
Factorized Structured Regression
for Large-Scale Varying Coefficient Models

David Rügamer�1,2[0000−0002−8772−9202], Andreas
Bender1[0000−0001−5628−8611], Simon Wiegrebe1[0000−0003−3385−6879], Daniel
Racek1[0000−0002−9564−7880], Bernd Bischl1[0000−0001−6002−6980], Christian L.
Müller1,3,4[0000−0002−3821−7083], and Clemens Stachl5[0000−0002−4498−3067]

1 Department of Statistics, LMU Munich
2 Institute of Statistics, RWTH Aachen

3 ICB, Helmholtz Zentrum Munich
4 CCM, Flatiron Institute

5 Institute of Behavioral Science and Technology, University of St.Gallen

Abstract. Recommender Systems (RS) pervade many aspects of our
everyday digital life. Proposed to work at scale, state-of-the-art RS al-
low the modeling of thousands of interactions and facilitate highly in-
dividualized recommendations. Conceptually, many RS can be viewed
as instances of statistical regression models that incorporate complex
feature effects and potentially non-Gaussian outcomes. Such structured
regression models, including time-aware varying coefficients models, are,
however, limited in their applicability to categorical effects and inclusion
of a large number of interactions. Here, we propose Factorized Structured
Regression (FaStR) for scalable varying coefficient models. FaStR over-
comes limitations of general regression models for large-scale data by
combining structured additive regression and factorization approaches
in a neural network-based model implementation. This fusion provides a
scalable framework for the estimation of statistical models in previously
infeasible data settings. Empirical results confirm that the estimation
of varying coefficients of our approach is on par with state-of-the-art
regression techniques, while scaling notably better and also being com-
petitive with other time-aware RS in terms of prediction performance.
We illustrate FaStR’s performance and interpretability on a large-scale
behavioral study with smartphone user data.

Keywords: Recommender systems · Neural networks · Tensor regres-
sion · Time-varying effects · Generalized additive models

1 Introduction

From buying products online to selecting a movie to watch, recommender sys-
tems (RS) are part of our everyday life. RS are used to suggest those items that
are most appealing to a given user based on the user’s past preference data or
the similarity of a user to other users. One big advantage of RS is their scala-
bility, as they allow for modeling thousands of interactions, e.g., between users

2 Rügamer et al.

and items, and thereby facilitate individual recommendations in many dimen-
sions (see, e.g., [33] for a recent implementation framework). Many RS can be
represented as a regression model with the user and item as covariates. This
makes it straightforward to include further features into the model and extend
the method by other structural components.

At the same time, the increasing amount of available data and the possibil-
ity to model increasingly complex data generating processes calls for efficient
methods to fit flexible regression models on large-scale data sets with many
observations and features. In the past, several advanced statistical regression
models have been proposed to incorporate complex feature effects. One of the
most common approaches are generalized additive models (GAMs), widely con-
sidered to be state-of-the-art (SotA) for statistical modeling [26]. These models
allow the incorporation of time-varying feature effects and spatial effects, among
others, and can also deal with non-Gaussian outcomes (see [26] for more details).
While well-working adaptions of GAMs for large data scenarios exist [28], both
methodology and software reach their limits when modelling categorical effects
or categorical interactions of several variables where features comprise hundreds
or thousands of categories. An amalgamation of methods from RS and statis-
tical regression can overcome the limitations of statistical regression models on
large-scale data sets with many categorical effects and interactions. In this work,
we combine smoothing approaches with factorization terms to overcome the lim-
itations of varying coefficient models for categorical features with many factor
levels. Our idea arises from the statistical analysis of a large-scale behavioral
dataset (Section 7). In this dataset, smartphone usage behavior of participants
was tracked for several weeks. Domain experts are interested in various struc-
tured regression effects, such as the continuous activity levels over time. While
standard regression software allows to fit some of these effects, several hundred
activities and users make it infeasible to fit a model that learns interaction effects
of users and activities or smoothly varying time effects for one or both of these
categorical variables.

Our contribution We propose Factorized Structured Regression (FaStR) for scal-
able varying coefficient models. This combined approach has the flexibility that
has proven successful in additive regression models, while also being able to deal
with high-dimensional categorical effects and interactions. More specifically, we
1) derive a general model formulation in (4) to combine GAMs and factoriza-
tion approaches, 2) derive a varying factorization interaction in Section 4.1 that
reduces the number of parameters and therefore computations by a factor of
(I + U)/(IU) for given numbers of category levels I and U , and 3) propose an
efficient implementation of this fusion approach that a) can reduce the storage
cost by a factor of 1/(I + U) and b) circumvents computations quadratic in I
and U by using stochastic optimization, an array reformulation, as well as dy-
namic feature encoding. In numerical experiments, we moreover show that our
approach 4) leads to an estimation performance comparable with a SotA im-
plementation and 5) has the desired computational complexity. Finally, we 6)
demonstrate its interpretability and applicability to large-scale data sets.

Factorized Structured Regression 3

2 Related Literature

Multiple different RS have been proposed over the last years, many of them based
on matrix factorization (MF) [16] or collaborative filtering [24]. While recent
methods increasingly rely on neural network-based factorization or recommen-
dation, e.g., [29], it remains debatable whether they yield superior results, e.g.,
with respect to performance and efficiency [20]. Factorization Machines (FM)
represent another line of research which is closely related to MF. Initially pro-
posed by [19], FM are based on a linear model problem formulation with pairwise
(or order d ≥ 3) interactions between all features. In particular, the formulation
as regression model is the basis for extensions to other (prediction) tasks, with
many different FM-type models having been developed in recent years (e.g., [4]).
An important influence (context variable) in RS is time. Various methods for
controlling for short- and long-term temporal dynamics, cyclic patterns, drift or
time decay exist [2]. While short-term approaches either divide time into smaller
periods or integrate time features into the factorization of the neighbourhood,
long-term effects are accounted for by some form of distance calculations between
the current and other designated time points. Some approaches also combine the
factorization with the time context, and for instance assume smoothness in the
factorization, e.g., for video pixel completion [13]. Specific time-aware methods
include collaborative filtering with temporal dynamics [15], dynamic MF [7],
temporal regularized MF [30], or sequence-aware FM [6]. The common ground
of these methods is to account for the time context in the factorization.

Statistical approaches and interpretability Several combinations of statistical ap-
proaches and RS have been proposed in past years. Already in 1999, [8] proposed
a (Bayesian) generalized mixed-effects model as RS Likelihood approximation
approach. [31] proposed the GLMix model that combines the idea of general-
ized linear models (GLMs; [17]) with RS for large-scale response prediction.
Our work is most similar to RS approaches which facilitate interpretability by
making connections to generalized additive models (GAMs) [10]. In contrast to
our approach, however, past work does not include smoothing splines directly
into the models, nor does it address varying coefficient models. An exception
is the time-varying tensor decomposition by [32] which is inspired by varying
coefficient models. While similar in motivation, their work does not focus on
scaling aspects and only considers approximate varying coefficients with sepa-
rately learned basis coefficients. Our approach implements the full varying co-
efficient model with exact single-varying coefficients as well as a doubly-varying
coefficient with jointly-learned latent basis coefficients.

3 Background

We will first describe the necessary background on factorization approaches in
RS, structured additive regression models, and introduce our notation.

4 Rügamer et al.

3.1 General Notation

In the following, we use Y ∼ F to denote a random outcome value (e.g., a rating)
from distribution F and its observation y ∈ Y ⊆ R for which the model generates
a prediction ŷ. We reserve the indices i ∈ I and u ∈ U for two categorical
features (exemplarily referred to as item and user) and t ∈ T for the context
variable time on a given time interval T . The features associated with i and u
are assumed to be binary indicator variables and are only implicitly referenced
using their index. In Section 3.3, we however use an integer representation to
introduce a memory-efficient storage representation. Other context features are
summarized by x ∈ Rp. We use b, w and v to denote weights in the model that
relate to items and users, and make their dependence explicit by indexing these
weights correspondingly with i and u. To distinguish between dependencies of
categorical features and the (continuous) feature t, we highlight time-dependency
by writing objects as functions of the time t. We assume that we are given a
dataset D = {(yiu(t),xiu(t))}i∈I,u∈U,t∈T of total size N and allow observations
to be sparse, i.e., for D to be a true subset of I×U×T . For matrix computations
in later sections, letA�B ∈ RN×a·b define the row-wise tensor product (RWTP)
of matricesA ∈ RN×a and B ∈ RN×b, i.e., a Kronecker product applied to every
pair of rows of both matrices [A[1,] ⊗B[1,] . . .A[N,] ⊗A[N,]]. Further, for a = b,
let A •B := (A ∗B)1lb, where ∗ is the Hadamard product and 1lb ∈ Rb a vector
of ones. The operation defined by • can be exploited in models with Kronecker
product structures such as array models for fast computation (see Section 4.2).

3.2 Model-based Recommender Systems

The basic MF model generates its predictions as

ŷiu = 〈v1,i,v2,u〉 (1)

using a dot product 〈v1,i,v2,u〉 = v>1,iv2,u of two latent factors v1,i,v2,u ∈ RD

from a D-dimensional joint latent factor space. After learning the mapping from
each item i and user u to the respective latent factor vector, the dot product
describes the interplay between user and item and is used to estimate the out-
come y (ratings). If the combination I × U is observed completely, common
matrix decomposition approaches such as a singular value decomposition can
be applied. If the matrix containing the ratings for all user-item combinations
is sparse, missing values can be imputed. This, however, can be inaccurate and
computationally expensive. The common alternative is to use (1) to only model
(i, u) ∈ K ⊂ (I × U) in the set K of observed combinations. The solutions ŷ
can be found by least squares estimation where an additional L2-penalty for vi
and vu is typically added to the objective function [16]. In order to account for
systematic user- and item-level trends, biases are further added to (1), yielding

ŷiu = µ+ bi + bu + 〈v1,i,v2,u〉, (2)

where µ is a global intercept representing the average rating, and bi, bu represent
the item and user tendencies. The latter two bias terms are again penalized using

Factorized Structured Regression 5

a ridge penalty. Together with this penalization, bi and bu can also be interpreted
as a random effect for the item and user (see, e.g., [31]).

Time-aware recommender systems Contexts such as the location or time in which
data has been observed can make a crucial difference (see, e.g., [3]). RS therefore
often include a context dependency. One of the most common context-aware RS
are time-aware RS [5]. Time-aware model-based approaches assume the following
relationship

ŷiu(t) = µ+ bi(t) + bu(t) + v
>
2,u(t)v1,i, (3)

where both biases and the dot product are time-dependent. The rationale behind
a time-varying latent user effect is that users change their behavior over time,
whereas influences of items should be time-independent [16, 5]. While time is
often assumed to be continuous, categorical time-aware models are used if time
information is represented as discrete contextual values.

The time-varying latent user effect in (3) has a similar role as varying-
coefficients in structured additive regression discussed in the following section.

3.3 Structured Additive Regression and Varying Coefficient Model

In statistical modeling, structured additive regression is a technique for esti-
mating the relationships between a dependent variable (outcome value) and one
or more independent variables (predictors, features). While the most common
form of regression follows an additive structure as introduced in (2) and (3), in
particular including linear effects x>β of features x or pairwise interactions, fac-
torization terms are usually not present in classical regression models. Instead,
to adapt models for complex relationships between features and outcome value,
smooth, non-linear, additive terms f(·) of one or more features are included into
the model. These terms are represented by a linear combination of L appropriate
basis functions. A univariate non-linear effect of feature z is, e.g., approximated
by f(z) ≈

∑L
l=1Bl(z)wl, where Bl(z) is the l-th basis function (such as re-

gression splines, polynomial bases or B-splines) evaluated at z and wl is the
corresponding basis coefficient. Similarly, tensor product basis representations
allow for two- or moderate-dimensional non-linear interactions.

One important part of additive regression is the so-called varying coefficient
model [12]. The rationale for these models is the same as for time-varying RS:
effects of features in the model naturally vary over time. Therefore these models
include effects xf(t), such that the effect (coefficient) of x is given by f eval-
uated at time t, and f is estimated from the data. A special case is a varying
coefficient fi(t), i = 1, . . . , I where a separate function fi is estimated for all I
levels of a categorical feature. Existing software to model varying coefficients
with smooth time-effects is, however, not scalable to features with many cate-
gories. The bottleneck is an RWTP of the matrix of evaluated basis functions
B := (B1(t) . . . BL(t)) and a (one hot-)encoded matrix for a categorical variable
(e.g., item with I levels).

6 Rügamer et al.

Computational complexity Assuming equal number of basis functions L for every
smooth term fi in a varying coefficient model with i = 1, . . . , I levels and N
observations, the storage required for the model matrix is O(NLI) and the
computationsO(N(LI)2) (cf. [27]). Similar, for a model with an interaction effect
of, e.g., item and user (with U levels), the storage isO(NLIU) andO(N(LIU)2).

4 Factorized Structured Regression

In order to address the computational limitations of statistical regression tech-
niques, we will first introduce the general idea to obtain predictions from a
FaStR model and then go into more specific details and merits. We use the RS
notation to define the model by means of a classical recommendation task with
items, users, time context and an outcome y such as a rating. As in a typical
regression setting, further features x might exist that the modeler is interested
in. We assume that the outcome Yiu(t) and all features xiu(t) are observed on
a grid for item i = 1, . . . , I, user u = 1, . . . , U , time t = 1, . . . , T . While our
approach also works for sparsely and irregularly observed data, we assume a
grid of observations to simplify the notation. Conditional on the item, user, time
and further features, Yiu(t) is assumed to follow a parametric distribution F .
We model the expectation of Yiu(t) as

E(Yiu(t)|xiu(t)) = h(ηiu(t)),

ηiu(t) = µ+ bi + bu + biu + f [0](t) + f
[1]
i (t) + f [2]u (t) + f

[3]
iu (t)

+
∑O

o=1 go(xiu(t)).

(4)

Here, h is an activation or response function mapping the additive predictor
ηiu(t) onto the correct domain (e.g., R+ for a positive outcome variable). All
terms indicated with b are (regularized) bias terms. µ is a global bias term, bi an
item-specific bias, bu a user-specific bias and biu an item-user-specific one. Terms
denoted by f are smooth non-linear functions of time t represented by (penalized)
basis functions. These include a global trend f [0], a subject and activity trend,
f [1] and f [2], respectively, and a joint trend f [3]. Additional covariates x can be
modeled using other (smooth) functions go. In the Supplementary Material A
we provide further details on smoothness penalties and model optimization.

The model in (4) can be seen as an alternative notation for a varying coeffi-
cient model, or also as a time-aware RS with additional exogenous terms. As F
is not required to be Gaussian, it has, however, a more general applicability (e.g.,
binary, count or interval data). What further distinguishes (4) from existing ap-
proaches is the smoothness assumption of terms denoted with f , combined with
the efficient implementation of terms f [1], f [2] and a factorization assumption
for f [3]. These aspects are explained in more detail in the following.

4.1 Varying Factorized Interactions

For high-dimensional data, such as the mobile phone data in our example, es-
timating the 2- or 3-way interaction terms is computationally not feasible. We

Factorized Structured Regression 7

thus propose to define ηiu(t) in (4) using latent factorization representations. We
therefore decompose the discrete interaction term(s) into an inner product

biu = 〈v1,i,v2,u〉 =
∑D

d=1 v1,i,d · v2,u,d (5)

with D � min(I, U) latent factors, resulting in the estimation of D · (I + U)
instead of I ·U parameters. If I = U = 1000 and D = 5, for example, this reduces
the number of parameters by a factor of 100 from 106 to 104. While this is the
common approach to model interactions in factorization approaches, we here
propose to proceed in a similar fashion to model time-dependent interactions
and approximate time-varying interactions by a factorization approach:

f
[3]
iu (t) ≈ f̃ [3](t,V1,i,V2,u) =

∑L
l=1Bl(t)

∑D
d=1 v1,i,l,d · v2,u,l,d, (6)

where V·,· ∈ RL×D are matrices with rows corresponding to the L basis functions
for one categorical effect and columns to the D latent factors. In other words,
we approximate the interaction of the smooth effect f(t) of t and categorical
variables i, u by a product of the non-linear basis B of dimension L and the two
latent matricesB>(V1,i•V2,u), which can be computed efficiently for all N rows.
The representation via latent factors requires the estimation of L · D · (I + U)
instead of L ·D · I ·U parameters (a multiplicative reduction of (I +U)/(IU) in
parameters and computations). This principle is general and can be applied to
various types of additive effects, also of two or higher dimensions such as tensor-
product splines or Markov random field smooths (see [26]). The dimension D is
usually tuned to maximize prediction performance or estimation quality. While
an increase in D will result in more parameters, the computational cost at this
point only plays a minor role, as D < 20 often works well in practice.

Penalization In order to enforce smoothness of the varying coefficients in the
time-dimension, a quadratic Kronecker sum penalty J can be added to the loss
function [26]. In a similar manner, we can promote smoothness of the latent
factors Viu = (V1,i • V2,u) ∈ RL in our adaption using a symmetric difference
penalty matrix PV ∈ RL×L. PV penalizes the time-dimension of the factorized
varying-coefficients, where the penalized differences (its entries) depend on the
chosen basis B. We further allow for an L2-regularization of the latent factors
in the i- and u-dimension, yielding

J = λt · V >iuPV Viu + λiu · (||V1,i||F + ||V2,u||F), (7)

where λt controls the smoothness of the non-linearity in the direction of the time
t, || · ||F is the Frobenius norm, and λiu the regularization for items and users.

4.2 Efficient Implementation

While the previous section allows to efficiently model (smooth) interactions of
two or more categorical features with many categories, the factorization is not

8 Rügamer et al.

a solution for coefficients f [1] and f [2], as these only vary with a single cate-
gory. Many use cases also require to estimate one effect for each of the levels of
a categorical (interaction) effect. One bottleneck if I and/or U is large, is the
computation of their dummy-encoded design matrices. For example, for item
the matrix XI of size N × I contains binary entries indicating which observa-
tion (rows) belong to which item category (column), and analogous for a user
matrix XU . Second, the execution of operations involving such large matrices is
another computational bottleneck. Computations become even more challenging
if the model includes interactions, resulting in O(NIU) storage and O(N(IU)2)
computations (cf. Section 3.3). These interactions are created by calculating the
RWTP between both matrices, i.e., XI �XU ∈ RN×I·U . To circumvent creat-
ing, storing and processing XI and XU as a whole, we propose two simple yet
effective implementation tricks explained in the following.

Stochastic optimization The first bottleneck in computations of varying coef-
ficient models at scale is the number of observations N . We therefore implement
FaStR in a neural network and thereby can make use of stochastic gradient de-
scent optimization routines with mini-batches of size M � N . This reduces the
original cost of computations from O(N(IU)2) to O(EMIU) where E is the
number of model updates. It also allows us to leverage high-performance com-
puting platforms such as TensorFlow [1] that support GPU computations.

Array computations The second bottleneck is computing the RWTP of two-
or higher-dimensional interaction terms. Our proposal is to use an array refor-
mulation that does not require to compute the RWTP design matrix in the first
place. More specifically, a two-dimensional interaction effect (XI �XU)w with
weights w can be equally represented by the array reformulation (cf. Section 3.1)

(XIW) •XU , (8)

whereW ∈ RI×U is a matrix of weights with the ith row and uth column being
the weight for the interaction of the ith level in XI and the uth level in XU .
By using (8) instead of a plain linear effect, we circumvent the construction of
the large RWTP and the storage cost is reduced from O(NIU) to O(N(I +U))
without increasing the time complexity (as the • operation forM observations is
neglectable with O(MU) compared to the matrix multiplication with O(MIU)).
This array formulation can also be defined for higher-order interactions [9].

Dynamic feature encoding Although array computations can reduce the stor-
age problem notably by not constructing the RWTP in the first place, a third
bottleneck is storing the large dummy-encoded matricesXI andXU themselves.
We circumvent this extra space complexity, by evaluating categorical features dy-
namically during network training and only constructing the one-hot encoding
for categorical features on a given mini-batch m. Thereby, only a matrix X(m)

I

of size M × I needs to be loaded into memory and the full N × I matrix is never
created explicitly. This effectively reduces the storage from O(NIU) to O(N)

Factorized Structured Regression 9

(exactly 2N for two integer vectors). While this potentially results in redundant
computations as it will create the encoding for a specific observation multiple
times (if the number of epochs is greater than 1), deterministic integer encoding
is cheap. Hence, the resulting computation overhead is usually neglectable and
both forward- and backward pass can make use of the sparse representation.

When evaluating the two matrix operators (matrix product and •) in (8)
sequentially, encodings can again be created dynamically and the largest matrix
involved only contains max(I, U) instead of I · U columns.

5 Numerical Experiments

Our numerical experiments investigate 1) whether FaStR can estimate (factor-
ized) varying coefficients as proposed in Section 4.1 with performance compa-
rable to other SotA methods, and 2) whether the model presented in (4) can
be initialized and fitted with constant memory scaling w.r.t. the number of fac-
tor levels. In addition, in the Supplementary Material B we investigate whether
FaStR can recover GAMs in general using our implementation techniques. De-
tails on the data generating processes for each simulation study, method im-
plementation and the computing environment are given in the Supplementary
Material C. In the first experiment, we compare the estimated and true model
coefficients using the mean squared error (MSE) and the estimated vs. the true
functions f using the squared error, integrated and averaged over the domain of
the predictor variables (MISE). We repeat the data generating process 10 times
to account for variability in the data and model estimation.

5.1 Estimation of Factorized Smooth Interactions

We first investigate how well our models can recover smooth factorized terms
from Section 4.1 of two categorical variables j and u, with 4 and 5 levels, re-
spectively, i.e., 20 different smooth effects. We use a relatively small number of
levels to be able to fit all possible interactions also in a classic structured re-
gression approach. We define one of the two true factorized smooth effects as
a varying coefficient term, i.e., f1,iu(t), and one stemming from an actual fac-
torization, i.e., f2(t,V1,i,V2,u). We use the Bernoulli and Gaussian distributions
and investigate factorized terms in the distributions’ mean for different data
sizes N ∈ {500, 1000, 2000}. While the true model is generated using three la-
tent factor dimensions, we additionally investigate a model with six dimensions
to see how the misspecification of the latent dimension size influences estimation
performance. FaStR is trained using a batch size of 250 with early stopping on
10% of the training data and a patience of 50 epochs. Larger batch sizes do not
change estimation performance notably, but slow down the convergence speed.

Results All results show that FaStR can estimate varying coefficients equally
well compared to a classic GAM estimation routine. Figure 1 shows the resulting
M(I)SE values for all data settings. Note that the GAM implicitly assumes as

10 Rügamer et al.

many latent dimensions as there are factor levels, but can also shrink single
smooth functions to zero. In cases where it is feasible to fit smooth effects for
every factor level (as is the case here), GAM can thus be seen as gold standard.
For the case of a normal distribution, we observe that GAM yields better results,
but also that the performance of FaStR converges to the one from GAM with
increasing number of observations. For the Bernoulli case, our approach benefits
from the optimization in a neural network and even outperforms the classic
GAM estimation routine which requires a multiple of observations compared to
a Gaussian setting for good estimation results (as, e.g., also found in [22]).

Bernoulli Normal

factorized
not factorized

N
 =

 5
00

N
 =

 1
00

0

N
 =

 2
00

0

N
 =

 5
00

N
 =

 1
00

0

N
 =

 2
00

0

0.3

0.6

0.9

1.2

1.5

0.5

1.0

1.5

M
(I

)S
E

GAM FaStR (D=3) FaStR (D=6)

Fig. 1. Comparison of M(I)SE values for the estimated partial effects of different meth-
ods (colors) for factorized and non-factorized smooth terms (x-axis), different distribu-
tions (columns) and different data sizes (rows). Values > 1.5 are set to the value 1.5
to improve readability.

5.2 Memory Consumption

Finally, we compare the memory consumption of our implementation against
the SotA implementation for big additive models (BAM) in the R [18] package
mgcv [25] for an increasing number of category levels (20, 40, 60, 80) when using
a categorical effect or a varying coefficient based on the representation proposed
in Section 4.2, N ∈ {1000, 2000, 4000} and optimization as in Section 5.1. While
the improvement in memory consumption is expected to be even larger when
using factorized terms instead of interaction terms with weights for each cat-
egory combination, we do not use factorization in this experiment as there is

Factorized Structured Regression 11

no equivalent available in software for additive regression. Additionally, we also
track the time when running FaStR for 10 epochs to see if there are notable
changes in the time consumption for varying data generating settings.

Results Figure 2 visualizes the results for all different settings and compares
run times and memory consumption of the two methods for factor variables
(single) and varying coefficient effects (varying). Results show that FaStR has
both, almost constant time and memory consumption while the SotA method
requires exponentially more memory for growing numbers of factor levels (as the
whole encoded matrix must be loaded into memory). These results confirm that
our implementation works as intended to allow for the estimation of varying
coefficient models in large-scale settings.

N = 1000 N = 2000 N = 4000

M
em

ory C
ons. (M

B
)

T
im

e S
pent (S

ec)

20 40 60 80 20 40 60 80 20 40 60 80

10

100

1000

10000

1

10

100

#Levels

V
al

ue

BAM

FaStR

single

varying

Fig. 2. Memory and time consumption (y-axis; log10-scale) comparison between the
SotA big additive model (BAM) implementation and our method (in different colours)
for an increasing number of categorical levels (x-axis) of a factor effect (single) and
varying coefficient term (varying) for different data sizes (columns).

6 Benchmarks

Although the focus of this work is to provide scalable and interpretable regression
models, prediction performance of our models is also of (secondary) interest. We
aim for a similar performance compared to SotA time-aware RS techniques,
yet without the ambition to outperform these methods. We use the MovieLens
10M movie ratings benchmark data set [11], which is sparse in terms of user-
item combinations, with items corresponding to rated movies. In addition, we
benchmark models on a subset of the densely observed PhoneStudy behavior
data set [23], analyzed in more detail in Section 7. In both cases, we use single

12 Rügamer et al.

train-test splits (90%/10% and 70%/30%, respectively) and evaluate the models
predictive performance with the root mean squared error (RMSE). The different
characteristics of both data sets are given in Table 1.

Table 1. Descriptive statistics of the two benchmark data sets.

Movies Phone Study

Observations (N) ≈ 9 m ≈ 8.7 m
Users (U) 69,878 342
Movies/Activities (I) 10,677 176
Unique Time Points (T) ≈ 6.5 m 348

Methods As comparison we use Bayesian timeSVD and Bayesian timeSVD++
flipped, two variations of the SVD++ method [14], a latent factor model whose
key innovative feature is the incorporation of implicit user information. Both
Bayesian timeSVD and Bayesian timeSVD++ flipped have been extended to be
time-aware [15] and optimized by Gibbs sampling using a Bayesian reformulation
[21]. Bayesian timeSVD++ flipped integrates both implicit user and item infor-
mation and has been reported to be the best-performing model among multiple
SotA methods in a recent benchmark study [21]. The second variation, Bayesian
timeSVD, is still a time-aware latent factor model, yet it does not incorporate
implicit user or item information. As we are mainly interested in the performance
of the proposed time-varying coefficient model, the Bayesian timeSVD provides
a much fairer comparison with FaStR as it does not include the aforementioned
types of implicit information. We use tuning parameter settings as given in [21]
for the two benchmark methods (i.e., we use the already tuned models). We

Table 2. Benchmark results based on the RMSE on the respective test data set for
both benchmark data sets (columns) for different methods (rows). Best results are in
bold and best results of the respective other method is underlined.

Movies PhoneStudy

timeSVD 0.872 0.089
timeSVD++ flipped 0.856 0.087
FaStR (D = 10) 0.984 0.076
FaStR (D = 3) 0.975 0.080
FaStR (D = 1) 0.890 0.087
FaStR (w/o f [3]) 1.027 0.093

compare these two models against our method as proposed in (4) and thereby
not only test its predictive performance, but also its capability to scale well to
high-dimensional data sets. We do not tune FaStR extensively, but perform a

Factorized Structured Regression 13

small ablation study by testing different latent dimensions (D ∈ 1, 3, 10) for
the factorized varying coefficient term f [3] and by excluding the whole term. All
models use early stopping based on a validation data split with the same propor-
tion as the train-test split. Considering further model definitions and tuning the
smoothing parameters could slightly improve results, but at the cost of having
to fit additional models.

Results Table 2 shows the performance of all methods. Interestingly, FaStR is
competitive with the SotA timeSVD approaches, even though the premise of this
paper was merely to develop a scalable variant of the varying coefficient model,
not to propose a method with SotA performance on RS tasks.

7 User Behavior Phone Study

Activity User

0 25 50 75 0 25 50 75

−2

−1

0

1

2

Study Day

P
ar

tia
l E

ffe
ct

Fig. 3. One dimension of the latent time-varying coefficients for different activities (left
plot with “locked screen” in blue) and users (right plot with exemplary user in green)
over 87 study days (x-axis). Vertical lines show Christmas and New Year’s Eve.

We finally turn to the motivating case study. A more detailed description of the
study and data set can be found in the Supplementary Material D. To analyze the
activity levels (a value between 0 and 1, indicating the intensity of the activity
in the given aggregation window) of participants in the study, we model the
expected activity levels using user and activity effects, their interaction based
on a factorization, an effect of the day of the week (Mon - Sun), the time of the
day (6-hour windows), a factorized interaction of users and weekday as well as
users and daytime, and a smooth time-dependent study day effect varying by
user and/or activity. All factorizations use a three-dimensional latent space.

Results Results are generally plausible and in line with prior expectations. Var-
ious model effects are examined in the Supplementary Material. We here briefly

14 Rügamer et al.

analyze the factorized varying coefficient interaction by analyzing its latent fac-
tors. One of the dimensions is depicted in Figure 3. Most activities follow a global
pattern (darker concentration of lines), while a few show very specific sequences.
The “locked screen” event, e.g., is observed less in the days around New Year’s
Eve. At the user level, no general pattern is visible due to the different study
starting dates, but we observe still common changes in activity around holidays,
e.g., Christmas.

8 Conclusion

In this work we presented an amalgamation of structured statistical regression
and RS to allow for large-scale varying coefficient models with many categorical
levels. For this, we leveraged factorization approaches combined with an efficient
neural network-based implementation. Empirical results confirm the efficacy of
our proposal. In order to make the proposed approach as flexible as commonly
used statistical regression software, we used a model-based point of view and
cast the approach as a generalized additive model.

Acknowledgement

This work has been partially supported by the German Federal Ministry of
Education and Research (BMBF) under Grant No. 01IS18036A. We also thank
four anonymous reviewers for their helpful suggestions and comments.

References

1. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghe-
mawat, S., Irving, G., Isard, M., et al.: Tensorflow: A system for large-scale machine
learning. In: 12th {USENIX} symposium on operating systems design and imple-
mentation ({OSDI} 16). pp. 265–283 (2016)

2. Al-Hadi, I., Sharef, N.M., Sulaiman, M.N., Mustapha, N.: Review of the temporal
recommendation system with matrix factorization. Int. J. Innov. Comput. Inf.
Control 13(5), 1579–1594 (2017)

3. Baltrunas, L., Ricci, F.: Experimental evaluation of context-dependent collabora-
tive filtering using item splitting. User Modeling and User-Adapted Interaction
24(1-2), 7–34 (2014). https://doi.org/10.1007/s11257-012-9137-9

4. Blondel, M., Fujino, A., Ueda, N., Ishihata, M.: Higher-order factorization ma-
chines. In: Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., Garnett, R. (eds.)
Advances in Neural Information Processing Systems. vol. 29. Curran Associates,
Inc. (2016). https://doi.org/10.5555/3157382.3157473

5. Campos, P.G., Díez, F., Cantador, I.: Time-aware recommender systems: a compre-
hensive survey and analysis of existing evaluation protocols. User Modeling and
User-Adapted Interaction 24(1), 67–119 (2014). https://doi.org/10.1007/s11257-
012-9136-x

Factorized Structured Regression 15

6. Chen, T., Yin, H., Nguyen, Q.V.H., Peng, W.C., Li, X., Zhou, X.: Sequence-aware
factorization machines for temporal predictive analytics. In: 2020 IEEE 36th In-
ternational Conference on Data Engineering (ICDE). pp. 1405–1416. IEEE (2020).
https://doi.org/10.1109/ICDE48307.2020.00125

7. Chua, F.C.T., Oentaryo, R.J., Lim, E.P.: Modeling temporal adoptions using dy-
namic matrix factorization. In: 2013 IEEE 13th International Conference on Data
Mining. pp. 91–100 (2013). https://doi.org/10.1109/ICDM.2013.25

8. Condli, M.K., Lewis, D.D., Madigan, D., Posse, C.: Bayesian mixed-effects models
for recommender systems. In: ACM SIGIR. vol. 99 (1999)

9. Currie, I.D., Durban, M., Eilers, P.H.: Generalized linear array models
with applications to multidimensional smoothing. Journal of the Royal Sta-
tistical Society: Series B (Statistical Methodology) 68(2), 259–280 (2006).
https://doi.org/10.1111/j.1467-9868.2006.00543.x

10. Guo, Y., Su, Y., Yang, Z., Zhang, A.: Explainable recommendation systems by
generalized additive models with manifest and latent interactions (2020)

11. Harper, F.M., Konstan, J.A.: The movielens datasets: History and context 5(4)
(2015). https://doi.org/10.1145/2827872

12. Hastie, T., Tibshirani, R.: Varying-coefficient models. Journal of the
Royal Statistical Society: Series B (Methodological) 55(4), 757–779 (1993).
https://doi.org/10.1111/j.2517-6161.1993.tb01939.x

13. Imaizumi, M., Hayashi, K.: Tensor decomposition with smoothness. In: In-
ternational Conference on Machine Learning. pp. 1597–1606. PMLR (2017).
https://doi.org/10.5555/3305381.3305546

14. Koren, Y.: Factorization meets the neighborhood: a multifaceted collabora-
tive filtering model. In: Proceedings of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining. pp. 426–434 (2008).
https://doi.org/10.1145/1401890.1401944

15. Koren, Y.: Collaborative filtering with temporal dynamics. In: Proceedings of the
15th ACM SIGKDD international conference on Knowledge discovery and data
mining. pp. 447–456 (2009). https://doi.org/10.1145/1721654.1721677

16. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender
systems. Computer 42(8), 30–37 (2009). https://doi.org/10.1109/MC.2009.263

17. Nelder, J.A., Wedderburn, R.W.: Generalized linear models. Journal of
the Royal Statistical Society: Series A (General) 135(3), 370–384 (1972).
https://doi.org/10.2307/2344614

18. R Core Team: R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria (2021)

19. Rendle, S.: Factorization machines. In: 2010 IEEE International conference on data
mining. pp. 995–1000. IEEE (2010). https://doi.org/10.1109/ICDM.2010.127

20. Rendle, S., Krichene, W., Zhang, L., Anderson, J.: Neural collaborative filtering vs.
matrix factorization revisited. In: Fourteenth ACM Conference on Recommender
Systems. pp. 240–248 (2020). https://doi.org/10.1145/3383313.3412488

21. Rendle, S., Zhang, L., Koren, Y.: On the Difficulty of Evaluating Baselines:
A Study on Recommender Systems. arXiv preprint arXiv:1905.01395 (2019).
https://doi.org/10.48550/ARXIV.1905.01395

22. Rügamer, D., Kolb, C., Klein, N.: Semi-Structured Deep Distributional Regres-
sion: A Combination of Additive Models and Deep Learning. arXiv preprint
arXiv:2002.05777 (2020). https://doi.org/10.48550/ARXIV.2002.05777

23. Stachl, C., Au, Q., Schoedel, R., Gosling, S.D., Harari, G.M., Buschek, D., Völkel,
S.T., Schuwerk, T., Oldemeier, M., Ullmann, T., Hussmann, H., Bischl, B., Büh-

16 Rügamer et al.

ner, M.: Predicting personality from patterns of behavior collected with smart-
phones. Proceedings of the National Academy of Sciences 117, 17680–17687 (2020).
https://doi.org/10.1073/pnas.1920484117

24. Thorat, P.B., Goudar, R., Barve, S.: Survey on collaborative filtering, content-
based filtering and hybrid recommendation system. International Journal of Com-
puter Applications 110(4), 31–36 (2015). https://doi.org/10.5120/19308-0760

25. Wood, S.N.: Fast stable restricted maximum likelihood and marginal likeli-
hood estimation of semiparametric generalized linear models. Journal of the
Royal Statistical Society (B) 73(1), 3–36 (2011). https://doi.org/10.1111/j.1467-
9868.2010.00749.x

26. Wood, S.N.: Generalized additive models: an introduction with R. Chapman and
Hall/CRC (2017). https://doi.org/10.1201/9781315370279

27. Wood, S.N.: Inference and computation with generalized additive models and their
extensions. Test 29(2), 307–339 (2020). https://doi.org/10.1007/s11749-020-00716-
0

28. Wood, S.N., Li, Z., Shaddick, G., Augustin, N.H.: Generalized additive mod-
els for gigadata: Modeling the u.k. black smoke network daily data. Jour-
nal of the American Statistical Association 112(519), 1199–1210 (2017).
https://doi.org/10.1080/01621459.2016.1195744

29. Wu, C., Lian, D., Ge, Y., Zhu, Z., Chen, E., Yuan, S.: Fight fire with fire: Towards
robust recommender systems via adversarial poisoning training. In: Proceedings
of the 44th International ACM SIGIR Conference on Research and Development
in Information Retrieval. p. 1074–1083. SIGIR ’21, Association for Computing
Machinery, New York, NY, USA (2021). https://doi.org/10.1145/3404835.3462914

30. Yu, H.F., Rao, N., Dhillon, I.S.: Temporal regularized matrix factorization for
high-dimensional time series prediction. In: Lee, D., Sugiyama, M., Luxburg, U.,
Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Systems.
vol. 29. Curran Associates, Inc. (2016)

31. Zhang, X., Zhou, Y., Ma, Y., Chen, B.C., Zhang, L., Agarwal, D.: Glmix:
Generalized linear mixed models for large-scale response prediction. p. 363–372.
KDD ’16, Association for Computing Machinery, New York, NY, USA (2016).
https://doi.org/10.1145/2939672.2939684

32. Zhang, Y., Bi, X., Tang, N., Qu, A.: Dynamic tensor recommender
systems. Journal of Machine Learning Research 22(65), 1–35 (2021).
https://doi.org/10.11159/icsta19.09

33. Zhao, W.X., Mu, S., Hou, Y., Lin, Z., Li, K., Chen, Y., Lu, Y., Wang, H., Tian,
C., Pan, X., Min, Y., Feng, Z., Fan, X., Chen, X., Wang, P., Ji, W., Li, Y., Wang,
X., Wen, J.R.: Recbole: Towards a unified, comprehensive and efficient framework
for recommendation algorithms (2020). https://doi.org/10.1145/3459637.3482016

