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Abstract. Recommending medication combinations for patients is an essential 

part of artificial intelligence in the healthcare field. Existing approaches im-

prove the effect of recommendations by considering how to make full use of pa-

tients' electronic health records or by introducing additional external 

knowledge, but there is still room for improving the fusion of heterogeneous 

and diverse knowledge and the effect between accuracy and drug-drug interac-

tion (DDI) rate. To fill this gap, we propose the Feature Fusion and Bipartite 

Decision Networks (FFBDNet) to leverage external knowledge and improve 

accuracy and DDI rate. FFBDNet is equipped with a patient feature encoder 

which extract useful information from current and historical visits of patient to 

supplement the patient's health status, a medication feature encoder which can 

easily fuse the heterogeneous and diverse external knowledge of medications as 

feature, and a bipartite decision module to give medication recommendation re-

sults. FFBDNet also has a greedy loss function to improve accuracy and DDI 

rate. We demonstrate the effectiveness of FFBDNet by comparing with several 

state-of-the-art methods on a benchmark dataset. FFBDNet outperformed all 

baselines in all effective measures, reduced relatively the DDI rate by 97.65% 

from existing EHR data, and also is shown to improve 1.02% on Jaccard simi-

larity. 

Keywords: Medication combination prediction, External knowledge, Drug-

Drug interaction, Data mining, Attention. 

1 Introduction 

Today, abundant health data, such as longitudinal electronic health records (EHR) and 

massive medical data available on the web enable researchers and doctors to build 

better predictive models for clinical decision making [1, 2]. Among other things, rec-

ommending effective and safe medication combinations is an important task, in par-

ticular to help patients with complex medical conditions [3, 4], and the primary objec-

tive is to personalize a safe combination of medications for a particular patient based 
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on the patient's electronic health records. In recent years, more and more researchers 

try to use neural network to model the recommendation process, so as to assist doctors 

make better and more efficient clinical decisions when facing a large number of pa-

tients. There are basically two types of these approaches: 1) Sequential decision-

making models that look at recommending medication combinations to patients as a 

multi-step decision-making task, see [5-8].However, most decision-making tasks 

require a predetermined order or an appropriate reward function, which is difficult to 

define and will eventually affect the effect of the recommendation. 2) Multi-label 

classification models such as [4, 9-11] that view the medication combination recom-

mendation as a multi-label classification task, so as to avoid the rationality of the 

order of the medication recommendation in the model prediction. However, they still 

suffer from the following limitations. 

Fuse of External Knowledge. External knowledge refers to the medical data other 

than EHR, such as age and gender of patients, conflict relationship and molecular 

structure of medications, and in the medication combination recommendation, it usu-

ally refers to the external knowledge of medications. Existing works [4, 12] improve 

the effect of recommendation by introducing additional external knowledge of medi-

cations, but they have poor scalability for new external knowledge. New external 

knowledge can usually introduce new information for recommendation tasks, and 

better fusion of external knowledge can better support the model. 

Effect between Accuracy and DDI rate. In medication combination recommenda-

tion, it is very important to avoid unnecessary drug-drug interaction as much as possi-

ble, so as to ensure the safety of recommendation results. Some existing works [8, 13] 

improve the accuracy and DDI rate for recommendation by explicitly or implicitly 

introducing DDI knowledge into training, such as implicitly adjusting DDI rate 

through reward function, or directly designing DDI loss to reduce DDI rate. However, 

there is still room for improvement in the effect between accuracy and DDI rate. Es-

pecially for the DDI rate, as the essential factor to measure the safety of medication 

combination recommendation, the DDI rate of the existing works is still at a high 

level. 

To address these, we propose a Feature Fusion and Bipartite Decision Networks 

for medication combination recommendation, named FFBDNet, to fuse the  external 

medical knowledge and to improve recommend effect. We believe that different ex-

ternal knowledge can introduce new information to assist recommendation. Our 

FFBDNet has the following contributions. 

We propose a feature fusion module to fuse heterogeneous and diverse knowledge. 

The attention mechanism is used to extract the previous medical visit information 

related to the patient's current visit. A variety of non Euclidean space features of med-

ications are encoded by graph convolution network. By concatenating new external 

knowledge in the feature coding stage, it can easily realize the fusion of external fea-

tures. 

We propose a bipartite decision module to make a joint decision for medication 

recommendation. It consists of two doctor models: direct doctor and recombination 

doctor. The direct doctor directly uses the patient's representation for recommenda-

tion, and the recombination doctor recombines the medications based on the similarity 
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between the patient and the drugs. Finally, the recommendation results of the two 

doctor models are fused to complete the joint decision-making. 

We design a greedy loss to reduce the DDI rate of medication combination rec-

ommendation results. The greedy mask is used to filter high conflict medications in 

greedy loss, and experiments show that, compared with several state-of-the-art meth-

ods on real EHR data, greedy loss can avoid almost all DDI in the medication combi-

nation, while still maintaining a good recommendation accuracy. 

2 Related Works 

2.1 Medication Recommendation 

The existing medication combination recommendation methods can be basically di-

vided into two types: sequential decision-making and multi-label classification. Se-

quential decision-making models decompose one recommendation process into multi-

step medication decision-making, see [5-8, 14]. For example, LEAP[6] uses recurrent 

neural network (RNN) to model the decision-making process, and uses content-based 

attention mechanism to capture label instance mapping to predict medication at each 

step. COMPNet[8] transforms the medication combination recommendation task into 

a disordered Markov decision process (MDP) problem, and designs a deep Q-learning 

(DQL) mechanism to learn the correlation and adverse interactions between medica-

tions. Multi-label classification models realize medication combination recommenda-

tion by predicting multiple labels for patients at one time, see [4, 10-13, 15]. Among 

them, GAMENet[4] customizes a memory storage module for external knowledge 

and extract external features from EHR graph and DDI graph by graph convolution 

network, so as to improve the effect of multi-label classification for medication rec-

ommendation. SafeDrug[12] specially designs an encoder to capture drug molecular 

knowledge, which is composed of global message passing neural network (MPNN) 

and local bipartite learning module, explicitly models the medication conflict process, 

and realizes medication recommendation to patients. Despite their initial success, 

there is still room for improvement in the effect between accuracy and DDI rate, as 

well as the poor fusion of additional external knowledge caused by structural custom-

ization. 

In view of the success of the existing works through the use of external knowledge, 

in this paper, we design a feature fusion module that is easy to fuse the external fea-

tures for the medication combination recommendation task, and design a greedy loss 

to optimize the effect between accuracy and DDI rate. 

2.2 Medication Representation 

The medical data related to medication is often non Euclidean space structure, which 

is often modeled by graph convolution neural network (GCN) in the existing works.  

Initializing each node  in non Euclidean space data, GCN uses neighbor iterative ag-

gregation to update nodes, and finally obtains the informative latent feature represen-

tations of each node [16-20]. At the beginning, it achieved good results in social net-

works. And with the development, it has been successfully applied in the field of 
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medicine in recent years. For example, Ma et al. [21] use GCN to encode each node in 

the medical graph to obtain an interpretable embedded representation of the medica-

tion. Zitnik et al. [22] construct a two-layer multimodal medication interaction graph, 

and use GCN to capture the conflict relationship between medications. The represen-

tations of medication molecules are commonly modeled by molecular descriptors [23] 

and medication fingerprint [24], and David et al. [25] use GCN to capture the deep 

semantic features of medication fingerprint. Huang et al. [26] use medication pairs to 

capture medical features, and directly model medication molecule graph based GCN 

[27]. 

In this paper, we will use GCN to encode a variety of non Euclidean space medical 

data of medications, so as to capture and utilize the medication feature of different 

knowledge sources. 

3 Problem Formulation 

Electrical Health Records (EHR). In longitudinal EHR data, each patient n can be 

represented as a sequence of multivariate observations: 𝑅(𝑛) = [𝑟1
(𝑛)

, 𝑟2
(𝑛)

, ⋯ , 𝑟
𝑇(𝑛)
(𝑛)

] 

where 𝑛 ∈ { 1,2, ⋯ , 𝑁 }, 𝑁 is the total number of patients; 𝑇(𝑛) is the number of visits 

of the n-th patient. To reduce clutter, the algorithms will be described for a single 

patient and drop the superscript (n) whenever it is unambiguous. Each history record 

𝑟𝑡 = [𝑐𝑡
𝑑 , 𝑐𝑡

𝑝
, 𝑐𝑡

𝑚](𝑡 < 𝑇) of a patient for t-th visit is concatenation of corresponding 

diagnoses codes 𝑐𝑡
𝑑, procedure codes 𝑐𝑡

𝑝
 and medications codes 𝑐𝑡

𝑚. And current rec-

ord 𝑟𝑇 = [𝑐𝑇
𝑑 , 𝑐𝑇

𝑝
] of a patient is concatenation of corresponding diagnoses codes 𝑐𝑇

𝑑, 

procedure codes 𝑐𝑇
𝑝

. For simplicity, 𝑐𝑡
∗ is used to indicate the unified definition for 

different type of medical codes. 𝑐𝑡
∗ ∈ {0,1}|𝐶∗| is a multi-hot vector, where 𝐶∗ is the 

medical code set and |𝐶∗| is size of set 𝐶∗. 

External Knowledge of Medication. In this paper, there are three kinds of exter-

nal knowledge of medication: EHR graph, DDI graph and molecule graph. EHR 

graph contains the co-occurrence knowledge of medications, and can be denoted as 

𝐺𝐸 = {𝑉𝐸 , 𝐸𝐸}, where 𝑉𝐸 = 𝐶𝑚 is the node set of all medications and 𝐸𝐸 is the edge 

set of known combination medication in EHR database. DDI graph contains the con-

flict knowledge between medications, and can be denoted as 𝐺𝐷 = {𝑉𝐷 , 𝐸𝐷}, where 

𝑉𝐷 = 𝐶𝑚 is the node set of all medications and 𝐸𝐷 is the edge set of known DDIs 

between a pair of medications. molecule graph A contains the molecular composition 

knowledge of medications, which is similar to the root word in natural language pro-

cessing, and can be denoted as 𝐺𝑚𝑖 = {𝑉𝑚𝑖 , 𝐸𝑚𝑖}, where 𝑉𝑚𝑖  is the node set of all 

molecular units of medication 𝑚𝑖 ∈ 𝐶𝑚  and 𝐸𝑚𝑖  is the edge set of known molecular 

structure of 𝑀𝑖. For simplicity, 𝐺∗ is used to indicate the unified definition for differ-

ent type of medical knowledge graphs, and adjacency matrix 𝐴∗ ∈ ℝ|𝑉∗|×|𝑉∗| is de-

fined to clarify the construction of edge 𝐸∗. 

Medication Combination Recommendation. Given medical codes of the cur-

rent visit at time T (excluding medication codes) 𝑐𝑇
𝑑 , 𝑐𝑇

𝑝
, patient history 

[𝑟1, 𝑟2, ⋯ , 𝑟𝑇−1] and external knowledge graph 𝐺𝐸 , 𝐺𝐷, 𝐺𝑚𝑖 , we want to recommend 
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multiple medications by predicting multi-label output, while the predicted results are 

as close to the ground truth as possible and the DDI rate is as low as possible. 

4 The FFBDNet 

As illustrated in Fig. 1, FFBDNet includes the following components: a patient fea-

ture encoder, a medication feature encoder, and a bipartite decision module. Next, we 

will first introduce these modules and then provide details of training and inference of 

FFBDNet. 

 

Fig. 1. The FFBDNet: We first encode current visit and patient history by attention mechanism 

to generate the patient health representation ℎ𝑝𝑎𝑡 in Eq. (1-5). Then, we encode and concatenate 

the basic and external knowledge of medications to generate the medication representation 

𝐻𝑚𝑒𝑑 in Eq. (6-9). Direct doctor model is used to make medication recommendation 𝑜1 based 

on the patient's representation directly in Eq. (10), and recombination doctor model recombines 

medications based on the similarity between patient and each medication to generate recom-

mendation result 𝑜2 in Eq. (11-12). Finally, we make a joint decision 𝑜̂ based on the results of 

the bipartite doctor model in Eq. (13). 

 

4.1 Patient Feature Encoder 

From EHR data, patient health can be encoded by their current visit, which includes 

diagnosis and procedure information, and patient history, which includes diagnosis, 

procedure and medication information. Firstly, through EHR embedding, the sparse 

EHR data is mapped to the dense vector space. Then, current visit encoder is used to 

encode the patient's current health status. And by taking the patient's current visit code 

as a query, patient history encoder is used to capture the historical visit information 

from EHR based on the attention mechanism. Finally, by fusing the patient visit and 
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history code, the patient representation is generated to represent the final medical 

feature of the patient. 

EHR Embedding. As mentioned before, a visit 𝑟𝑡 consists of [𝑐𝑡
𝑑 , 𝑐𝑡

𝑝
, 𝑐𝑡

𝑚] where each 

of 𝑐𝑡
∗ is a multi-hot vector at the t-th visit. The multi-hot vector 𝑐𝑡

∗ is binary encoded 

showing the existence of each medical codes recorded at the t-th visit. Like [4] used a 

linear embedding of the input vector, we derive EHR embeddings for 𝑐𝑡
𝑑 , 𝑐𝑡

𝑝
, 𝑐𝑡

𝑚 sepa-

rately at the t-th visit as follows. 

 𝑒𝑡
∗ = 𝑐𝑡

∗𝑊𝑒𝑚𝑏
∗  (1) 

where 𝑊𝑒𝑚𝑏
∗ ∈ ℝ|𝐶∗|×𝑑𝑖𝑚  is the embedding matrix to learn. Thus the t-th visit 𝑟𝑡  is 

transformed to 𝑟𝑡̂ = [𝑒𝑡
𝑑, 𝑒𝑡

𝑝
, 𝑒𝑡

𝑚]. 
Current Visit Encoding. Then, concatenate the diagnosis and procedure of the patient 
at time T to encode the current visit of the patient as follows: 

 𝑝𝑐𝑢𝑟 = 𝑁𝑁𝑐𝑢𝑟(𝑒𝑇
𝑑#𝑒𝑇

𝑝
) (2) 

where 𝑁𝑁𝑐𝑢𝑟(∙): ℝ2𝑑𝑖𝑚 → ℝ2𝑑𝑖𝑚 is a feed-forward neural network and # is the con-

catenation operation. The patient's current health status is encoded by the current di-

agnosis and procedure, so as to provide necessary information support for medication 

recommendation. 
Patient History Encoding. We believe that the patient history can supplement the 
current health status, but not all history will help the current recommendation. There-
fore, we use the attention mechanism to extract the current helpful information from 
patient history (including diagnosis, procedure and medication) to reduce the noise 

caused by unnecessary historical data. We derive history encodings for 𝑒𝑡
𝑑 , 𝑒𝑡

𝑝
, 𝑒𝑡

𝑚 

separately as follows 

 𝑞∗ = 𝑁𝑁𝑞𝑟𝑦
∗ (𝑝𝑐𝑢𝑟) (3) 

 𝑝ℎ𝑖𝑠
∗ = ∑ 𝑁𝑁𝑣𝑎𝑙

∗ (𝑒𝑡
∗)Softmax(𝑁𝑁𝑘𝑒𝑦

∗ (𝑒𝑡
∗)𝑞∗)𝑇−1

𝑡=1  (4) 

where 𝑁𝑁𝑞𝑟𝑦
∗ (∙): ℝ2𝑑𝑖𝑚 → ℝ𝑑𝑖𝑚  is the feed-forward neural network of query trans-

form, 𝑁𝑁𝑘𝑒𝑦
∗ (∙): ℝ𝑑𝑖𝑚 → ℝ𝑑𝑖𝑚  is the feed-forward neural network of key transform 

and  𝑁𝑁𝑣𝑎𝑙
∗ (∙): ℝ𝑑𝑖𝑚 → ℝ𝑑𝑖𝑚 is the feed-forward neural network of value transform. 

Patient Representation. The final patient representation is generated by concatenating 
the current and historical information of the patient. We follow a common and effec-
tive approach to first concatenate two vectors as a double-long vector, and then apply a 
feed-forward neural network as follow, 

 ℎ𝑝𝑎𝑡 = 𝑁𝑁𝑝𝑎𝑡(𝑝𝑐𝑢𝑟#𝑝ℎ𝑖𝑠
𝑑 #𝑝ℎ𝑖𝑠

𝑝
#𝑝ℎ𝑖𝑠

𝑚 ) (5) 

where 𝑁𝑁𝑝𝑎𝑡(∙): ℝ5𝑑𝑖𝑚 → ℝ𝑑𝑖𝑚 is a feed-forward neural network and # is the concat-

enation operation. For the fusion of external knowledge, the existing work usually 

introduces external knowledge by customizing a feature encoder for specific external 

knowledge, which leads to poor scalability of new external knowledge. And for our 

method, it is convenient to expand new useful information sources, such as the pa-

tient's age, gender and others that may be helpful to the description of the patient's 
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health, by using the attention mechanism and concatenate operation. Finally, the ef-

fect of recommendation will be improved easily by introducing the new and effective 

external knowledge. 

4.2 Medication Feature encoder 

In order to make use of the attributes and dependence of medications to further im-

prove the recommendation effect, we additionally use EHR graph, DDI graph and 

molecule graph to encode medications and generate the feature representations. First-

ly, for base encoding, the medication embedding matrix in the EHR embedding is 

used to represent the basic information of medication in recommendation. Then, 

through external knowledge encoding, the non Euclidean space external knowledge of 

the medication is coded based on the graph convolution network and a readout pool-

ing function. Finally, by fusing the medication base and external code, the medication 

information table is generated to represent the final medical feature of all medications. 

Base Encoding. In order to represent the basic information of medications in the 

recommendation process, 𝑊𝑒𝑚𝑏
𝑚  is directly used to represent the basic attribute matrix 

of medications, which is the same as in Eq. (1), and each row vector in the matrix 

represents one medication. 

External Knowledge Encoding. As mentioned before, the external knowledge of 

medication includes EHR graph, DDI graph and molecule graph, which is represent-

ed by 𝐴𝐸 , 𝐴𝐷  and 𝐴𝑚𝑖 . Firstly, each 𝐴∗ ∈ ℝ|𝑉∗|×|𝑉∗|  is preprocessed respectively as 

follows: 

 𝐴̂∗ = 𝐷̂∗−
1

2(𝐼 + 𝐴∗)𝐷̂∗−
1

2 (6) 

where 𝐷̂∗ is the diagonal matrix of 𝐴∗ and 𝐼 is identity matrix. Then we apply GCN on 

each 𝐴̂∗ to learn improved embeddings respectively, 

 𝑀∗ = 𝐴̂∗𝜎(𝐴̂∗𝑊𝑔1
∗ )𝑊𝑔2

∗  (7) 

where 𝜎 is a nonlinear activation function and 𝑊𝑔1
∗ ∈ ℝ|𝑉∗|×𝑑𝑖𝑚, 𝑊𝑔2

∗ ∈ ℝ𝑑𝑖𝑚×𝑑𝑖𝑚 are 

the graph convolution matrix to learn. And the model depth can be deepened by 
increasing the number of convolution matrix layers. Then, each node in the ex-
ternal knowledge graph is encoded into 𝑀∗, where each row vector of 𝑀E ∈

ℝ|𝐶𝑚|×𝑑𝑖𝑚  and 𝑀D ∈ ℝ|𝐶𝑚|×𝑑𝑖𝑚 represents one medication, and each matrix rep-

resents one medication for 𝑀𝑚𝑖 ∈ ℝ|𝑉𝑚𝑖|×𝑑𝑖𝑚 . In order to get the molecule repre-
sentation of medications, referring to [12], 𝑀𝑚𝑖  is pooled by a readout function 
to obtain the representation of the molecule knowledge of the medication, which 
calculates the average of all molecule nodes as follows: 

 𝑧𝑚𝑖 = READOUT({𝑀𝑗
𝑚𝑖|𝑗 = 1, … , |𝑉𝑚𝑖|}) (8) 

where  𝑧𝑚𝑖  is the molecule representation of the medication 𝑚𝑖 , 𝑀𝑗
𝑚𝑖  is the row 

vector of 𝑀𝑚𝑖  and |𝑉𝑚𝑖| is the total number of the constructed molecule of the medi-

cation 𝑚𝑖. Then, the 𝑧𝑚𝑖  of all medications are stacked to obtain the molecule matrix 

𝑍 = [𝑧𝑚1 , 𝑧𝑚2 , … , 𝑧
𝑚|𝐶𝑚|]T of medications. 
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Medication Information Table. Finally, we concatenate the different encodings of 
medications as the medication information table, 

 𝐻𝑚𝑒𝑑 = 𝑁𝑁𝑚𝑒𝑑(𝑊𝑒𝑚𝑏
𝑚 #𝑀E#𝑀D#𝑍) (9) 

where each row vector of 𝐻𝑚𝑒𝑑 ∈ ℝ|𝐶𝑚|×𝑑𝑖𝑚 is the representation of one medication,  
𝑁𝑁𝑚𝑒𝑑(∙): ℝ4𝑑𝑖𝑚 → ℝ𝑑𝑖𝑚 is a feed-forward neural network to learn and # is the con-

catenation operation.  For the fusion of external knowledge, similar to the patient 

representation, it is easy to realize the fusion by adding new external features during 

vector concatenating. 

4.3 Bipartite Decision Module 

We use two doctor models to recommend medication combinations. Different doctor 

models use different encoding features to support the flexible fusion of external 

knowledge. Firstly, the direct doctor model only considers the patient representation 

to directly recommend the medication combination. And the recombination doctor 

model calculates the similarity between patient and each medication based on the 

patient representation and medication information table, and then recombines the 

medications based on the similarity calculation results to realize recommendation. 

Finally, we combine the recommendation results of the two doctor models to make a 

joint decision and complete the final recommendation for the patient. 
Direct Doctor. For this doctor model, we directly use the patient representation for 
recommendation, and it can work when the feature of medications is missing. We use 
double-layer feed-forward neural network to project the patient representation and 
generate the probability of each medication in the recommended combination, 

 𝑜1 = 𝑁𝑁𝑜1
(ℎ𝑝𝑎𝑡) (10) 

where 𝑜1 ∈ ℝ|𝐶𝑚|  is directly retrieved using patient representation and 

𝑁𝑁𝑜1
(∙): ℝ𝑑𝑖𝑚 → ℝ|𝐶𝑚| is a feed-forward neural network to learn. When implement-

ed, 𝑁𝑁𝑜1
(∙) is a two-layer network and its hidden layer is activated by relu. 

Recombination Doctor. Recombination doctor calculate the similarity between pa-
tient and each medication, recombine medications based on the similarities and pa-
tient's representation, and generate the patient's medication combination result. We first 
use the patient representation ℎ𝑝𝑎𝑡 and the medication information table 𝐻𝑚𝑒𝑑  to calcu-

late the similarity between the patient and each medication, 

 𝑠𝑖𝑚 = cosine(𝐻𝑚𝑒𝑑 , ℎ𝑝𝑎𝑡) (11) 

where 𝑠𝑖𝑚 ∈ ℝ|𝐶𝑚| is the similarity of all medications and cosine(∙) is the function of 
cosine similarity. Then, input the similarity results into a double-layer feed-forward 
neural network to calculate the recombination, and input the patient representation 
together to adjust and guide the recombination process, and generate the recommenda-
tion results of the recombination doctor, 

 𝑜2 = 𝑁𝑁𝑜2
(𝛼𝑠𝑖𝑚#𝛽ℎ𝑝𝑎𝑡) (12) 
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where 𝑜2 ∈ ℝ|𝐶𝑚|  is the result of recombination based on similarity and 

𝑁𝑁𝑜2
(∙): ℝ|𝐶𝑚|+dim → ℝ|𝐶𝑚| is a feed-forward neural network to learn. 𝛼, 𝛽 ∈ ℝ1 are 

trainable fusion weights, which are used to adjust the effect of similarity and patient 

representation on doctor model decision-making. 
Joint Decision-making. Finally, the attention mechanism is used to adjust the decision 
weight of the two doctor models to realize joint decision-making, 

 𝑜̂ = sigmoid(𝑤1⨀𝑜1 + 𝑤2⨀𝑜2) (13) 

where 𝑤1 , 𝑤2 ∈ ℝ|𝐶𝑚|  are trainable weight vectors, which integrate and adjust the 

importance of two doctors' decisions on different medications. 

4.4 Model Training and Inference 

In the training phase, the FFBDNet is trained end-to-end. We need to find the optimal 

parameters to realize medication combination recommendation. In order to improve 

the accuracy and DDI rate, we propose greedy loss to adjust the process of model 

training.  And in the inference phase, we set a threshold δ, and determine the final 

medication combination to be recommended by picking those medications whose 

model prediction probability is greater than δ. 

Multi-label Prediction Loss. We view the medication combination recommendation 

as a multi-label classification task. Therefore, we use two common multi-label classi-

fication loss functions as the objective function of our model, namely the binary cross 

entropy loss 𝐿𝑏𝑐𝑒  and the multi-label margin loss 𝐿𝑚𝑢𝑙𝑡𝑖 . 𝐿𝑏𝑐𝑒  makes the prediction 

result of the model closer to the growth truth, and 𝐿𝑚𝑢𝑙𝑡𝑖 makes the predicted proba-

bility of ground truth labels has at least 1 margin larger than others. Thus, threshold 

value is easier to be fixed when predicting. 

 𝐿𝑏𝑐𝑒 = ∑ 𝑦𝑖 log(𝑜̂𝑖) + (1 − 𝑦𝑖)log (1 − 𝑜̂𝑖)
|𝐶𝑚|
𝑖  (14) 

 𝐿𝑚𝑢𝑙𝑡𝑖 = ∑ ∑
max (0,1−(𝑜̂𝑗−𝑜̂𝑖))

|Y|𝑗∈𝑌
|𝐶𝑚|
𝑖  (15) 

where y is the ground truth of the medication combination and 𝑌 is the index set of 

ground truth label. 

Greedy Loss. We achieve greedy loss by multiplying 𝐿𝑏𝑐𝑒 and 𝐿𝑚𝑢𝑙𝑡𝑖 by greedy 

mask, which is used to shield high conflict medications, 

 𝐿̂𝑏𝑐𝑒 = ∑ 𝑚𝑎𝑠𝑘𝑖𝑦𝑖 log(𝑜̂𝑖) + (1 − 𝑚𝑎𝑠𝑘𝑖𝑦𝑖)log (1 − 𝑜̂𝑖)
|𝐶𝑚|
𝑖  (16) 

 𝐿̂𝑚𝑢𝑙𝑡𝑖 = ∑ ∑
max (0,𝑚𝑎𝑠𝑘𝑗(1−(𝑜̂𝑗−𝑜̂𝑖)))

|𝑌|𝑗∈𝑌
|𝐶𝑚|
𝑖  (17) 

 𝐿𝑔𝑟𝑒𝑒𝑑𝑦 = 𝜆1𝐿̂𝑏𝑐𝑒 + 𝜆2𝐿̂𝑚𝑢𝑙𝑡𝑖 (18) 

where 𝜆1, 𝜆2 > 0  are the mixture weights and 𝑚𝑎𝑠𝑘𝑖  is the greedy mask of the i-th 

medication of the patient. The essence of greedy loss is to explicitly reduce the co-

occurrence frequency of conflict medications, so that the model can reduce the impact 

of conflict medications on parameters in the back-propagation process when learning 
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statistical knowledge. In detail, the greedy mask can be obtained by algorithm 1, in 

which the balance between accuracy and DDI rate can be adjusted by setting different 

greedy scale. 

Inference. In inference phase, we apply a threshold δ = 0.5 on the output in Eq. (13) 

to predict medication combination. 

 𝑌̂ = {𝑖|𝑜̂𝑖 > δ, 1 ≤ 𝑖 ≤ |𝐶𝑚|} (19) 

where 𝑜̂𝑖  is the probability of each medication predicted by the model. Before the 

final inference, based on the loss function of Eq. (18), the model will be calibrated 

through the back-propagation algorithm to make the predictive scores as close as 

possible to the probabilities of medications occurrence in the actual scene. The effect 

of calibration will be affected by the data difference between training samples and 

actual scene, but it can be alleviated by limiting the number of training iterations or 

other methods to prevent over fitting. And then, we choose all medications with 𝑜̂𝑖  

greater than δ as the recommendation result. 

Algorithm 1: Greedy mask generation algorithm 

Input : Training ground truth {𝑦𝑖 , 𝑖 ∈ [1, … , |𝐶𝑚|] }, DDI adjancy 𝐴𝐷, greedy scale 𝑆 

Output: greedy mask {𝑚𝑎𝑠𝑘(𝑖), 𝑖 ∈ [1, … , |𝐶𝑚|] } 

1.  initialize 𝑚𝑎𝑠𝑘𝑘
(𝑖)

= 1   ∀𝑘 = 1 … 𝐾 

2.  initialize 𝑀𝑆𝑒𝑡 = 𝑠𝑒𝑡() 
3.  for 𝑖 = 1 … |𝐶𝑚| do 
4.     if 𝑦𝑖 = 1 do 
5.        𝑎𝑑𝑑(𝑀𝑆𝑒𝑡, 𝑖) 
6.     end if 
7.  end for 
8.  while 𝑇𝑟𝑢𝑒 
9.     initialize 𝑀 = 𝑑𝑖𝑐𝑡() 
10.    initialize 𝑓𝑖𝑛𝑒 = 𝑇𝑟𝑢𝑒 
11.    for ∀𝑝𝑎𝑖𝑟(𝑛, 𝑚) 𝑖𝑛 𝑀𝑆𝑒𝑡 do 
12.       if 𝐴𝑑[𝑛, 𝑚] = 1 do 
13.          𝑀[𝑛]+= 1 
14.          𝑀[𝑚]+= 1 
15.       end if 
16.    end for 
17.    if max(𝑀) > 𝑆 do 
18.       𝑓𝑖𝑛𝑒 = 𝐹𝑎𝑙𝑠𝑒 
19.    end if 
20.    if 𝑓𝑖𝑛𝑒 do 
21.       break 
22.    else 
23.       𝑖 = argmax(𝑀) 
24.       𝑑𝑒𝑙𝑒𝑡𝑒(𝑀𝑆𝑒𝑡, 𝑖) 
25.    end if 
26. end while 
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5 Experiment 

We compare FFBDNet with the patient's actual EHR data, take the medication com-

bination actually accepted by the patient as the ground truth, and take the output by 

FFBDNet as the prediction, and measure the accuracy of recommendations by com-

paring the differences between the ground truth and prediction. We also calculate the 

DDI rate in the prediction of FFBDNet by using the real medication confliction. In 

addition, we evaluate FFBDNet by comparing against other baselines on recommen-

dation accuracy and DDI rate. FFBDNet is implemented in PyTorch [28] and trained 

with 8GB memory and Nvidia 2060 GPU.  

Dataset. The experiments are carried out on MIMIC-III [29]. We follow the proce-

dure similar to [12] to process the medical codes in the experiments. The NDC drug 

code in MIMIC-III is mapped to third level ATC code as prediction label. The statis-

tics of the postprocessed data is reported in Table 1. 

Baselines. We compare our model with the following baseline and state-of-the-art 

algorithms. 

⚫ Logistic Regression (LR), multi-label classification model, is a logistic regres-

sion with L2 regularization. Binary relevance technique [30] is used to handle 

multi-label output. 

Table 1. Statistics of the Data. 

# patients 
# clinical events 
# diagnosis 
# procedure 
# medication 

6,350 
15,016 

1,958 
1,426 

145 

avg # of visits 
avg # of diagnosis 
avg # of procedure 
avg # of medication 

2.36 
10.51 

3.84 
8.80 

# medication in DDI knowledge base 
# DDI types in knowledge base 

123 
40 

 

⚫ RETain[14], sequential decision-making model, can integrate recent visits 

through reverse time attention, and provide sequential prediction of medication 

combination. 

⚫ Leap[6], sequential decision-making model, decomposes medication recom-

mendation into a continuous decision-making process, models the decision-

making process with a cyclic decoder, and automatically determines the appro-

priate amount of medications. 

⚫ GAMENet[4], multi-label classification model, integrates the drug-drug interac-

tions knowledge by a memory module, and models longitudinal patient records 

as the query. By using query vector to extract the information in the memory 

module of medications, medication combination recommendation is carried out. 

⚫ CompNet[8], sequential decision-making model, views the medication combi-

nation recommendation as an order-free Markov Decision Process (MDP) prob-
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lem and designs a Deep Q Learning (DQL) mechanism to learn correlative and 

adverse interactions between medicines. 

⚫ AMANet[10], multi-label classification model, integrate both attention and 

memory to realize asynchronous multi-view learning, and focus on the dual-

view sequences. The sequence is saved as the patient's historical memory, and 

the medication combination is recommended by querying the memory. 

⚫ SafeDrug[12], multi-label classification model, uses the medications’ molecular 

structure and models DDIs to make safe medication recommendation as much as 

possible. Finally, the model combines and decodes the medication information 

for medication combination recommendation. 

Metrics. We use five efficacy metrics: DDI rate, Jaccard Similarity Score (Jaccard), 

Average F1 (F1), Precision Recall AUC (PRAUC), and # of medications to evaluate 

the recommendation efficacy. 

To measure the prediction accuracy, we use Jaccard, F1, PRAUC and # of medica-

tions to calculate the gap between the ground truth and the model prediction to de-

scribe the treatment efficacy of recommendation [10,12,13]. Jaccard is defined as the 

size of the intersection divided by the size of the union of ground truth and predicted 

medication set, 

 Jaccard =
|𝑌∩𝑌̂|

|𝑌∪𝑌̂|
 (20) 

where 𝑌 is the index set of ground truth label and 𝑌̂ is the index set of model predict-

ed label. Precision (P) ,Recall (R), and F1 are defined as: 

 P =
|𝑌∩𝑌̂|

|𝑌|
, R =

|𝑌∩𝑌̂|

|𝑌̂|
 (21) 

 𝐹1 =
2PR

P+R
 (22) 

To measure medication safety, we use DDI Rate and relative DDI Rate (△ DDI 

Rate %), 

 DDI Rate =
∑ 𝐴𝑚[𝑖,𝑗]𝑖,𝑗

∑ 1𝑖,𝑗
 (23) 

 ∆DDI Rate% =
DDI Rate−DDI Rate (EHR)

DDI Rate (EHR)
 (24) 

where 𝐴𝑚 is the adjacency matrix of DDI graph and DDI Rate (EHR) is the DDI rate 

of the ground truth in EHR. And We randomly divide the dataset into training, valida-

tion, and test with ratio 4:1:1 and report the performance from the test set. 

Knowledge Source Support. Table 2 lists the support of the baseline methods for 

different knowledge sources. For these methods that use external knowledge, they 

customize the feature encoder for specific external knowledge to capture the effective 

information, which limits the scalability of other external knowledge. For our method, 

we can support the integration of all different external knowledge of patients and 

medications, so that we can easily improve the amount of model information by in-

troducing external knowledge, so as to improve the effect of recommendation. 
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Table 2. Knowledge Source Support of Baselines. 

Methods Knowledge Source Support 

LR EHR  

RETAIN EHR 

Leap EHR 

GAMENet EHR, DDI graph, EHR graph 

CompNet EHR, DDI graph 

AMANet EHR 

SafeDrug EHR, molecule graph 

Performance Comparison. Table 3 compares the performance of different ap-

proaches on accuracy and DDI rate. Compared with the baselines, FFBDNet can in-

troduce more information into the final decision-making process through the fusion of 

multiple external knowledge, so as to improve the discrimination ability of the model. 

Results show that FFBDNet has the highest score with respect to Jaccard, PR-AUC 

and F1. For FFBDNet(greedy), by using the greedy mask, the co-occurrence frequen-

cy of high conflict medications can be reduced. And results show that it can not only 

avoid almost all DDI while reaching the lowest DDI rate, but also still maintain the 

accuracy at a high level compared with the SafeDrug that emphasizes security. 

As for the baseline, sequential decision-making models such as Leap, Retain and 

CompNet yield poor results. Similar to the conclusion of previous work [12], multi-

label prediction model (GAMENet, AMANet, SafeDrug) might be more straightfor-

ward and effective in the medication recommendation task. The accuracy of AMANet 

can reach a high level, but it does not consider the problem of DDI. Both GAMENet 

and SafeDrug consider DDI in the process of model training. Although SafeDrug can 

get low DDI rate, it has low accuracy compared with our greedy method. 

Table 3. Performance Comparison on MIMIC-III (ground truth DDI rate is 0.0808). 

Methods 
DDI 
Rate 

∆DDI  Jaccard PRAUC F1 
# of 

Med. 
# of parame-

ters 

LR 
0.0724 

±0.0009 

-10.40% 
±1.11% 

0.4543 
±0.0021 

0.7550 
±0.0018 

0.6142 
±0.0019 

14.23 
±0.09 

- 

RETAIN 
0.0810 

±0.0025 
+0.25% 
±3.07% 

0.4882 
±0.0020 

0.7529 
±0.0014 

0.6487 
±0.0018 

15.83 
±0.31 

291,034 

Leap 
0.0693 

±0.0010 
-14.23% 
±1.67% 

0.4442 
±0.0025 

0.6452 
±0.0030 

0.6071 
±0.0024 

18.83 
±0.17 

439,196 

GAMENet 
0.0798 

±0.0011 
-1.24% 
±1.32% 

0.5146 
±0.0024 

0.7657 
±0.0015 

0.6694 
±0.0021 

19.77 
±0.34 

455,002 

CompNet 
0.0761 

±0.0008 
-5.82% 
±1.01% 

0.4933 
±0.0019 

0.7573 
±0.0020 

0.6587 
±0.0017 

19.33 
±0.21 

961,412 

AMANet 
0.0879 

±0.0023 
+8.79% 
±2.82% 

0.5195 
±0.0021 

0.7772 
±0.0027 

0.6739 
±0.0020 

20.13 
±0.25 

1,799,575 

SafeDrug 
0.0267 

±0.0009 
-66.95% 
±0.16% 

0.4030 
±0.0025 

0.6991 
±0.0024 

0.5582 
±0.0020 

25.56 
±0.11 

406,170 

FFBDNet(greedy) 
0.0019 

±0.0002 
-97.65% 
±0.28% 

0.4361 
±0.0014 

0.7061 
±0.0021 

0.5978 
±0.0015 

14.31 
±0.12 

227,750 

FFBDNet 
0.0717 

±0.0016 
-11.26% 
±2.01% 

0.5292 
±0.0020 

0.7777 
±0.0010 

0.6833 
±0.0017 

19.69 
±0.30 

227,750 
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Multi Feature Ablation Study. We control the introduction of different knowledge 

to observe the effect of increasing information sources on the model results. It can be 

observed in Table 4 that some external knowledge bring new information to the mod-

el, so as to improve the final effect. FFBDNet can integrate the medication feature 

into the recommendation by using the recombination doctor model in the bipartite 

decision module, and it finally achieves the best results when all the information is 

used. Thus, in medication combination recommendation task, the effect of introducing 

new information sources by fusing heterogeneous and diverse external knowledge is 

verified 

Greedy Ablation Study We evaluate greedy loss and show that accuracy and DDI 

rate can be controlled by greedy scale. The ground truth DDI rate in MIMIC-III is 

0.0808. Table 5 shows the results of different greedy scales. It can be found that the 

larger the greedy scale, the greater the accuracy of the model and the greater the DDI 

rate. When the greedy scale is infinite, the accuracy of the model is the highest. The 

greedy loss provides a way for doctors to control the tradeoff between accuracy and 

DDI rate in recommendation. 

Table 4. Multi Feature Ablation Study. 

Patient Medication 
DDI 
Rate 

∆DDI Jaccard PRAUC F1 
# of 

Med. 

current - 
0.0641 

±0.0009 
-20.67% 
±1.11% 

0.5039 
±0.0018 

0.7593 
±0.0019 

0.6611 
±0.0016 

18.95 
±0.24 

current, history - 
0.0771 

±0.0012 
-4.58% 
±1.48% 

0.5173 
±0.0015 

0.7661 
±0.0018 

0.6732 
±0.0014 

20.36 
±0.16 

current, history base 
0.0735 

±0.0014 
-9.03% 
±1.72% 

0.5204 
±0.0013 

0.7712 
±0.0007 

0.6751 
±0.0012 

19.90 
±0.17 

current, history base, EHR 
0.0739 

±0.0006 
-8.54% 
±0.73% 

0.5239 
±0.0019 

0.7754 
±0.0013 

0.6790 
±0.0017 

19.65 
±0.16 

current, history base, EHR, DDI 
0.0726 

±0.0016 
-10.15% 
±1.98% 

0.5241 
±0.0017 

0.7761 
±0.0015 

0.6816 
±0.0016 

19.33 
±0.21 

current, history 
Base, EHR, DDI, 
molecule 

0.0717 
±0.0016 

-11.26% 
±2.01% 

0.5292 
±0.0020 

0.7777 
±0.0010 

0.6833 
±0.0017 

19.69 
±0.30 

Table 5. Greedy Ablation Study. 

Greedy Scale DDI Rate Jaccard PRAUC F1 # of Med. 

1 0.0019±0.0002 0.4361±0.0014 0.7061±0.0021 0.5978±0.0015 14.31±0.12 

2 0.0105±0.0005 0.4748±0.0015 0.7287±0.0014 0.6356±0.0015 16.25±0.18 

3 0.0208±0.0004 0.4957±0.0018 0.7421±0.0014 0.6544±0.0016 17.64±0.19 

4 0.0277±0.0008 0.5032±0.0021 0.7528±0.0017 0.6608±0.0019 18.09±0.24 

5 0.0349±0.0005 0.5072±0.0012 0.7615±0.0013 0.6646±0.0011 18.43±0.20 

6 0.0410±0.0006 0.5145±0.0026 0.7694±0.0021 0.6709±0.0023 18.57±0.23 

+∞ 0.0717±0.0016 0.5292±0.0020 0.7777±0.0010 0.6833±0.0017 19.69±0.30 

6 Conclusion 

In this paper, we propose FFBDNet for medication combination recommendation, 

which is equipped with a patient feature encoder, a medication feature encoder and a 
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bipartite decision module. Based on the attention mechanism and the concatenating 

operation, the feature encoders can easily fuse external knowledge to increase the 

model information source. With using the encoder results of patient and medications, 

the bipartite decision module make a joint decision to realize medication combination 

recommendation through two doctor models. And we design a greedy loss, which 

uses the greedy mask to filter high conflict medications, to reduce the DDI rate. We 

evaluated FFBDNet using benchmark data. The experimental results show that 

FFBDNet outperforms the state-of-the-art methods. Besides, using greedy loss to 

participate in the model training, FFBDNet can avoid almost all DDI, while still 

maintaining a good recommendation accuracy. In the future, we will study how to 

efficiently extract and fuse the multi-feature of medications to further improve the 

accuracy of representation while ensuring the scalability of external knowledge. Code 

related to this paper is available at https://github.com/wangzssdwh/FFDBNet. 
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