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Abstract. The rapid development of Massive Open Online Courses
(MOOCs) surges the needs of advanced models for personalized online
education. Existing solutions successfully recommend MOOCs courses
via deep learning models, they however generate weak “course embed-
dings” with original profiles, which contain noisy and few enrolled courses.
On the other hand, existing algorithms provide the recommendation list
according to the score of each course while ignoring the personalized de-
mands of learners. To tackle the above challenges, we propose a Meta
hierarchical Reinforced Learning to rank approach MRLtr, which con-
sists of a Meta Hierarchical Reinforcement Learning pre-trained mecha-
nism and a gradient boosting ranking method to provide accurate and
personalized MOOCs courses recommendation. Specifically, the end-to-
end pre-training mechanism combines a user profile reviser and a meta
embedding generator to provide course embedding representation en-
hancement for the recommendation task. Furthermore, the downstream
ranking method adopts a LightGBM-based ranking regressor to promote
the order quality with gradient boosting. We deploy MRLtr on a real-
world MOOCs education platform and evaluate it with a large num-
ber of baseline models. The results show that MRLtr could achieve
∆NDCG4= 7.74%∼16.36%, compared to baselines. Also, we conduct
a 7-day A/B test using the realistic traffic of Shanghai Jiao Tong Uni-
versity MOOCs, where we can still observe significant improvement in
real-world applications. MRLtr performs consistently both in online and
offline experiments.
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ing · Hierarchical Reinforcement Learning · Learning to Rank.
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1 Introduction

With the rapid development of online education, many Massive Open Online
Courses (MOOCs) platforms (e.g., Coursera, edX and Udacity) have been built
around the world to offer convenient and low-cost opportunities to access high
qualified courses from elite universities. The rapid development of MOOCs surges
the needs of advanced models and algorithms for personalized course recommen-
dation. Nowadays, deep learning techniques have made significant achievements
in many areas, such as computer vision, natural language processing and rec-
ommendation system. The MOOCs recommendation can be considered as a
sequential recommendation problem. We can formulate the problem as recom-
mending the most probable course to be enrolled by certain user (the user’s
preference) at time t+1, given a set of historical enrolled courses (the user’s
profile) before time t. To tackle such issue, existing works have proposed vari-
ous methods to model users’ preferences. For example, factored item similarity
model (FISM) [1] represents each course as an embedding vector and averages
the embedding of all historical courses as the user’s preference without capturing
the order of the courses. In order to use the order of historical courses, [2] pro-
poses a gated recurrent unit model adding a temporal sequence of the historical
courses, whose output is the last vector of the user preference. However, its per-
formance is compromised by assigning all the historical courses with the same
weight when calculating the similarity between the target course and the user
profile. To distinguish the weights of different courses, two attention-based mod-
els (neural attentive item session-based recommendation (NASR) [3] and neural
attentive item similarly (NAIS) [4]) are proposed. NAIS and NASR can estimate
the attention coefficient of each enrolled course as the importance indicator.

While existing attempts have made significant progress, there still exists three
technical challenges as follows. Firstly, existing solutions using deep learning
models could fit the original user profiles well, they however contain noises. For
instance, there are some enrolled courses whose watching duration is terribly
short in a user profile, which represents that the user shows little interest in the
courses or enrolls them mistakenly. Once these noisy courses are fed into deep
learning models, they will dilute the importance of the contributing courses,
which will make the recommendation model performance poorly. Secondly, ex-
isting solutions successfully extract features from course materials for recommen-
dation via “course embeddings”, they however fail to extract informative features
for recommendation when the training data is limited (e.g., cold-start courses).
For some courses with many enrolled users, their features will be learned suffi-
ciently. In such case, it will be a higher chance for them to be recommended.
On the contrary, for new courses with relatively few enrollments, their special
features will be ignored, which leads to lower recommendation probability. More-
over, for cold-start case, when a new course is added into the platform, or the
trained model is deployed on a new platform, the recommendation accuracy will
be compromised significantly since the embeddings of the new courses can not
be represented well. Finally, existing course recommendation systems usually
score the courses and provide the recommendation order directly according to
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the scores [1]. However, this pointwise method only considers a single course at
a time in the loss function, which essentially recasts the problem as a regression
task. The score of each candidate course is independent without contemplating
the potential relationship between the courses. For the MOOCs recommenda-
tion, it is necessary to provide more accurate and personalized recommendation
order for students.

In order to tackle the above three issues, we propose a three-step approach:
(1) Reinforced User Profiling with Items Filtering ; (2) End-to-end Pre-training
with Meta Enhancing ; (3) Gradient Boosting with Order Promoting. Specially,
the first step adopts a hierarchical reinforcement learning method to conduct
a user profile reviser, which aims to avoid deep learning models overfitting the
noise courses. To enhance the representation of course embeddings, a meta em-
bedding generator is proposed, which can not only adapt fast for new courses, but
also perform well on few-shot enrolled data. Instead of using the original course
embeddings directly, MRLtr fuses the features learned from the user profile
reviser and the meta embedding generator to provide an end-to-end pre-training
for the downstream recommendation models. After the basic recommendation
model, the final step replaces the pointwise loss function with a LightGBM [17]-
based Learning To Rank (LTR) model, which chooses the listwise loss function
to capture the comprehensive user-course relevance for the sake of promoting
more accurate and personalized course order for student users.

We conduct extensive offline and online experiments on a real-world MOOCs
platform. The results show the effectiveness of MRLtr and the consistent per-
formance in the real-world MOOCs platform. To the best of our knowledge, this
is the first work to propose an end-to-end pre-trainning mechanism with a LTR
promoting method for the MOOCs recommendation task. Our main contribu-
tions can be summarized as follows:

– We study the problem of online recommendation in the context of Online
Education, where we particularly focus on the technical challenges on em-
bedding representation and order promotion. To the best of our knowledge,
this work is the first to investigate course embedding representation with an
end-to-end pre-traininng mechanism and order promotion with a LightGBM-
based ranking regressor.

– We design and implementMRLtr, incorporating the end-to-end pre-training
mechanism and the order promotion model in the basic recommendation
task. Specifically, MRLtr consists of three steps: (1) Reinforced User Pro-
filing with Item Filtering that removes the noisy courses with hierarchical
reinforcement learning, (2) End-to-end Pre-training with Meta Enhancing
that adopts a gradient-based meta learning approach to search a better em-
bedding representation and average the embeddings generated from step (1)
to feed recommendation models, (3) Gradient Boosting with Order Promot-
ing that promotes the course recommendation order via a ranking regressor.

– We deploy MRLtr on the Shanghai Jiao Tong University (SJTU) MOOCs
and evaluate it using both offline experiments and online A/B tests in com-
parison with baseline algorithms. The experiment results show that, com-
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pared to the state of the art algorithms, MRLtr could achieve ∆NDCG4 =
7.74%∼16.36% in offline experiments and significant improvement in online
A/B tests under fair comparisons. Extensive ablation studies further confirm
the effectiveness of MRLtr for the MOOCs recommendation.

2 Background and Formulation

In this section, we introduce the background of the basic MOOCs recommenda-
tion problem and formulate the basic MOOCs recommendation model.

2.1 Background

Like all the recommendation tasks, users and items are two basic elements in
MOOCs recommendation problem. We use U =

{
u1, · · · , u|U |

}
to denote the

user set and C =
{
c1, · · · , c|C|

}
to denote the course set of a MOOCs platform.

The set of historical enrolled courses is defined as Eu =
(
eu1 , · · · , eutu

)
, which also

denotes the user profile. We formulate the problem as recommending the most
probable course u to be enrolled at tu+1, given a set of user’s historical enrolled
courses Eu before time t.

2.2 Formulations

Like all general recommendation tasks, characterizing the user’s preference based
on its profile Eu is critical. We utilize a valued low dimensional embedding vector
put to represent each historical enrolled course eut . User u’s preference is denoted
as qu, which aggregates the embeddings of all historical enrolled courses. An
embedding vector pi is utilized to represent the target course ci. The probability
p of recommending ci to u can be represented as

p = P (y = 1 | Eu, ci) = σθ
(
qTupi

)
, (1)

where σθ (·) is the sigmoid function which transforms the input embedding vec-
tors into a probability, θ is its parameters. The key issue for solving the rec-
ommendation task is to calculate qu, i.e., the aggregated embedding. There
are some existing methods to obtain qu. For example, we can average the em-
beddings of all the historical enrolled courses. However, this method treats all
historical enrolled courses equally, which neglects the importance of different
courses and cannot represent the real interest of users. Hence, an existing work
utilizes the attention mechanism to estimate an attention coefficient auit for each
course eut [4]. Moreover, there is also a method using attentive recurrent neural
network to capture the order of historical courses [3].

In this paper, we adopt the method that parameterizes the attention coeffi-
cient auit as a function, whose inputs are put and pi. Then the embeddings are
calculated based on their attentions as,

qu =

tu∑
t=1

auitp
u
t , a

u
it = z (put ,pi) , (2)
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Fig. 1: The pipeline of MRLtr. Firstly, we pre-train the basic recommenda-
tion model. Then, we train Step 1 with the basic recommendation model. Next,
we train Step 2 with the basic recommendation model. Finally, we jointly train
all the parts together with the frozen parameters of Step 2.

where z (·) can be instantiated by a multi-layer perception on the concatenation
or the element-wise product of the two embeddings put and pi.

3 Methodology

In this section, we present the technical details of MRLtr. As illustrated in Fig-
ure 1, MRLtr consists of three steps: (1) Reinforced User Profiling with Item
Filtering, (2) End-to-end Pre-training with Meta Enhancing, and (3) Gradient
Boosting with Order Promoting. We first introduce Reinforced User Profiling with
Item Filtering which adpots a hierarchical reinforcement learning algorithm to
remove the noisy courses. Second, we propose the End-to-end Pre-training with
Meta Enhancing which utilizes a gradient-based meta learning algorithm to en-
hance the representation of course embeddings. Finally, we introduce Gradient
Boosting with Order Promoting which deploys a LightGBM-based ranking re-
gressor to replace the pointwise loss function for the course recommendation.

3.1 Reinforced User Profiling with Item Filtering

The whole profile revising process can be formulated as a hierarchical Markov
Decision Process (MDP), which contains a high-level task and a low-level task.
The training process of the profile reviser is shown in Figure 2.

Formulating the item filtering task as a hierarchical MDP An MDP can
be represented as a 5-tuple 〈S,A, π,P,R〉, with S denoting the state space, A
denoting the action space, π denoting the policy, P denoting the state transition
probability matrix, and R denoting the reward. Specifically, the agent observes
an environment state s ∈ S, takes an action a ∈ A based on a certain policy
π(a|s), which is the conditional probability density of choosing action a under
state s. After applying a, the agent receives a reward r ∈ R, then the state
transfers to s′ with probability p(s′|s, a) ∈ P. The proposed approach reformu-
lates the profile revising task as an MDP 〈S,A, π,P,R〉, which is given as:
1) state S. We catrgorize S into the low-level task and the high-level task:
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– low-level task: For each historical course eut , the state feature slt contains four
aspects: the effort taken in the course eut , cosine similarity and element-wise
product between the embedding vectors of eut and ci, and the average of the
previous features over all historical courses in Eu. Notice that the embedding
vector is obtained from a pre-trained basic recommendation model.

– high-level task: For each user profile, the state feature of high-level task sh

contains: the average cosine similarity and element-wise product between the
embedding vectors of all eut in Eu and ci, the probability of recommending
eut to user u obtained by a basic recommendation model.

2) action A. We categorize A into the low-level task and the high-level task:

– low-level task: The low-level action alt ∈ {0, 1} for each historical course eut
is defined as a binary value to indicate whether to remove it or not.

– high-level task: The high-level action ah ∈ {0, 1} is defined as a binary value
to indicate whether to revise the profile Eu of user u or not.

3) policy π. We utilize policy networks parameterized by θl and θh for low-level
policy π(slt, alt|θl) and high-level policy π(sh, ah|θh), respectively.
4) reward R. We first define a delayed reward for each low-level action as

r(alt, s
l
t) =

{
log p(y = 1|Êu, ci)− log p(y = 1|Eu, ci), ift = tu

0 otherwise
, (3)

where Êu is the revised profile. The delayed reward shows the difference
between the log-likelihood of recommending ci after and before the profile is
revised.

– high-level task: A delayed reward is used to evaluate the high-level action,
Rh = r(alt, s

l
t). When the high-level task determines to revise the user profile,

Rh will be received after the last low-level action is performed.
– low-level task: An internal reward g(alt, s

l
t) is defined as follows: First, ob-

tain the average cosine similarity between each historical course eut and ci
after and before the profile is revised. Then, calculate the difference be-
tween them as g(alt, slt). Finally, the reward for low-level task is obtained by
Rl = r(alt, s

l
t) + g(alt, s

l
t).

Algorithm workflow With the formulated hierarchical MDP above, the task
of profile reviser is to find a set of optimal parameters θ = {θl, θh} to maximize
the expected reward as

θ∗ = argmax
θ

∑
τ

pθ(τ)R(τ), (4)

where τ is the sampled sequence (i.e., τ = {sl1, al1, sl2, · · · , slt, alt, · · · sltu , a
l
tu} for

low-level tasks, and τ = {sh, ah} for high-level tasks), pθ(τ) denotes the sampling
probability, and R(τ) denotes the reward for τ .
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Fig. 2: The training process of the profile reviser.

We invoke monto-carlo policy gradient method to solve the above profile
revising task, which is trained jointly with the basic recommendation model.
First, we pre-train the basic recommendation model based on the unrevised user
profile. With the pre-trained recommendation model, we then train an initialized
profile reviser. Specifically, for each user profile Eu in one training episode, we
first execute the high-level task to get ah. If the high-level task determines to
revise the user profile (i.e., ah = 1), the low-level task will be performed. Then,
We sample a low-level sequence τ , and compute r(alt, slt) and g(alt, s

l
t). After

collecting M trajectories, we update θl according to the loss function as

Lθl =
1

m

M∑
m=1

tu∑
t=1

∇θl log πθl(smt , amt )Rl, (5)

while the loss function for updating θh is given as

Lθh =
1

m

M∑
m=1

∇θh log πθh(sm, am)Rh. (6)

Finally, based on the revised profile, we train the recommendation model and
start another training episode.

3.2 End-to-end Pre-training with Meta Enhancing

In this section, we first propose the meta embedding generator that captures the
skill of learning course embeddings through meta-learning. Then, we describe
the end-to-end pre-training mechanism with feature fusion.

View of meta learning The essence of MOOCs recommendation is to learn
the function σ(·) with inputs of the course embedding vectors as shown in (1).
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Before learning the function σ(·), we need to transform the course into a real-
valued vector. From a meta-learning perspective, we reintroduce the notation of
the MOOCs recommendation model as

p = h (ci) = σθ (φi, ci) , (7)

where θ is the parameters of function σ(·) and φi is the embeddings for course
ci. Actually, h(·) is the same function as σθ(·). Then we can recast the MOOCs
recommendation as a meta-learning problem via viewing each course as a dis-
tinguished task. Specifically, for course i = {1, 2, · · · }, each task ti corresponds
to a specific function h(·). Each task has its own parameters φi and shares the
same parameters θ of the basic recommendation model. We aim to train the
model to learn how to learn φi. This is the analysis that we recast the MOOCs
recommendation as meta-learning.

Train the meta embedding generator We choose some courses as the prior
tasks with many training samples to pre-train the MOOCs recommendation
model. In this way, we can get a well-trained parameter set θ and task-specific
parameters φi for each prior task. In order to train the meta embedding generator
to learn how to learn course embeddings, we choose a course with few enrollments
as the new task î. Due to the fact that the task-specific parameter φi can not
be shared with a new task, we have to train a meta embedding generator to
replace its place. For a new course (i.e., a new task t̂i), we use φ

init
î

as the initial
embedding

φinit
î

= fv(cî), (8)

where v is the meta-parameter and fv(·) is the meta embedding generator. The
recommendation problem can be shown as

p̂ = hmeta
(
ĉi
)
= σθ

(
φiniti , ĉi

)
. (9)

As for each task ti (i.e., course ci), we can get the training set as Di = {ci}Ni

j=1

with Ni samples. We choose two disjoint mini-batches such as D1
i and D2

i , each
with K samples. To simulate the course with relatively few enrollments, we
assume the mini-batch size K is far less than half of Ni. Then we take a two-
step strategy to train the meta embedding generator and get the meta-parameter
v: (1) We use hmeta(·) on the first mini-batch D1

i and get the recommendation
result as

p̂1 = hmeta (ci) = σθ
(
φiniti , ci

)
. (10)

Meanwhile, we obtain the average loss as

l1 =
1

K

K∑
k=1

[−y1 log p̂1 − (1− y1) log (1− p̂1)] , (11)

where k is of the k-th sample from batch D1
i . (2) We execute the learning process

with the second batch of data D2
i and then compute the gradient of l1 and take
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a step of gradient descent,

φ′i = φiniti − α ∂l1
∂φiniti

, (12)

where α is the learning rate. Next, we test the trained model on the second batch
D2

i . Specifically, we obtain the recommendation result as

p̂2 = h′meta (ci) = σθ (φ
′
i, ci) . (13)

Meanwhile, we obtain the average loss as

l2 =
1

K

K∑
k=1

[−y2 log p̂2 − (1− y2) log (1− p̂2)] . (14)

Next we propose the final loss function lfinal unified l1 and l2 as

lfinal = al1 + bl2, (15)

where a, b ∈ [0, 1] are the weight coefficients of the loss functions and the sum
of a and b is 1 (i.e., a + b = 1). The aims for defining the final loss function as
(15) is summarized as: (1) For the new courses, we aim to reduce the error of
the MOOCs recommendation. Hence, we calculate l1 in the final loss function
different fromMAML, which takes l2 as the final loss function. (2) For the courses
with few enrollments (i.e., small number of labeled data), we aim to make them
learn fast through gradient updates. Then we calculate the gradient by the chain
rule:

∂lfinal

∂v
=
∂lfinal

∂φinit
i

∂φinit
i

∂v
=
∂lfinal

∂φinit
i

∂fv
∂v

, (16)

where
∂lfinal
∂φiniti

= a
∂l1

∂φiniti

+ b
∂l2
∂φ′i
− ab ∂l2

∂φ′i

∂2l1

∂φinit2
i

. (17)

Eventually, we propose the training algorithm for the meta embedding gener-
ator as shown in Alg.1. Specifically, we design a neural network as the meta
embedding generator. The inputs of the generator is the course features. In our
work, we use the embedding layers of the basic recommendation model in the
generator instead of training it from scratch. In order to reduce the number of
parameters, we use the parameters of reused layers directly. Then the embed-
dings from different fields are aggregated by average pooling. Eventually, we use
a fully connected layer to get the outputs.

End-to-end pre-training with feature fusion In this section, we propose a
simple yet useful design to fuse the embeddings from the meta embedding gener-
ator and the user profile reviser. First, we make sure the output embedding from
the profile reviser and the meta embedding generator have the same dimension.
If a historical course is revised by the profile reviser, the corresponding item of
the original output of the profile reviser will be set as 0. Then we average the
sum of the corresponding parts of the profile reviser and the meta embedding
generator to obtain the new course embedding.
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Algorithm 1 Training Meta Embedding Generator
Input: The base model σθ, course dataset C, hyper-parameter a,b, learning rate
α,β.
1: Randomly initialize v;
2: while not done do
3: Randomly samples n courses {i1, i2, . . . , in} from C;
4: for i ∈ {i1, i2, . . . , in} do
5: Generate the initial embedding: φiniti = fv (ci);
6: Sample mini-batch D1

i and D2
i each with K samples;

7: Evaluate loss l1 on D1
i ;

8: Compute adapted embedding: φ′i = φiniti − α ∂l1
∂φiniti

;
9: Evaluate loss l2 on D2

i ;
10: Compute loss: lfinal = al1 + bl2;
11: end for
12: v ← v − β

∑
i∈{i1,...,in}

∂lfinal
∂v ;

13: end while

3.3 Gradient Boosting with Order Promoting

Given the new fusion embedding to the basic recommendation models, MRLtr
replaces the fully connected layer of the basic recommendation model with a
LightGBM-based ranking regressor, which adpots the listwise loss function. We
denote a set of user-course pairs with the ranking score as a set of triple such as
T = {(u1, e1,y1), (u2, e2,y2), (u3, e3,y3), . . . }. We aim to gain a LTR scoring
function fs. Therefore, the goal is recast to learn a scoring function f which
minimizes the loss as

L(f) =
1

|T |

|T |∑
i=1

 1

|ei|

|ei|∑
j=1

`(yij , fs(u
i
j , e

i
j))

 , (18)

where ` represents the loss of the ranking prediction of course eij of user ui
against the ground truth yij .

4 Experiments

To demonstrate the effectiveness of MRLtr, we present extensive experiments
on the SJTU MOOCs platform comparing with a large number of baseline meth-
ods. Firstly, we detail the experimental settings. Then, we introduce the results
of offline experiments. Finally, the performance of online A/B Test shows the
effectiveness of MRLtr.

4.1 Experimental Settings

Dataset and Evaluation Methodology We collect the dataset from SJTU
MOOCs, a large MOOCs platform with significant number of users. Specifically,
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we collect a portion of the student users who enrolled courses from September 1st,
2016 to September 1st, 2021. Moreover, we make some standardized processing,
such as defining the courses with the same name in different years as the same
one. For instance, we unity “Computer Network” from 2016 to 2020 into the
same course named “Computer Network". The collected dataset consist of 1,452
courses, 65,649 users, 313,492 users enrolled behaviors, and 23 categories.

To evaluate the performance of MRLtr, we use Normalized Discounted Cu-
mulative Gain (NDCG) [16], which has been widely adopted to evaluate the rank-
ing performance. Before introducing NDCG, we first introduce the Discounted
Cumulative Gain (DCG) as

DCGN =

N∑
i=1

Gi
log2(i+ 1)

, (19)

where Gi denotes the weight assigned to the item’s label at position i. A higher
Gi indicates that the item is more relevant to the user and correspondingly
a better LTR model. However, due to the different lengths of various users, it
makes no sense to compare the DCG among them. Then, we utilize the following
implementation of NDCG to take a mean across all scores as

NDCGN =
DCGN
IDCGN

, (20)

where IDCGN is the ideal order to normalize the scores. Moreover, the value of
NDCG is in the range of [0, 1]. Similarly, a higher NDCGN indicates a better
LTR model. In this paper, we consider the NDCG of top 10 and 4 ranking results,
i.e., NDCG@10 and NDCG@4.

Experiment setups In this work, all the offline experiments are implemented
on a server with 32G Memory, 1 NVIDIA Tesla V100 GPU and 2T Disk. The
online experiments are deployed on SJTU MOOCs platform. In order to evaluate
the effectiveness of MRLtr comprehensively, we adopt seven related models
proposed by previous researches as competitors:

– Bayesian Personalized Ranking (BPR). This model uses a Bayesian
method to optimize the pairwise ranking loss in recommendation tasks.

– Multi-layer Perception (MLP). The model use a multi-layer perceptron
on a pair of user and course embeddings to learn the probability of recom-
mending the course to the user.

– Factorization Machine (FM). FM is a principled approach that can easily
incorporate any heuristic features.

– Factored Item Similarity Model (FISM). FISM is an item-to-item col-
laborative filtering (CF) algorithm which recommends courses via averaging
embedding of all enrolled courses and embedding of the target courses.

– Gated Recurrent Unit (GRU). GRU is a gated recurrent unit model
that receives a sequence of historical courses as input, then output the last
hidden vector as the representation of a user’s preference.
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Fig. 3: Offline comparative results of MRLtr and baselines on
∆NDCG10 and ∆NDCG4. We use MRLtr∗ and MRLtr∗∗ to represent the
MRLtr+NAIS and MRLtr+NASR, respectively.

– Neural Attentive Item Similarity (NAIS). NAIS is a collaborative fil-
tering algorithm which utilizes an attention mechanism to distinguish the
weights of different historical enrolled courses.

– Neural Attentive Session-based Recommendation (NASR). NASR
is an improved model GRU model that estimates attention coefficients for
historical enrolled courses based on the corresponding hidden vector outputs.

4.2 Offline Experimental Results

To comprehensively evaluate MRLtr, we conduct experiments to answer the
following research questions:
RQ1: How does MRLtr perform compared with state-of-the-art models for
MOOCs recommendation tasks?
RQ2: Is the Reinforced User Profiling with Item Filtering in MRLtr necessary
for improving performance?
RQ3: Is the End-to-end Pre-training with Meta Enhancing in MRLtr vital for
improving performance?
RQ4: How does the Gradient Boosting with Order Promoting impact the per-
formance of MRLtr?

Comparative Results: RQ1 In Figure 3, we report the offline performance of
MRLtr compared with other baselines on NDCG10 and NDCG4. In order to
represent the combination of MRLtr with two basic recommendation models
briefly, we use MRLtr1 and MRLtr2 to represent the combination of MRLtr
with NAIS and NASR, respectively. Intuitively, we could see that MRLtr gains
the best performance compared with other baselines on both two metrics. Specif-
ically, MRLtr2 improves the performance of the baseline models from 7.74% to
16.36% on NDCG4 and from 8.24% to 18.24% on NDCG10. Moreover, there
are some findings from the comparative experiments. Firstly, all the user-to-item
based collaborative models (i.e., BPR, MLP and FM) show poor performance
since most of the users in our dataset enrolled a few courses, and the embed-
dings can not be extracted from the sparse data. Secondly, item-to-item based
collaborative filtering models (i.e., FISM and GRU) perform better than user-to-
item based collaborative models, but they still perform worse than the attention
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(a) NDCG4 w/w/o RL (b) NDCG10 w/w/o RL

(c) NDCG4 w/w/o Meta (d) NDCG10 w/w/o Meta

(e) NDCG4 w/w/o GB (f) NDCG10 w/w/o GB

Fig. 4: Ablation studies of Reinforced User Profiling with Item Filter-
ing (RL), End-to-end Pre-training with Meta Enhancing (Meta) and
Gradient Boosting with Order Promoting (GB) for MRLtr on NDCG4

and NDCG10. To briefly represent the models, we use MLP+, FISM+, GRU+,
MRLtr1 and MRLtr2 to represent the combinations of MRLtr with MLP,
FISM, GRU, NAIS, and NASR, respectively. Moreover, “w/w/o” is the abbrevi-
ation of “with or without”.

models. Because FISM and GRU treat all historical courses equally. As for NAIS
and NASR, we find that they perform better than all the above collaborative
filtering models, as they can distinguish the importance of different courses via
attention mechanism.

Ablation Study: RQ2 We conduct a series of ablation studies to prove the
effectiveness of Reinforced User Profiling with Item Filtering, End-to-end Pre-
training with Meta Enhancing and Gradient Boosting with Order Promoting for
MRLtr. Figure 4 (a) and (b) illustrates that all the models with the Reinforced
User Profiling with Item Filtering based user profile reviser could obtain bet-
ter performance compared with the models without the user profile reviser. As
shown in Figure 4 (a), Reinforced User Profiling with Item Filtering achieves
the improvement with 3.91% for MRLtr2 on NDCG4, which is the largest
improvement in this study.
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Fig. 5: Online comparative performance on NDCG4 of MRLtr and
baselines for 7 days. (t-test with p < 0.05 over the baseline).

Ablation Study: RQ3 In order to demonstrate the usefulness of End-to-end
Pre-training with Meta Enhancing, we conduct a serious of ablation studies. As
shown in Figure 4 (c) and (d), the chosen models with End-to-end Pre-training
with Meta Enhancing (Meta) based the meta embedding generator perform bet-
ter than the models without the meta embedding generator. Specifically, the
meta embedding generator obtains the largest margin with 4.72% on NDCG10.
These phenomenons prove that End-to-end Pre-training with Meta Enhancing
could enhance the representation of course embdeddings. There are many users
enrolled few courses in the dataset. The meta embedding generator can not only
adapt fast for new courses, but also perform well on few-shot enrolled data.

Ablation Study: RQ4 In Figure 4 (e) and (f), we report the ablation study
of Gradient Boosting with Order Promoting of MRLtr. Similarity, all the mod-
els with the Gradient Boosting with Order Promoting based ranking regressor
could obtain better performance compared with the models without the ranking
regressor. As depicted in Figure 4 (f), Gradient Boosting with Order Promot-
ing achieves the improvement of 5.48% for GRU+ on NDCG10. These results
demonstrate that the listwise-based ranking regressor performs better. The list-
wise function treats the whole document list as a sample and directly optimizes
the evaluation metrics, such as the utilized metric NDCG in this work.

4.3 Online Experimental Results

To demonstrate the effectiveness of MRLtr, we conduct a series of online A/B
tests with real-world web traffics and compare it with the baseline models on
SJTU MOOCs platform. According to the offline experimental results, we con-
duct the online experiments with full real-world web traffic, which last for 7 days.
Figure 5 illustrates the comparison of MRLtr with the baselines on ∆NDCG4.
Firstly, MRLtr could boost the performance compared with the online base
system in all days, which demonstrates that MRLtr is practical for improv-
ing the performance of SJTU MOOCs. Furthermore, we can find that MRLtr
achieves significant improvements on the real-world MOOCs platform. Specifi-
cally, we observe that MRLtr outperforms the online base model (FISM) by a
large margin on ∆NDCG4 with 13.8% relative improvement, which reveals the
effectiveness of MRLtr. Finally, we observe that MRLtr performs stably in all
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days, which demonstrates the soundness and usefulness of our proposed model.
Basically, the online performance is consistent with offline experiment results.

5 Related Work

CF has been widely used in sequential recommendation problems, where each
user-item interaction data naturally forms a sequence for being associated with
timestamp information. For example, bayesian personalized ranking [5], matrix
factorization [6] and factorization machine [7] are all user-to-item based CF
methods. However, the performances of the above models are limited when data
is sparse. By contrast, the item-to-item CF models can handle the above prob-
lem. [1] is proposed to calculate the item similarity via dot product of item
embeddings. To retrieve the main preference in the sequential data, attention
mechanism was proposed in NASR [3] and NAIS [4]. Moreover, RNN [8] and
GRU [2] are used to capture the temporal factor of the user-item iteration data.

Recently, some researches attempt to adapt meta-learning algorithm to solve
issues. Meta-learning aims to adapt a trained model to new tasks quickly and
effectively by using the prior experience learned from the related tasks [9]. For
example, Model-Agnostic Meta-Learning (MAML) are proposed to solve the
cold-start problem [10]. Recently, motivated by the aforementioned benefits of
meta-learning, it has been invoked into the recommendation tasks [11]. Moreover,
λOpt [12] is proposed to optimize regularization hyper-parameters based on
validation performance.

According to the loss function, we could categorize the LTR models into
three families: pointwise [13], pairwise [14]and listwise [15]. The listwise model
treats the whole document list as a sample and directly optimizes the evaluation
metrics, such as the utilized metric in this work, i.e., NDCG.

6 Conclusion

In this paper, we design, implement and deploy a novel MOOCs recommenda-
tion approachMRLtr on a real-world MOOCs platform to address the problems
which contains course data noises, weak representation for few enrolled courses
and the poor recommendation order.MRLtr contains three steps: (1) Reinforced
User Profiling with Item Filtering that removes the noisy courses with hierar-
chical reinforcement learning, (2) End-to-end pre-training with Meta Enhancing
adopts a gradient-based meta learning approach to search a better embedding
representation, and (3) Gradient Boosting with Order Promoting promotes the
course recommendation order via a LightGBM-based ranking regressor. To verify
the effectiveness of MRLtr, we conduct extensive offline and online experiments
compared with a large number of baseline methods. Offline experiment results
show that MRLtr could achieve significant gain over baselines on NDCG4

compared with other baselines. Furthermore, MRLtr significantly boosts the
online MOOCs recommendation performance in real-world applications, which
is consistent with the offline results.
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