Self-Distilled Pruning of Deep Neural Networks

James O’ Neill D4, Sourav Dutta, and Haytham Assem

Huawei Ireland Research Center, Dublin, Ireland
james.o.neil@huawei-partners.com
{sourav.dutta2,haytham.assem}@huawei.com

Abstract. Pruning aims to reduce the number of parameters while
maintaining performance close to the original network. This work pro-
poses a novel self-distillation based pruning strategy, whereby the rep-
resentational similarity between the pruned and unpruned versions of
the same network is maximized. Unlike previous approaches that treat
distillation and pruning separately, we use distillation to inform the
pruning criteria, without requiring a separate student network as in
knowledge distillation. We show that the proposed cross-correlation ob-
jective for self-distilled pruning implicitly encourages sparse solutions,
naturally complementing magnitude-based pruning criteria. Experiments
on the GLUE and XGLUE benchmarks show that self-distilled prun-
ing increases mono- and cross-lingual language model performance. Self-
distilled pruned models also outperform smaller Transformers with an
equal number of parameters and are competitive against (6 times) larger
distilled networks. We also observe that self-distillation (1) maximizes
class separability, (2) increases the signal-to-noise ratio, and (3) con-
verges faster after pruning steps, providing further insights into why
self-distilled pruning improves generalization.
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1 Introduction

Neural network pruning [29/T6J33] zeros out weights of a pretrained model with
the aim of reducing parameter count and storage requirements, while maintain-
ing performance close to the original model. The criteria to choose which weights
to prune has been an active research area over the past three decades [T6/TT0I328)].
Lately, there has been a focus on pruning models in the transfer learning setting
whereby a self-supervised pretrained model trained on a large amount of unla-
belled data is fine-tuned to a downstream task while weights are simultaneously
pruned, referred to as fine-pruning. In this context, recent work proposes to learn
important scores over weights with a continuous mask and prune away those that
having the smallest scores [2536]. However, these learned continuous masks dou-
ble the number of parameters and gradient updates in the network [36]. Ideally,
we aim to perform task-dependent fine-pruning without adding more parame-
ters to the network, or at least far fewer than twice the count. Additionally, we
desire pruning methods that can recover from performance degradation directly
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after pruning steps, faster than current pruning methods while encoding task-
dependent information into the pruning process. To this end, we hypothesize
self-distillation may recover performance faster after consecutive pruning steps,
which becomes more important with larger performance degradation at a higher
compression regime. Additionally, self-distillation has shown to encourage spar-
sity as the training error tends to 0 [27]. This implicit sparse regularization effect
complements magnitude-based pruning.

Hence, this paper proposes to combine self-distillation and magnitude-based
pruning to achieve task-dependent pruning efficiently. This is achieved by maz-
imizing the cross-correlation between output representations of the fine-tuned
pretrained network and a pruned version of the same network — referred to
as self-distilled pruning (SDP). Cross-correlation maximization reduces redun-
dancy and encourages sparse solutions [49], naturally fitting with magnitude-
based pruning. Unlike typical knowledge distillation (KD) where the student is
a separate network trained from random initialization, here the student is ini-
tially a masked version of the teacher. We find that SDP sets state-of-the-art
results when compared to alternative magnitude-based pruning methods and
equivalently sized distilled networks. We also provide three insights as to why
self-distillation leads to more generalizable pruned networks. We observe that
self-distilled pruning (1) recovers performance faster after pruning steps (i.e.,
improves convergence), (2) mazimizes the signal-to-noise ratio (SNR), where
pruned weights are considered as noise, and (3) improves the fidelity between
pruned and unpruned representations as measured by mutual information of the
respective penultimate layers. We focus on pruning fine-tuned monolingual and
cross-lingual transformer models, namely BERT [6] and XLM-RoBERTa [5]. To
our knowledge, this is the first study that introduces the concept of self-distilled
pruning, analyzes iterative pruning in the mono-lingual and cross-lingual set-
tings on the GLUE and XGLUE benchmarks respectively and the only work to
include an evaluation of pruned model performance in the cross-lingual transfer
setting.

2 Background and Related Work

Regularization-based pruning can be achieved by using a weight regularizer that
encourages network sparsity. Three well-established regularizers are Ly, Lo and
Lo weight regularization [24123/47] for weight sparsity [I1I10]. For structured
pruning, Group-wise Brain Damage [I18] and SSL [45] propose to use Group
LASSO [48] to prune whole structures (e.g., convolution blocks or blocks within
standard linear layers).Park et al. [3I] avoid pruning small weights if they are
connected to larger weights in consecutive layers and vice-versa, by penalizing
the Frobenius norm between pruned and unpruned layers to be small.

Importance-based pruning assigns a score for each weight in the network and
removes weights with the lowest importance score. The simplest scoring cri-
teria is magnitude-based pruning (MBP), which uses the lowest absolute value
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(LAV) as the criteria [33[TT/I0] or Lq/Lo-norm for structured pruning [23]. MBP
can be seen as a zero-th order pruning criteria. However higher order pruning
methods approximate the difference in pruned and unpruned model loss using
a Taylor series expansion up until 1% order [T9/12] or the 2"¢ order, which
requires approximating the Hessian matrix [26/44y37] for scalability. Lastly, the
regularization-based pruning is commonly used with importance-based pruning
e.g using Lo weight regularization alongside MBP.

Knowledge Distillation (KD) transfers the knowledge of an already trained net-
work, such as the logit outputs [13]), and uses them as soft targets to optimize a
student network. The student network is typically smaller than the teacher net-
work and benefits from the additional information soft targets provide. There has
been various extensions that involve distilling intermediate representations [34],
distributions [14], maximizing mutual information between student and teacher
representations [I], using pairwise interactions for improved KD [32] and con-
trastive representation distillation [3930].

Self-Distillation is a special case of KD whereby the student and teacher
networks have the same capacity. Interestingly, self-distilled students often gen-
eralize better than the teacher [9/40], however the mechanisms by which self-
distillation leads to improved generalization remain somewhat unclear. Recent
works have provided insightful observations of this phenomena. For example,
Stanton et al. [38] have shown that soft targets make optimization easier for
the student when compared to the task-provided one-hot targets. Allen et al. [2]
view self-distillation as implicitly combining ensemble learning and KD to ex-
plain the improvement in test accuracy when dealing with multi-view data. The
core idea is that the self-distillation objective results in the network learning a
unique set of features that are distinct from the original model, similar to fea-
tures learned by combining the outputs of independent models in an ensemble.
Given this background on pruning and distillation, we now describe our proposed
methodology for SDP.

3 Proposed Methodology

We begin by defining a dataset D := {(X;,v;)}2, with single samples s; =
(Xi,y;), where each X; (in the D training samples) consists of a sequence of vec-
tors X; := (x1,...,xy) and z; € R?. For structured prediction (e.g., NER, POS)
y; € {0,13V*C and for single and pairwise sentence classification, y; € {0,1}¢,
where C is the number of classes. Let y° = f5(X;) be the output prediction
(y° € RY) from the student fp(-) with pretrained parameters 6 := {W,, b }%
for L layers. The intermediate input to each subsequent layer is denoted as
z; € R™ where zj := x for n; number of units in layer [ and the corresponding
output activation as A; = g(z;). The loss function for standard classification fine-
tuning is defined as the cross-entropy loss lop(y®,y) == fé o1 Yelog(ys).
For self-distilled pruning, we also require an already fine-tuned teacher net-
work fg, that has been tuned from the pretrained state fy, to retrieve the soft
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teacher labels y” := fo(x), where 37 € R and ECC yl' = 1. The soft label y”
can be more informative than the one-hot targets y used for standard classi-
fication as they implicitly approximate pairwise class similarities through logit
probabilities. The Kullbeck-Leibler divergence {krp is then used with the main

task cross-entropy loss {cp to express fspp_kLp as shown in
lspp-xrp = (1-a)lcr(y®, y)+ar*Dxip (¥°, y") (1)

where Dxrp(y®,yT) = H(y?) —yT log(y®), H(yT) = yT log(y7T) is the entropy
of the teacher distribution and 7 is the softmax temperature. Following [I3], the
weighted sum of cross-entropy loss and KLD loss shown in [Equation 1]is used as
our main SDP-based KD loss baseline, where « € [0, 1]. After each pruning step
during iterative pruning, we aim to recover the immediate performance degra-
dation by minimizing {spp_krLp- In our experiments, we use weight magnitude-
based pruning as the criteria for SDP given MBP’s flexibility, scalability and
miniscule computation overhead (only requires a binary tensor multiplication
to be applied for each linear layer at each pruning step). However, Dkip only
distils the knowledge from the soft targets which may not propagate enough in-
formation about the intermediate dynamics of the teacher, nor does it penalize
representational redundancy. This brings us to our proposed SDP objective.

3.1 Cross-Correlation Between Pruned and Unpruned Embeddings

Iterative pruning can be viewed as progressively adding noise M; € {0, 1}"-1*™
to the weights W; € R™-1*™_ Thus, as the pruning steps increase, the outputs
become noisier and the relationship between the inputs and outputs becomes
weaker. Hence, a correlation measure is a natural choice for dealing with such
pruning-induced noise. To this end, we use a cross-correlation loss to maximize
the correlation between the output representations of the last hidden state of the
pruned network and the unpruned network to reduce the effects of this pruning
noise. The proposed cross-correlation SDP loss function, {cc, is expressed in
where )\ controls the importance of minimizing the non-adjacent
pairwise correlations between z° and z” in the correlation matrix C. Here, m
denotes the sample index in a mini-batch of M samples. Unlike {k1,p, this loss
is applied to the outputs of the last hidden layer as opposed to the classification
logit outputs. Thus, we have,

loo(2%,2") =Y (1=Ca)’ +A) > ¢ (2)
i i g
S T

Dom i Zmg
such that C;; := NoME: ~)2\/E GT 2

Maximizing correlation along the diagonal of C makes the representations
invariant to pruning noise, while minimizing the off-diagonal term decorrelates
the components of the representations that are batch normalized. To reiterate,
2% is obtained from the pruned version of the network (fy, ) and 27 is obtained
from the unpruned version (fy).
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Fig. 1: Self-Distilled Pruning with a Cross-Correlation Knowledge Dis-
tillation Loss.

Since the learned output representations should be similar if their inputs are
similar, we aim to address the problem where a correlation measure may produce
representations that are instead proportional to their inputs. To address this,
batch normalization is used across mini-batches to stabilize the optimization
when using the cross-correlation loss, avoiding local optima that correspond
to degenerate representations that do not distinguish proportionality. In our
experiments, this is used with the classification loss and KLD distillation loss as

shown in
lspp_cc = (1 — a)lcr(y®,y) + am®Drrp(y®, y7) + Blec(2,27)  (3)

illustrates the proposed framework of self-distilled pruning with cross-
correlation loss (SDP-CC), where T is the identity matrix. Additionally, we pro-
vide a PyTorch based pseudo-code for SDP-CC the supplementary material.

3.2 A Frobenius Distortion Perspective of Self-Distilled Pruning

To formalize the objective being minimized when using MBP with self-distillation,
we take the view of Frobenius distortion minimization (FDM) [7] which says that
layer-wise MBP is equivalent to minimizing the Frobenius distortions of a single
layer. This can be described as minyg.||mjjo=p ||W — M © W||p, where © is the
Hadamard product and p is a constraint of the number of weights to remove
as a percentage of the total number of weights for a layer. Therefore, the out-
put distortion is approximately the product of single layer Frobenius distortions.
However, this minimization only defines a 15! order approximation of pruning
induced Frobenius distortions which is a loose approximation for deep networks.
In contrast, the y” targets provide higher-order information outside of the I-th
layer being pruned in this FDM framework because © encodes information of
all neighboring layers. Hence, we reformulate the FDM problem for SDP as an
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approximately higher-order MBP method as in where W7 are the
weights in fo.

min _[[[W-M© W]lp + AW~ Mo W] (4)
MMl

As described in [7f12], the difference in error can be approximated with a

Taylor Series (T'S) expansion as §&; ~ (aaV%l )T(5Wl+%5WlTHl(5Wl+O(| |oW|?)

where H is the Hessian matrix. When using SDP with a 1% TS, we can further

express the TS approximation for SDP as shown in [Equation 5] where & is the

error of the pruned network for task provided targets and &£ are the errors of
the pruned network with distilled logits.

2 2 OESNT OEINT
(& - &5+ A& —€T) “5&5*‘55?“(372) 691—1—)\(8—9’[) 56, (5)

3.3 How Does Self-Distillation Improve Pruned Model
Generalization 7

We put forth the following insights as to the advantages provided by self-distillation
for better pruned model generalization, and later experimentally demonstrate
their validity.

Recovering Faster From Performance Degradation After Pruning Steps. The first
explanation for why self-distillation leads to better generalization in iterative
pruning is that the soft targets bias the optimization and smoothen the loss
surface through implicit similarities between the classes encoded in the logits.
We posit this too holds true for performance recovery after pruning steps, as
the classification boundaries become distorted due to the removal of weights.
Faster convergence is particularly important for high compression rates where
the performance drops become larger.

Implicit Mazximization of the Signal-to-Noise Ratio. One explanation for faster
convergence is that optimizing for soft targets translates to maximizing the mar-
gin of class boundaries given the implicit class similarities provided by teacher
logits. Intuitively, task provided one-hot targets do not inform SGD of how sim-
ilar incorrect predictions are to the correct class, whereas the teacher logits do,
to the extent they have learned on the same task. To measure this, we use a
formulation of the signal-to-noise rati(ﬂ (SNR) to measure the class separabil-
ity and compactness differences between pruned model representations trained
with and without self-distillation. We formulate SNR as where for a
batch of inputs X, we obtain Z output representations from the pruned network,
which contain samples with C' classes where each class has the same N number of

1 A measure typically used in signal processing to evaluate signal quality.
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samples. The numerator expresses the average {5 inter-class distance between in-
stances of each class pair and the denominator expresses the intra-class distance
between instances within the same class.

1N(C-12 50 S S N e/ Zin |2
1/ON-12 Y SN S N Zeen /2|2

(6)

This estimation is C'—1 (C; 1) in the number of pairwise distances to be computed
between the inter-class distances for the classes. For large output spaces (e.g.,
language modeling) we recommend defining the top k-NN classes for each class
and estimate their distances on samples from them.

Quantifying Fidelity Between Pruned Models Trained With and Without Self-
Distillation. A natural question to ask is how much generalization power does
the distilled soft targets provide when compared to the task provided one-hot
targets ? If best generalization is achieved when o = 1 in this
implies that the pruned network should have as high fidelity as possible with
the unpruned network. However, as we will see there is a bias-variance trade-off
between fidelity and generalization performance, i.e., & = 1 is not optimal in
most cases. To measure fidelity between SDP representations and standard fine-
tuned representations, we compute their mutual information (MI) and compare
this to the MI between representations of pruned models without self-distillation
and standard fine-tuned models. The MI between continuous variables can be
expressed as,
1(z7;2%) = H(Z") - H(Z"|Z°) = .
—Egr[log p(Z")] + Egr zsllog p(Z"|27)] "
where H(ZT) is the the entropy of the teacher representation and H(Z”|Z") is
the conditional entropy that is derived from the joint distribution p(Z”,Z%).
This can also be expressed as the KL divergence between the joint probabili-
ties and product of marginals as 1(Z7; Z%) = Dxip[p(Z°, Z7)||p(Z2°)p(ZT)).
However, these theoretical quantities have to be estimated from test sample rep-
resentations. We use a k-NN based MI estimator [I7I8/42/4T] which partitions
the supports into a finite number of bins of equal size, forming a histogram that
can be used to estimate 1(Z°; ZT) based on discrete counts in each bin. This
MI estimator is given as,

d)[zs](iak[zs])d)[zT](iak[zT])) (8)

5. Ty ~
I(z7;2 )~e(log 520K

where ¢,s (i, k[zs]) is the probability measure of the k-th nearest neighbour ball
of 2% € R™ and wizr) (i, kjzr)) is the probability measure of the k,-th nearest
neighbour ball of 27 € R"* where ny, is the dimension of the penultimate layer.

In our experiments, we use 256 bins for the histogram with Gaussian smoothing
and k =5 (see [I7] for further details).
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Table 1: GLUE benchmark results for pruned models @10% (or @20%)
remaining weights.

Compression Method Score|Single Sentence Similarity and Paraphrase Natural Language Inference

(avg.)|CoLA SST-2 MNLI MRPC STS-B QQP RTE QNLI
(mec)  (acc) (acc) (fl/acc) (pears./spear.) (fl/acc)  (acc) (acc)
BERTgase (Ours) 84.06‘ 53.24 90.71 80.27 80.9/77.7 83.5/83.8 83.9/88.0  68.59 86.91
Knowledge Distilled Baselines (% parameters w.r.t. original BERT)
DistilBERT (60%) 82.85| 51.3 91.3 82.2 87.5/-.- 86.9/-.- -.-/85.5 59.9 89.2
BERT-Medium (44.4%) 81.54| 38.0 89.6 80.0 86.6/81.6 80.4/78.4 69.6/87.9  62.2 87.7
BERT-Small (20%) 79.02 | 27.8 89.7 77.6 83.4/76.2 78.8/77.0 68.1/87.0  61.8 86.4
BERT-Mini (10%) 76.97| 0.0 85.9 75.1 74.8/74.3 75.4/73.3 66.4/86.2  57.9 84.1
BERT-Tiny (3.6%) 73.32| 0.0 83.2 70.2 81.1/71.1 74.3/73.6 62.2/83.4  57.2 81.5
Pruning Baselines | 20%  10% 10% 10% 10% 10% 10% 10%
Random 66.03 | 6.50 78.44 69.55 77.5/67.1 27.4/26.9 77.07/81.86 52.70 74.66
Lo-MBP 77.25| 31.68 83.37 75.61 78.4/68.2 75.9/75.7 81.56/86.49 64.26 82.62
Lo-MBP 76.48 | 29.51 83.37 76.19 78.4/68.2 75.3/75.6 77.50/82.98 62.09 82.61
L»-Global-MBP 77.16 | 29.25 82.83 76.40 81.2/69.9 75.1/75.5 82.77/86.70 62.01 82.24
Lo-Gradient-MBP 74.84 | 15.46 82.91 72.51 81.0/73.7 73.8/73.6 80.41/85.19 56.31 79.33
1*t-order Taylor 76.31 | 28.88 83.26 74.64 83.0/74.8 76.7/76.6 80.09/85.29 57.76 81.20
Lookahead 76.40 | 28.15 82.80 75.31 79.8/70.5 71.9/71.9 81.84/86.53 60.29 81.80
LAMP 74.03 | 20.31 83.26 74.27 72.3/63.7 73.7/74.1 79.32/85.07 58.84 81.09

Proposed Methodology

L»-MBP + SDP-COS 77.83 | 31.80 86.00 75.68 81.6/72.2 76.4/76.3 81.39/86.68 61.73 83.07
L>-MBP + SDP-KLD  78.34| 36.74  87.96 77.94 80.5/68.2 77.1/77.3 83.21/85.58 63.18 83.54
L>-MBP + SDP-CC 78.90|36.77  87.84 78.04 81.1/71.0 77.3/77.5 83.79/86.37 62.64 84.20

BERT- results reported from prior work [35JI5J40] and MNLI results are for the matched dataset.

4 Experimental Setup

Datasets. We perform experiments on monolingual tasks within the GLUE [43]
benchmarkﬂ with pretrained BERT .5, and multilingual tasks from the XGLUE
benchmark [22] with pretrained XLMRg,s. In total, this covers 18 different
datasets, covering pairwise classification, sentence classification, structured pre-
diction and question answering. To our knowledge, this work is the first to analyse
iterative pruning in the context of cross-lingual models and their application on
multilingual datasets. Further dataset statistics can be found in supplementary
material.

Iterative Pruning Baselines. For XGLUE tasks, we perform 15 pruning steps on
XLM-RoBERTAg,s¢, one per 15 epochs, while for the GLUE tasks, we perform

> WNLI is excluded for known issues, see the Q. 12 on the [GLUE benchmark FAQ}
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32 pruning steps on BERTpg,s. The compression rate and number of pruning
steps is higher for GLUE tasks compared to XGLUE, because GLUE tasks in-
volve evaluation in the supervised classification setting; whereas in XGLUE we
report in the more challenging zero-shot cross-lingual transfer setting with only
a single language used for training (i.e., English). At each pruning step, we uni-
formly pruning 10% of the parameters for both the models. Although prior work
suggests non-uniform pruning schedules (e.g., cubic schedule [50]), we did not
see any major differences to uniform pruning.We compare the performance of
the proposed SDP-CC method against the following baselines:

— Random Pruning (MBP-Random) - prunes weights uniformly at random
across all layers. Random pruning can be considered as a lower bound on
iterative pruning performance.

— Layer-wise Magnitude Based Pruning (MBP) - for each layer, prunes
weights with the LAV.

— Global Magnitude Pruning (Global-MBP) - prunes the LAV of all
weights in the network.

— Layer-wise Gradient Magnitude Pruning (Gradient-MBP) - for each
layer, prunes the weights with the LAV of the accumulated gradients evalu-
ated on a batch of inputs.

— 1%¢ Taylor Series Pruning (7S) - prunes weights based on the LAV of
|gradient x weight]|.

— Ly norm MBP [24] - uses non-negative stochastic gates that choose which
weights are set to zero as a smooth approximation to the non-differentiable
Lo-norm.

— Ly norm MBP [2]] - applies L; weight regularization and uses MBP.

— Lookahead pruning (LAP) [31] - prunes weight paths that have the small-
est magnitude across blocks of layers, unlike MBP that does not consider
neighboring layers.

— Layer-Adaptive MBP (LAMP) [20] - adaptively computes the pruning
ratio for each layer.

For all above pruning methods we exclude weight pruning of the embeddings,
layer normalization parameters and the last classification layer, as they play an
important role for generalization and account for less than 1% of weights in both
BERT and XLM-Rpase-

Knowledge Distillation We also compare against a class of smaller knowledge
distilled versions of the BERT model with varying parameter sizes on the GLUE
benchmark. We report prior results of DistilBERT [35] and also mini-BERT mod-
els including TinyBERT [15|, BERT-small [40] and BERT-medium [40]. In addi-
tion, we consider maximizing the cosine similarity between pruned and unpruned
representations in the SDP loss, as fspp_cos := alce(y®,y) +,6’(1 — %)
Unlike cross-correlation, there is no decorrelation of non-adjacent features in
both representations for SDP-COS. This helps identify whether the redundancy
reduction in cross-correlation is beneficial compared to the correlation loss that
does not directly optimize this.
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Fig. 2: Iterative Pruning Results on GLUE tasks.

5 Empirical Results

Pruning Results on GLUE. [Table I]shows the test performance across all GLUE
tasks of the different models with varying pruning ratios, up to 10% remaining
weights of original BERTg,g along with mini-BERT models [35/40] of varying
size. However, for the CoLA dataset, we report at 20% pruning as nearly all
compression methods have an MCC score of 0, making the compressed method
performance indistinguishable. For this reason, the GLUE score (Score) is com-
puted for all tasks and methods @10% apart from CoLA. The best performing
compression method per task is marked in bold. We find that our proposed
SDP approaches (all three variants) outperform against baseline pruning meth-
ods, with SDP-CC performing the best across all tasks. We note that for the
tasks with fewer training samples (e.g., CoLA has 8.5k samples, STS-B has 7k
samples and RTE has 3k samples), the performance gap is larger compared to
BERTBase, as the pruning step interval is shorter and less training data allows
lesser time for the model to recover from pruning losses and also less data for
teacher model to distil in the case of using SDP.

Smaller dense versions of BERT require more labelled data in order to com-
pete with unstructured MBP and higher-order pruning methods such as 1%¢ order
Taylor series and Lookahead pruning. For example, we see BERT-Mini (@10%)
shows competitive test accuracy with our proposed SDP-CC on QNLI, MNLI
and QQP, the three datasets with the most training samples (105k, 393k and
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Table 2: XGLUE Iterative Pruning @ 30% Remaining Weights of XLM-
Rypase - Zero Shot Cross-Lingual Performance Per Task and Overall Average
Score (Avg).

Prune Method | XNLI NC NER PAWSX POS QAM QADSM WPR|Avg.
XLM-Rgase | 73.48 80.10 82.60 89.24 80.34 68.56 68.06  73.32 |76.96
Random 51.22 70.19 38.19 57.37 52.57 53.85 52.34  70.69 [55.80
Global-Random 50.97 69.88 38.30 56.74 53.02 54.02 53.49  69.11 |55.69
Lo-MBP 64.75 78.98 56.22 72.09 71.38 59.31  53.35  71.70 [65.97
Ly-MBP 64.30 78.79 54.43 77.99 70.68 59.24  60.33  71.52 |67.16
L>-Global-MBP 65.12 78.64 54.47 79.13 71.37 59.26  60.61  71.80 |67.55
L>-Gradient-MBP 61.11 73.77 53.25 79.56 65.89 57.35  59.33  71.59 |65.23
1%t-order Taylor 64.26 79.34 63.60 82.83 6894 61.69 62.42  72.28 [69.09
Lookahead 60.84 79.18 54.44 71.05 68.76 55.94 53.41  71.26 |64.36
LAMP 58.04 63.64 51.92 66.05 67.43 55.36 52.42  71.09 |60.74
Lo-MBP + SDP-COS| 64.96 79.02 62.77 78.70 72.88 60.21 60.94  72.04 |68.94
Lo-MBP + SDP-KLD| 65.94 80.72 64.50 79.25 73.18 61.66 61.09 71.84 |69.77
Lo-MBP + SDP-CC |66.47 79.73 66.34 80.03 73.45 63.73 62.78 72.59|70.76

364k respectively). Overall, Lo—MBP + SDP-CC achieves the highest GLUE
score for all models at 10% remaining weights when compared to BERT-Base
parameter count. Moreover, we find that Lo-MBP + SDP-CC achieves best per-
formance for 5 of the 8 tasks, with 1 of the remaining 3 being from LoMBP+SDP-
KLD. This suggests that redundancy reduction via a cross-correlation objective
is useful for SDP and clearly improve over SDP-COS which does not minimize
correlations between off-diagonal terms. shows the performance across
all pruning steps. Interestingly, for QNLI we observe the performance notably
improves between 30-70% for SDP-CC and SDP-KLD. For SST-2, we observe a
significant gap between SDP-KLD and SDP-CC compared to the pruning base-
lines and smaller versions of BERT, while TinyBERT becomes competitive at
extreme compression (<4%). Pruning Results on XGLUE. We show the per
task test performance and the average task understanding score on XGLUE for
pruning baselines and our proposed SDP approaches in Table 2] Our proposed
cross-correlation objective for SDP again achieves the best average (Avg.) score
and achieves the best task performance in 6 out of 8 tasks, while standard SDP-
KLD achieves best performance on one (news classification) of the remaining
two. Most notably, we outperform methods which use higher order gradient in-
formation (1%*-order Taylor) at 30% remaining weights, which tends to be a point
at which XLM-Rpase begins to degrade performance below 10% of the original
fine-tuned test performance for SDP methods and competitive baselines. In
we can observe this trend from the various tasks within XGLUE. We note
that the number of training samples used for retraining plays an important role
in the rate of performance degradation. For example, of the 6 presented XGLUE
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Fig. 3: Zero-Shot Results After Iteratively Fine-Pruning XLM-Rp,s on
XGLUE tasks.

tasks, NER has the lowest number of training samples (15k) of all XGLUE tasks
and also degrades the fastest in performance (from 90% to 50% Test F1 at 30%
remaining weights). In comparison, XNLI has the most training samples for re-
training (433k) and maintains performance relatively well, keeping within 10%
of the original fine-tuned model at 30% remaining weights. Summary of Re-
sults. From our experiments on GLUE and XGLUE task, we find that SDP
consistently outperforms pruning, KD and smaller BERT baselines. SDP-KLD
and SDP-CC both outperform larger sized BERT models (BERT-Small), some-
what surprisingly, given that BERT-Small (and the remaining BERT models)
have the advantage of large-scale self-supervised pretraining, while pruning only
has supervision from the downstream task. For NER in XGLUE, higher order
pruning methods such as Taylor-Series pruning have an advantage at high com-
pression rates mainly due to lack of training samples (only 15k). Apart from
this low training sample regime, SDP with MBP dominates at high compression
rates.

Measuring Fidelity To The Fine-Tuned Model. We now analyse the
empirical evidence that soft targets used in SDP may force higher fidelity with
the representations of the fine-tuned model when compared to using MBP with-
out self-distillation. As described in we measure mutual depen-
dencies between both representations of models with the best performing hy-
perparameter settings of «, 8 and the softmax temperature 7. We note that
increasing the temperature 7 translates to “peakier” teacher logit distributions,
encouraging SGD to learn a student with high fidelity to the teacher. From the
LHS of we can see that SDP models have higher mutual information
(MI) with the teacher compared to MBP, which performs worse for PAWS-X
(similar on remaining tasks, not shown for brevity). In fact, the rank order of
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Fig.5: PAWS-X Development Set Representations and (right) Pruning Perfor-
mance Recovery with Self-Distilled Pruning.

the best performing pruned models at each pruning step has a direct correla-
tion with MI, e.g., SDP-COS-MBP maintains highest MI and the highest test
accuracy for PAWS-X for the same «. However, too high fidelity (o = 1.) led to
worse generalization compared to a balance between the task provided targets
and the teacher logits (o = 0.5).

Self-Distilled Pruning Increases Class Separability and The Signal-To-Noise Ra-
tio (SNR). We also find that the SNR is increased at each pruning step as for-
mulated in From this observation, we find that SDP-CC-MBP using
cross-correlation loss does particularly well in the 30%-50% remaining weights
range. More generally, all 3 SDP losses clearly lead to better class separabil-
ity and class compactness across all pruning steps compared to MBP (i.e., no
self-distillation).

Self-Distilled Pruning Recovers Faster Performance Degradation Directly After
Pruning Steps. In we show how SDP with Magnitude pruning (SDP-
MBP) recovers during training in between pruning steps. The top of each vertical
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bar is the recovery development accuracy and the bottom is the initial perfor-
mance degradation prior to retrainng. We see that SDP pruned models degrade
in performance more than magnitude pruning without self-distillation. This sug-
gests that SDP-MBP may force weights to be closer, as there is more initial
performance degradation if weights are not driven to zero. However, the recov-
ery is faster. This may be explained by recent work that suggests the stability
generalization tradeoff [4].

6 Conclusion

In this paper, we proposed a novel self-distillation based pruning technique based
on a cross-correlation objective. We extensively studied the confluence between
pruning and self-distillation for masked language models and its enhanced util-
ity on downstream tasks in both monolingual and multi-lingual settings. We
find that self-distillation aids in recovering directly after pruning in iterative
magnitude-based pruning, increases representational fidelity with the unpruned
model and implicitly maximize the signal-to-noise ratio. Additionally, we find our
cross-correlation based self-distillation pruning objective minimizes neuronal re-
dundancy and achieves state-of-the-art in magnitude-based pruning baselines,
and even outperforms KD based smaller BERT models with more parameters.
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