lower
confusion ratio denotes the better, and the higher IoU denotes the better. The
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Table 3. Performance comparisons of our method with state-of-the-art WSSS methods
on PASCAL VOC 2012 dataset. All results are based on VGG16. S means the saliency
map is used for existing methods and ours.

Methods S val (%) test (%)
Segmentation Network : DeepLab-V1 (VGG-16)

GAIN [25] 3 55.3 56.8
MCOF [34] 3 60.3 59.6

AffinityNet [2] 7 58.4 60.5
SeeNet [18] 3 61.1 60.8
OAA [20] 3 63.1 62.8
RRM [43] 7 60.7 61.0
ICD [13] 3 64.0 63.9
BES [9] 7 60.1 61.1
DRS[21] 3 63.5 64.5
NSRM[41] 3 65.5 65.3

Ours (SMVWE) 3 67.5 67.2
Segmentation Network : DeepLab-V2 (VGG-16)

DSRG [19] 3 59.0 60.4
FickleNet [24] 3 61.2 61.9

Split & Merge[44] 3 63.7. 64.5
SGAN [40] 3 64.2 65.0

Ours (SMVWE) 3 68.2 68.1

IoU measures how much the target classes are predicted correctly, and the con-
fusion ratio measures how much the co-occurring non-target class is incorrectly
predicted as the target class.

As shown in Figure 2, we use two co-occurring pairs, i.e. boat with water,
train with railroad, to compare our method with existing methods. Our method
markedly outperforms other methods on the IoU evaluation criteria. Moreover,
compared to other methods, only SGAN [40] method has a same lower confusion
ratio with ours. For the following reasons, CAM [46] only captures the most
discriminative region of target objects; SEAM [35] and ICD [13] both ignore
the co-occurring pixels between target objects and non-target objects, while our
method proposes a semantic word labels to discover more object regions, and
designs a saliency map selection mechanism to obtain accurate object boundaries
and discard the co-occurring pixels of non-target objects. Thus, our method
generates higher-quality pseudo labels to perform the semantic segmentation
task.

4.3 Comparison with State-of-the-arts

We compare our SMVWE method with state-of-the-art WSSS methods using
only image-level labels. As shown in Table 4, our method remarkably outperforms
other methods on the same VGG16 backbone. Noting that our performance
improvement does not rely on a larger network structure and is superior to other
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Table 4. Performance comparisons of our method with state-of-the-art WSSS methods
on PASCAL VOC 2012 dataset. All results are based on ResNet101. S means the
saliency map is used for existing methods and ours.

Methods S val (%) test (%)
Segmentation Network : DeepLab-V1 (ResNet-101)

MCOF [34] 3 60.3 61.2
SeeNet [18] 3 63.1 62.8

AffinityNet [2] 7 61.7 63.7
FickleNet [24] 3 64.9 65.3
OAA [20] 3 65.2 65.2
RRM [43] 7 66.3 65.5
ICD [13] 3 67.8 68.0
DRS[21] 3 66.5 67.5

Ours (SMVWE) 3 70.1 69.6
Segmentation Network : DeepLab-V2 (ResNet-101)

DSRG [19] 3 61.4 63.2
BES [9] 7 65.7 66.6

SGAN [40] 3 67.1 67.2
DRS[21] 3 70.4 70.7

Ours (SMVWE) 3 71.3 71.5

existing methods based on a more powerful backbone (i.e. ResNet101 in Table
5). Because our method mainly relies on the cooperation of visual word encoder
and saliency map selection strategy, which generates better pseudo labels for the
semantic segmentation task. As shown in Table 5, our method achieves a new
state-of-the-art performance (71.3% on validation set and 71.5% on test set) with
the ResNet101 based DeepLab-V2 segmentation network. Figure 3 visualizes our
semantic segmentation results on the validation set. These results show that our
method can obtain more integral object regions and accurate object boundaries,
and discard co-occurring pixels between target objects and the background.

5 Conclusion

In this paper, we proposed a saliency map and visual word encoder (SMVWE)
method for image-level semantic segmentation. Particularly, we explored more
fine-grained semantic word labels to supervise the classification network, making
the generated localization map could cover more integral object regions. More-
over, we designed a saliency map selection mechanism to separate the foreground
from the background, where the saliency maps were used as pseudo-pixel feed-
back. By joint learning of visual word encoder and saliency map feedback, our
SMVWE successfully tackles the sparse object regions, boundary mismatch and
co-occurring pixels problems, thus producing higher-quality pseudo labels for
WSSS task. Extensive experiments demonstrate the superiority of our proposed
method, and achieve the state-of-the-art performance using only image-level la-
bels.
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