Self-supervised Graph Learning with Segmented
Graph Channels

Hang Gao'?, Jiangmeng Li'?, and Changwen Zheng?P><

! University of Chinese Academy of Sciences, Zhongguancun East Road. 80, Haidian
District, 100081 Beijing, China
https://www.ucas.ac.cn/

2 Science & Technology on Integrated Infomation System Laboratory, Institute of
Software Chinese Academy of Sciences, Zhongguancun South Fourth Street. 4,
Haidian District, 100083 Beijing, China 80, Haidian District, 100081 Beijing, China
first@iscas.ac.cn
http://www.iscas.cn/

Abstract. Self-supervised graph learning adopts self-defined signals as
supervision to learn representations. This learning paradigm solves the
critical problem of utilizing unlabeled graph data. Conventional self-
supervised graph learning methods rely on graph data augmentation to
generate different views of the input data as self-defined signals. How-
ever, the views generated by such an approach contain amounts of iden-
tical node features, which leads to the learning of redundant information.
To this end, we propose Self-Supervised Graph Learning with Segmented
Graph Channels (SGL-SGC) to address the issue. SGL-SGC divides the
input graph data across the feature dimensions as Segmented Graph
Channels (SGCs). By combining SGCs with data augmentation, SGL-
SGC can generate views that vastly reduce the redundant information.
We further design a feature-level weight-sensitive loss to jointly accelerate
optimization and avoid the model falling into a local optimum. Empiri-
cally, the experiments on multiple benchmark datasets demonstrate that
SGL-SGC outperforms the state-of-the-art methods in contrastive graph
learning tasks. Ablation studies verify the effectiveness and efficiency of
different parts of SGL-SGC.

Keywords: Graph neural network - Self-supervised learning - Unsuper-
vised learning - Contrastive learning - Node classification.

1 Introduction

Graph representation learning (GRL) aims to learn effective representations of
graph-structured data. Such representations play an important role in a variety
of real-world applications, including knowledge graphs [33], molecules [5], social
networks [12], physical processes [19], and codes [l]. Recently, Graph Neural
Networks (GNNs) emerged as a powerful approach to conducting graph rep-
resentation learning. Various GNNs, including Graph Convolutional Networks
(GCN) [12], Graph Attention Networks (GAT) [27], and Graph Isomorphism
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Networks (GIN) [31], achieve eye-catching success in graph representation learn-
ing. These approaches require labeled graph data for training. However, labeling
graph data is a rather challenging task as it requires large amounts of onerous
work, particularly with large-scale graphs.
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data data augmentation alone SGCs and data augmenta-
tion

Fig. 1. Examples of views generated using different methods. View generated with
graph data augmentation contain identical node features. SGCs help eliminate them

To reduce the dependence on labeled data, recent research efforts are dedi-
cated to developing self-supervised learning for GNNs. In computer vision (CV),
self-supervised learning utilizing unlabeled data has already made significant
progress [4,10,7]. Viewing its success in CV, some researchers combine self-
supervised learning with graph learning and propose a variety of powerful self-
supervised graph learning (SGL) methods [8,17,28]. SGL methods rely on views,
i.e., human-defined data transformations that preserve the invariance of intrinsic
properties of graph data, as training signals to conduct representation learning
[34]. Previous works leverage the mutual information maximization principle (In-
foMax) [15] and obtain graph representations by maximizing the mutual informa-
tion between representations of different views. However, the InfoMax principle
can be risky. It only encourages the maximization of mutual information while
this mutual information may contain redundancy. Based on the information bot-
tleneck principle[25,26], [30] points out that when the task-related information
contained in the views is not damaged, the redundant mutual information be-
tween views should be minimized. To minimize such redundancy, the choice of
views is critical [34,30].

In recent years, researchers proposed various view generation methods in
graph self-supervised learning, including node dropping, edge perturbation, at-
tribute masking, and subgraph [35]. These methods can be summarized as graph
data augmentation that generates different views by making minor changes to
the graph data without damaging the task-related information of the graph. We
analyze the graph data augmentation methods and propose that they can be
expressed as perturbing the original graph data with a specific form of noise.
Views generated with such a mechanism contain a large number of identical
node features, which will lead to learning redundant information. Considering



Self-supervised Graph Learning with Segmented Graph Channels 3

Figure 1, Figure 1(b) demonstrates the different views of an input graph ( Figure
1(a) ) generated with data augmentation. The data augmentation drop nodes
and delete edges but leaves the features of node features A, B, and C unmodi-
fied, leaving identical node features (marked with red) between the views. How-
ever, we cannot reduce such redundant information with more perturbation, i.e.,
adding more noise. Otherwise, the task-related information of the original graph
may be corrupted or even completely changed. The conventional graph view
generation methods show limitations here.

To address such limitations, we look to the view generation methods in CV for
inspiration. Self-supervised methods generate different views by splitting input
image data across channels, e.g., an RGB image can be split into three views for
R, G, and B channels [24]. The advantage of this view generation method is that
there is no identical feature between different views. Furthermore, it does not
introduce more noises. Since each channel provides a relatively condensed and
expressive view, this method allows the neural network to pay more attention to
task-related semantic information instead of redundant information. We believe
that a similar approach can also be applied to graph learning. Suppose we regard
each node in the graph as a pixel on the picture and artificially divide the node
features into different channels. In that case, we can generate ”channels” on the
graph, which we denote as Segmented Graph Channels (SGCs).

With SGCs, we propose the Self-Supervised Graph Learning with Segmented
Graph Channel (SGL-SGC) to enhance graph representation learning. We com-
bine SGCs with conventional graph data augmentation methods to generate
views for self-supervised learning. Figure 1(c) gives an example. Due to combin-
ing two different view generation methods, our method can generate amounts of
views without introducing more noise. We design an objective function named
feature-level weight-sensitive loss to train the encoders with these views. This
loss function helps reduce the computational burden while avoiding the model
falling into a local optimum. Furthermore, it can assign different weights to dif-
ferent samples according to their importance, further enhancing the learning
capability of SGL-SGC.

We summarize our contributions as follows:

— We propose a novel view generate method based on segmented graph chan-
nels to generate views with less redundant information. These views strengthen
the ability of our proposed method to perform representation learning.

— We design a feature-level weight-sensitive loss as an objective function for
training the encoders with the generated views. Feature-level weight-sensitive
loss reduces computational burden while avoiding the model falling into a
local optimum. Furthermore, our loss function emphasizes the samples with
more importance.

— We conduct experiments to compare our method with state-of-the-art graph
self-supervised learning approaches on benchmark datasets, and the results
prove the superiority of our method.
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2 Related works

This section reviews some representative works on graph learning and self-
supervised graph learning, as they are related to this article.

Graph Neural Networks (GNNs) GNNs learn the representation of the
graph nodes through aggregating the neighboring information. The learned rep-
resentations can then be applied to different downstream tasks. Varieties of
GNN frameworks have been raised since the concept of GNNs was proposed.
Graph Convolutional Networks (GCNs) [12] extend convolution neural networks
to graph data. As a widely used GNN, GCN adopts convolution operation to
aggregate the features from a node’s graph neighborhood. Graph Attention Net-
works (GATSs) [27] introduce attention mechanisms into graph learning. GATs
measure the importance of the neighboring features before aggregating them. By
comparing the GNNs with the WL test, [31] proposes that GNNs are most pow-
erful as the WL test in distinguishing graphs and proposed Graph Isomorphism
Networks (GIN). Our proposed SGL-SGC adopts GCNs as the basic encoder.

Self-supervised learning Self-supervised learning, which aims to learn data
representations without labels, is a thriving learning approach with multiple ap-
plications. Contrastive Predictive Coding (CPC) [16] proposes a self-supervised
framework that contrasts predictive features with original features. CMC [24]
conducts self-supervised learning by contrasting different views of an image.
Similar frameworks were later applied to graph learning. This self-supervised
learning approach successfully improves the utilization of unlabeled data. Given
the success of these approaches, [2,14] conduct theoretical analysis on the reason
behind them. [15,11,6] elaborates on the objectives of self-supervised learning
from the perspective of information theory.

With the proposal of GNNs, neural networks based on self-supervised graph
learning have become a research hotspot. [35] propose a framework that adopts
graph data augmentation to generate different views and maximize the agree-
ment between different representations of different views. [32] propose an ap-
proach that adopts the EM algorithm to enhance the representation learning of
local and global structures. Our method focuses on reducing the redundancy of
information in the learned representations.

3 Methods

This section introduces our proposed Self-supervised Graph Learning with Seg-
mented Graph Channels (SGL-SGC). The architecture of SGL-SGC is illus-
trated in Figure 2. SGL-SGC adopts a novel view generator to acquire more
independent views than conventional unsupervised graph learning methods. We
utilize multiple encoders for representation learning to process these views and
a feature-level weight-sensitive loss function for fast and effective training.
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Fig. 2. The structure of SGL-SGC. SGL-SGC can be divided into three parts, in-
cluding view generation, encoders, and loss function. In conventional self-supervised
graph learning, the view generation part usually only consists of data augmentation
operations. We, on the other hand, adopt a two-phase method, including segmenting
channels and adding noise. SGL-SGC generates multiple expressive views with less
redundancy. We also use a feature-level weight-sensitive loss to train the encoders to
learn better representations of these views.

3.1 Preliminary

We first recap some preliminary concepts and notations for further exposition.
In graph learning, the input attribute graphs can be denoted as G = (V, E),
where V is a node set and E is an edge set. V have attributes {X, € RF|v € V'}.
For each node v, its neighbors are denoted as N,.

Learning Graph Representations. Given a set of graphs G;,¢ = 1,2, ..., n,
in some universe G, our objective is to learn the latent representation z;. z;
preserves the network structures and node attributes of G;. It can be further
used for downstream tasks such as label predicting. Typically, the graph data is
fed into graph neural networks (GNNs) to acquire z;:

Graph Neural Networks. As described earlier, GNNs developed multiple
variants, yet their structures still share large similarity. For a graph G = (V| E),
a graph neural network layer can be expressed as:

hg)k"’l) = combine® (hfj, aggregate(k)(hﬁ,Vu € Nv))7

where h**1) is the representation of node v, acquired by passing the initial
node features of v through k layers of graph neural networks. update(-) and



6 H. Gao et al.

aggregate(-) are trainable functions. The graph representation z can be obtained
by pooling the node representations of the last layer:

2 = pool(hk v e V), (2)

Mutual Information Theory. Graph contrastive learning, one of the most
popular self-supervised graph learning approaches, defines its learning objective
as maximizing the mutual information between the graph and its representation,
which is known as the mutual information maximization principle:

m}axI(G; f(G)), where G ~ Pg. (3)

I(-) denotes the mutual information between variables. In general, graph
contrastive learning achieves mutual information maximization by maximizing
the mutual information between different views generated with data augmenta-
tion [35,9,34]. Such learning objectives can be expressed as follows:

g‘m}xf(fl(vl); fQ(VQ))7 where Vi,V are different views of G, G ~Pg  (4)
1,J2

f1() and fa(+) are encoders corresponding to each view. In some methods,
the encoders share the same set of parameters. We follow the same learning
objective as graph contrastive learning.

3.2 Segmented Graph Channels

We follow [35] and categorize the data augmentation approaches for view gen-
eration into four different kinds. Node dropping drops a certain amount of
nodes along with the edges linked to them. Edge perturbation changes the
connectivity of the graph by deleting or adding some edges. Attribute masking
masks are part of the node features. Subgraph sampling samples a subgraph
from the original graph.

These augmentation methods can be summarized as changing the graph
structures or node features. They can be seen as imposing some noise signal
S on the original graph data. Depending on the specific content, .S could lead
to node dropping, edge perturbation, some parts of the features being masked,
and making the influenced graph a subgraph of the original one.

Definition 1. (Graph Data Augmentation with Noise). For a graph G, q(G,S)
denote a graph data augmentation of G, where S is a noise signal and q(-) denote
the function modifying G according to S. S can be randomly generated or created
according to specific rules.

As we follow the learning objective of graph contrastive learning, with Defi-
nition 1 and Equation 4, we define our learning objective as:

I}}%);I(fl (q(G,Sl)); f2 (q(G,Sg))), where G ~ Pg. (5)
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S1 and Sy are different noise signals corresponding to different views. e.g.,
Sy and Ss could represent the nodes and edges to be dropped, and ¢(+) could be
the operation that drops them. The mechanism of data augmentation results in
that there will still be a large amount of identical node features between ¢(G, S1)
and ¢(G, S2). We denote the optimal choices for the noise signals as S; and S5.
Following [23], we propose that:

(S7,85) = arg minI(q(G’, S1);4(G, Sg))
S1,52
st 1(q(G.51):Y) = I(g(G, S); V) = I(G; Y), ©
where (G,Y) ~ Pgxy.

Ideally, the values of S; and S5 should be chosen to minimize the redun-
dant mutual information between views, which means more modifications will
be made to the input graph, e.g., more nodes dropped or edges deleted. Such
modifications will lead to an increase in input noises, which will inevitably lead
to the corruption of the original input graph. When the graphs get corrupted
and changed, they may represent different things. e.g., one node feature of a
graph might represent "movie.” After the graph is changed, the new node fea-
ture might be the same as those representing ”paper.” Thus, the changed graph
has a different set of labels. We denote such labels as Y. We measure the mutual
information between Y and Y’ with the following theorem:

Theorem 1. The mutual information between the original graph label Y and
distorted label Y' decreases as the amount of information of input noises S in-
CcTeases.

Please see Appendix B for proof. Unfortunately, in the task of self-supervised
learning, Y is not available. We have to conduct the training under the assump-
tion that Y is almost the same as Y’. However, suppose we rely on increasing
the input noises S to decrease the mutual information between views. In that
case, the mutual information between Y’ and Y will drop significantly, making
the learning meaningless. On the other hand, If we do not increase the input
noises that much, there are bound to be identical node features between differ-
ent views, which will lead to learning redundant information. An alternative is
required.

Inspired by contrastive learning algorithms in the computer vision domain [24],
we propose the concept of the Segmented Graph Channel (SGC) to generate dif-
ferent views.

Definition 2. (Segmented Graph Channel). For graph G = (V,E) with at-
tributed node features {X, € R¥|v € V}, we denote SGCs of G as C, C =
(V' E), V' is a node set that is the same as V except for attributed node fea-
tures { X, € [RFI|U/ € V'}. Xy is a feature vector that consists of part of the
data extracted out of X,, F' < F. The feature vectors of graph G are split into
different parts to get different SGCs. During the generation of X, , the extraction
location on each node feature is the same.
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Different from graph augmentations, SGCs generate new views without dam-
aging any graph information. However, SGCs alone can’t serve as different views
because of their lack of deformation of the graph structure. We combine the SGCs
with the data augmentation method and propose our new learning objective:

gcrlligjf(fl(Q(Cl,Sl)%f2(Q(C2,S2)))v (7)

where C; and Cy are two SGCs of G. We can completely eliminated identi-
cal node features between ¢(C1,S1) and ¢(Cs, S2) as we extract different parts
of node features. The edge features can be augmented using conventional ap-
proaches. Thus, our new learning objective can effectively reduce the redundant
mutual information between views compared to conventional data augmentation
methods. Furthermore, we achieve such a goal without further introducing noise.

3.3 Network Structure

The network structure of SGL-SGC is demonstrated in Figure 2. We first adopt
SGCs and data augmentation with noise to generate multiple views of the orig-
inal graph. We will combine each SGC with multiple noise signals to generate
different views. We use the same encoder to process the views generated with
the same SGC. Parameters are not shared between these encoders.

With & different SGCs C = {C;}F_, and m different noise signals S =
{S;}jLy, we could get k x m different views, these views will go through the
corresponding encoders to get the representations. For single input graph G =
(V, E) with n nodes, we will acquire k * m * n different representations for all
nodes. We denote the output representation as z.;;. 2.;; can be formulated as:

Zu,i,j — fi (Q(Cmsj))- (8)

These representations will be processed with a loss function. In our task,
we want to make use of all of them. Nevertheless, the conventional contrastive
loss will require contrasting negative samples with all of the k % m % n different
representations for a single input graph, which will cost too much computing
resources. Moreover, these representations will contribute differently to training.
We want to emphasize those that contribute more.

3.4 Feature-level weight-sensitive loss

In order to solve the problems mentioned above, we need a loss function that can
process the representations in a negative-sample-free way. Inspired by [36], we
adopt a feature level learning objective so as to avoid calculating a large amount
of negative samples. Given graph G with n nodes, k segmented graph channels,
and m augmenters, we will acquire representations {21,1,1, ..., Zv,i,js ) Zn,k,m }-
Then, we define matrix set M = {Mi12,.... My nn's My jwm—1,ksm . The
subscript v refers to different nodes, and h, h’ refer to different views. M, j, p/
can be formulated as follows:
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M’U,h,h/ = Z'L;T,i,j X Zuil 5 7 ;A il or ] # j/ (9)

Zy,i,; and z, 4 5 are representations of the same node but under different
views. Our loss function can be formulated as:

Ly = hz ; 3 (OnDz'ag(Mv,h,h,) +AOf fDiag(Mv,hyh/)), h#AK  (10)

Where A is a hyperparameter that trades off the importance of two terms,
OnDiag(M,y p.p) and Of fDiag(My p ), we define them as follows:

OnDiag(M) = Z(l —Ma,a)s

Of fDiag(M) = > "(ma,)*. (11)

a a#b

where mg o is the element on the diagonal of matrix M, mg; represents the
rest elements. Subscripts a and b are the coordinates. OnDiag(M) implements
the optimization objective we described in Equation 7 at the feature level. As
we built our optimization objective without the usage of negative samples, we
adopt Of fDiag(M) to prevent trivial solutions from optimization.

Following [20], we consider the samples that are further away from the opti-
mal goals more crucial. We adopt weight factors wy j 5/ to measure the impor-
tance of the representations that are used to calculate M, p p/. Wy ppr can be
denoted as:

Wy, h,h! = ((OnDiag(Mv,h’h/) + A OffDiag(Mv7h7h/)) - O)T, (12)

where O is the optimal value of the sum of the first two terms, in our task,
O = 0. 7 is a hyperparameter that controls the effect of w. We use w,, p,,/ to help
emphasize the more crucial samples. Substituting Equation 12 into Equation 10,
we have:

£wsfl = Z Z Zwv,hyh/ (OnDiag(Mu,hyh/) + A OffDiag(Mvﬁhyh/)), h # I
h' h v

(13)
The new loss function is weight-sensitive, which emphasizes representations
that are considered more crucial.

4 Experiments

This section demonstrates the effectiveness of our proposed SGL-SGC by con-
ducting extensive experiments on various benchmark datasets.
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4.1 Comparison with the state-of-the-art methods

Datasets We select five widely used graph datasets, including three citation net-
work datasets: Cora, Citeseer, and PubMed [21,3], and two relationship datasets:
Amazon-Computers and Amazon-Photo [37]. We download all the datasets with
DGL APIs, which can be found at https://www.dgl.ai/. For the experimental
protocol, we follow [9,37], and adopt the same train/validation/test splits. We
report the mean classification accuracy with standard deviation over ten runs of
training.

Baselines For baselines, we select supervised, semi-supervised and unsuper-
vised graph learning approaches. The supervised approaches include GCN [12]
and GAT [27]. The semi-supervised approaches include CG? [29]. The unsu-
pervised graph learning approaches include Deepwalk [18], GAE [13], DGI [28],
MVGRL [9], GCA [37], and InfoGCL [30].

Table 1. Classification accuracy of compared methods on Cora, CiteSeer, PubMed,
Amazon Computers, and Amazon Photos. According to different learning strategies,
the records are divided into two groups. The records that are not associated with
standard deviations due to the reason that they are directly taken from [22], which did
not report their standard deviations. Bold denotes the best records.

Amazon Amazon

Methods Cora CiteSeer PubMed Computers Photo

Supervised & Semi-Supervised Approaches
GCN 81.5 70.3 79.0 87.0 £ 03 926 +£0.4
GAT 83.0+ 0.7 725+0.7 79.0+ 0.3 865£05 924402
caG® 83.44+07 73.6+08 80.2+08 799+06 89.4+05

Unsupervised Approaches

DeepWalk 70.7 £ 0.6 514+ 0.5 74.34+09 857+0.1 894 +0.1
GAE 71.54+04 658+ 04 721 +£05 85.34+02 91.6+£0.1
DGI 83.8+ 0.5 720+ 06 779+ 0.3 84.0+ 05 91.6£0.2
MVGRL 8324+06 729+03 798+ 0.6 &87.5+£0.1 91.7+0.1
GCA 821+ 04 71.7+0.2 7894+ 0.7 879+ 0.3 92,5+ 0.2

InfoGCL 835+ 03 735+ 04 79.14+0.2 - -
SGL-N 83.14+0.7 73.24+0.5 79.5+0.2 85.6+0.3 91.6 +0.2
SGL-SGC 84.2 + 0.5 74.0 + 0.3 80.8 + 0.4 88.7 = 0.2 93.1 + 0.3

Evaluation protocol For evaluation protocol, we follow [28] and pre-train the
model on all the nodes in the graph without supervision. Then, we freeze the
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parameters and feed the acquired node representations into a logistic regression
model for label prediction. We only use nodes from the training set to train the
logistic regression model, and we report the classification accuracy on testing
sets.

We adopt the Adam optimizer with an initial learning rate of 10~3 for model
training. For view generation, we used a total of three SGCs. Each SGC is
followed by two data augmentations with different noise signals. SGL-SGC gen-
erates six views in total. We adopt three different encoders, each corresponding
to an SGC. Each encoder consists of a 2-layer GCN with a hidden dimension of
512. Their outputs are concatenated together for downstream tasks. For Cora,
Citeseer, and PubMed datasets, the pre-training epochs were 100, 20, and 100.
For Amazon-Computers and Amazon-Photo, the pre-training epochs were set
as 60. The hyperparameter that controls the effect of w is set to 0.2. All of our
experiments were conducted on an Nvidia RTX 5000. For the ablation study,
we built a network with the same structure as SGL-SGL except for the SGCs.
We remove them and generate the same amount of views as SGL-SGC with
conventional data augmentations. The new network is named SGL-N.

Results The classification results are reported in Table 1 . We highlight the
highest records in bold. As we can see from the table, SGL-SGC outperforms
all the other methods across all datasets. The results demonstrate our method’s
potential to outperform supervised, semi-supervised, and unsupervised methods
on various datasets. We attribute this potential to the fact that SGL-SGC can
generate views that contain less redundant information. Moreover, we design a
feature-level weights-sensitive loss function that can be used to train the encoders
better to learn from these views.

Another observable phenomenon is that SGL-N can only achieve comparable
results to other methods, while SGL-SGC outperforms it. This outcome proves
that only utilizing six different views generated with graph data augmentation
does not help produce better performances. Furthermore, it proves the necessity
of our proposed SGCs in helping increase the performance of self-supervised
representation learning.

4.2 Comparison of computing resource consumption

To analyze the computational resource overhead of our method, we conduct a
set of comparative experiments. For comparison, We built a graph contrastive
learning framework utilizing conventional InfoNCE loss instead of feature-level
weight-sensitive loss, named I-GCL. I-GCL adopts two-layer GCNs as elemental
encoders, the same as SGL-SGC. We use the same augmenter for each framework.

The results are demonstrated in Table 2. It shows that SGL-SGC costs much
less memory than I-GCL under six views, which proves our proposed feature-
level weight-sensitive loss can vastly reduce computing costs. Another interesting
phenomenon is that SGL-SGC with six views still costs less memory than I-GCL
with two views. Such records prove that, in our task, SGL-SGC does not cost
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more computing resources than conventional graph contrastive methods. We can
also see from the table that when the amount of views increases, the memory
cost of I-GCL rises by 47%. On the other hand, the memory cost of SGL-SGC
only rises by 16%. Such results suggest that increasing the number of segmented
graph channels does not significantly increase the computational cost when using
a feature-level weight-sensitive loss. Furthermore, the time cost of SGL-SGC is
also less than those of I-GCL.

Table 2. Memory costs and time costs of different methods under different conditions.
Since the network width of each layer is the same, a single column of hidden dimensions
is used to represent them. Views and SGCs represent the number of graph views and
SGCs we used. We conduct all the experiments on an Nvidia RTX 5000.

Methods Di}rlrll(iizir:)n Views SGCs Cl(:/:;n (Oé}];)) per E;r;fhc(zztcsond)
I-GCL 512 2 1 2.82 0.13
I-GCL 512 6 3 5.35 0.16
SGL-SGC 512 2 1 1.78 0.08
SGL-SGC 512 6 3 2.12 0.09
I-GCL 256 2 1 1.96 0.10
I-GCL 256 6 3 3.89 0.11
SGL-SGC 256 2 1 1.34 0.06
SGL-SGC 256 6 3 1.73 0.08

4.3 Evaluation of the weight factors

In this part, we further evaluate the weight factor w that we introduced in our
proposed loss function. We modify the value of hyperparameter 7 that controls
the effectiveness of w and observe how the performance changes. We perform
such experiments on multiple datasets. The results are shown in Figure 3.

As we can see, the performance peaks when the value of 7 is 0.2 on all three
datasets. As 7 decreases, w will hold less influence on training. It is observ-
able that the performance of SGL-SGC drops when 7 decreases from 0.2 to 0,
which indicates that the influence of w does improve the representation learning
ability of SGL-SGC. We believe w help emphasize the samples that contribute
more to training, thus improving the overall performance. Another observable
phenomenon is that when 7 takes a larger value than 0.2, the performance of
SGL-SGC also drops. This phenomenon shows that the effect of w cannot be
expanded indefinitely, and it is necessary to use the hyperparameter 7 to limit
it.
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Fig. 3. Results of SGL-SGC’s performance on Cora, CiteSeer, and PubMed datasets
with different values of 7. The ordinates in the figure represent different accuracy rates,
while the abscissas represent different values of 7 .

4.4 Representation capability analysis

For further analysis of the representation capability of our proposed method,
we visualize the outputs to make an intuitive observation. For comparison, we
adopt a deformation of SGL-SGC with InfoNCE loss and only two different views
without SGCs. The new framework is named IN-GCL.

Figure 4 demonstrates the results. We can see that the untrained encoder
output features without much distinguishability. We can observe many vertical
lines running through multiple blocks of different labels. These lines represent
similar representations, indicating there are common features shared between
different classes. The output of SGL-SGC under ten epochs of training shows
some interesting developments. The vertical lines of each block become clearer
than in the previous column, and there is still not much distinguishability. For
the outputs of SGL-SGC after 100 epochs of training, we can see much difference
between each class. We believe that SGL-SGC will first increase the indepen-
dence of each dimension of the feature during the training process, making the
output more expressive. After that, the distinction between the various classes
appears, indicating that the encoders have learned meaningful information.

The last column of Figure 4 shows the output of IN-GCL without feature-level
weight-sensitive loss and SGCs. It can be seen that after the same 100 rounds of
training, SGL-SGC can learn more discriminative features than IN-GCL, which
demonstrate the superiority of our method.

5 Conclusions

This paper proposed a self-supervised graph learning method with segmented
graph channels. We enhance the conventional view generation with segmented
graph channels to reduce the redundant mutual information between multiple
views while avoiding introducing more noises. We also proposed a feature-level
weight-sensitive loss as our training objective. This loss function can emphasize
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samples with more contribution to training and reduce consumption of comput-
ing resources. We conducted multiple experiments to prove the superiority of
our proposed method.

Output
jons of

s o
Label  rando lize  SCL-SC under SCL-SC under 100 IN-GCL under 100
enco ini ini epochs of training

sample

Fig. 4. Visualized output representations of different frameworks. Each horizontal line
in each small block represents an output representation. In each small block, the hori-
zontal axis represents different dimensions of the output representation, and the vertical
axis represents different samples. All representations are grouped by category.
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