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Abstract. Online Real-Time Bidding (RTB) is a complex auction game
among which advertisers struggle to bid for ad impressions when a user
request occurs. Considering display cost, Return on Investment (ROI),
and other influential Key Performance Indicators (KPIs), large ad plat-
forms try to balance the trade-off among various goals in dynamics. To
address the challenge, we propose a Multi-ObjecTive Actor-Critics al-
gorithm based on reinforcement learning (RL), named MoTiAC, for the
problem of bidding optimization with various goals. In MoTiAC, objective-
specific agents update the global network asynchronously with different
goals and perspectives, leading to a robust bidding policy. Unlike pre-
vious RL models, the proposed MoTiAC can simultaneously fulfill multi-
objective tasks in complicated bidding environments. In addition, we
mathematically prove that our model will converge to Pareto optimal-
ity. Finally, experiments on a large-scale real-world commercial dataset
from Tencent verify the effectiveness of MoTiAC versus a set of recent
approaches.
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1 Introduction

The rapid development of the Internet and smart devices has created a decent
environment for the advertisement industry. As a result, real-time bidding (RTB)
has gained continuous attention in the past few decades [23]. A typical RTB setup
consists of publishers, supply-side platforms (SSP), data management platforms
(DMP), ad exchange (ADX), and demand-side platforms (DSP). When an online
browsing activity triggers an ad request in one bidding round, the SSP sends
this request to the DSP through the ADX, where eligible ads compete for the
impression. The bidding agent, DSP, represents advertisers to come up with an
optimal bid and transmits the bid back to the ADX (e.g., usually within less
than 100ms [23]), where the winner is selected to be displayed and charged by a
generalized second price (GSP).

In the RTB system, bidding optimization in DSP is regarded as the most
critical problem [24]. Unlike Sponsored Search (SS) [25], where advertisers make
keyword-level bidding decisions, DSP in the RTB setting needs to calculate the
optimal impression-level bidding under the basis of user/customer data (e.g.,
income, occupation, purchase behavior, gender, etc.), target ad (e.g., content,
click history, budget plan, etc.) and auction context (e.g., bidding history, time,
etc.) in every single auction [24].

Thus, our work focuses on DSP, where bidding optimization happens. In real-
time bidding, two fundamental challenges need to be addressed. Firstly, the RTB
environment is highly dynamic. In [20,24,26], researchers make a strong assump-
tion that the bidding process is stationary over time. However, the sequence of
user queries (e.g., incurring impressions, clicks, or conversions) is time-dependent
and mostly unpredictable [25], where the outcome influences the next auction
round. Traditional algorithms usually learn an independent predictor and con-
duct fixed optimization that amounts to a greedy strategy, often not leading
to the optimal return [3]. Agents with reinforcement learning (RL) address the
aforementioned challenge to some extent [7,12,25]. RL-based methods can alle-
viate the instability by learning from immediate feedback and long-term reward.
However, these methods are limited to either Revenue or ROI, which is only one
part of the overall utility. In the problem of RTB, we assume that the utility is
two-fold, as outlined: (i) the cumulative cost should be kept within the budget;
(ii) the overall revenue should be maximized. Therefore, the second challenge is
that the real-world RTB industry needs to consider multiple objectives, which
are not adequately addressed in the existing literature.

To address the challenges mentioned above, we propose a Multi-Objective
Actor-Critic model, named MoTiAC. We generalize the popular asynchronous
advantage actor-critic (A3C) [13] reinforcement learning algorithm for multiple
objectives in the RTB setting. Our model employs several local actor-critic net-
works with different objectives to interact with the same environment and then
updates the global network asynchronously according to different reward sig-
nals. Instead of using a fixed linear combination of different objectives, MoTiAC
can decide on adaptive weights over time according to how well the current sit-
uation conforms with the agent’s prior. We evaluate our model on click data
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collected from the Tencent ad bidding system. The experimental results verify
the effectiveness of our approach versus a set of baselines.

The contributions in this paper can be summarized as follows:

– We identify two critical challenges in RTB and are well motivated to use
multi-objective RL as the solution.

– We propose a novel multi-objective actor-critic model MoTiAC for optimal
bidding and prove the superiority of our model from the perspective of Pareto
optimality.

– Extensive experiments on a real industrial dataset collected from the Tencent
ad system show that MoTiAC achieves state-of-the-art performance.

2 Preliminaries

2.1 Definition of oCPA and Bidding Process

In the online advertising scenario, there are three main ways of pricing. Cost-per-
mille (CPM) [7] is the first standard, where revenue is proportional to impression.
Cost-per-click (CPC) [24] is a performance-based model, i.e., only when users
click the ad can the platform get paid. In the cost-per-acquisition (CPA) model,
the payment is attached to each conversion event. Regardless of the pricing ways,
ad platforms always try to maximize revenue while simultaneously maintaining
the overall cost within the budget predefined by advertisers.

In this work, we focus on one pricing model that is currently used in Ten-
cent online ad bidding systems, called optimized cost-per-acquisition (oCPA), in
which advertisers are supposed to set a target CPA price, denoted by
CPAtarget for each conversion while the charge is based on each click.
The critical point for the bidding system is to make an optimal strategy to al-
locate overall impressions among ads properly, such that (i) the real click-based
cost is close to the estimated cost calculated from CPAtarget, specifically,

#clicks× CPCnext ≈ #conversions× CPAtarget, (1)

where CPCnext is the cost charged by the second highest price and CPAtarget
is pre-defined for each conversion; (ii) more overall conversions. In the system,
the goal of our bidding agent is to generate an optimal CPCbid price, adjusting
the winner of each impression. We denote I = {1, 2, ..., n} as bidding iterations,
A = {ad1, ad2, ...} as a set of all advertisements. For each iteration i ∈ I,
adj ∈ A, our bidding agent will decide on a CPC(i,j)

bid to play auction. Then
the ad with the highest CPC(i,j)

bid wins the impression and then receives possible
#clicks(i,j) (charged by CPC(i,j)

next per click) and #conversions(i,j) based on user
engagements.

2.2 Optimization Goals in Real-Time Bidding

On the one hand, when CPCbid is set higher, ads are more likely to win this im-
pression to get clicks or later conversions, and vice versa. However, on the other
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hand, higher CPCbid means lower opportunities for other ad impressions. There-
fore, to determine the appropriate bidding price, we define the two optimization
objectives as follows:

Objective 1: Minimize overall CPA. The first objective in RTB bidding
problem is to allocate impression-level bids in every auction round, so that each
ad will get reasonble opportunities for display and later get clicks or conversions,
which makes CPAreal close to CPAtarget pre-defined by the advertisers:

CPA(j)
real =

∑
i∈I #clicks(i,j) × CPC(i,j)

next∑
i∈I #conversions(i,j)

, ∀adj ∈ A. (2)

To achieve the goal of minimizing overall CPA, i.e., be in line with the original
budget, a lower ratio between CPA(j)

real and CPA(j)
target is desired. Precisely,

when the ratio is smaller than 1, the agent will receive a positive feedback.
On the contrary, when the ratio is greater than 1, it means that the actual
expenditure exceeds the budget and the agent will be punished by a negative
reward.

Objective 2: Maximize conversions. The second objective is to enlarge
conversions as much as possible under the condition of a reasonable CPAreal, so
that platform can stay competitive and run a sustainable business:

#conversions(j) =
∑
i∈I

#conversions(i,j), ∀adj ∈ A, (3)

where #conversions(j) is a cumulative value until the current bidding auction.
Obviously, relatively high #conversions will receive a positive reward. When
the policy network gives fewer conversions, the agent will be punished with a
negative reward.

Note that in the real setting, optimization objectives used by advertising
platforms can be adjusted based on actual business needs. In the implementation
and evaluation of MoTiAC, we use ROI (Return on Investment) and Revenue,
corresponding to the two objectives for optimization, i.e., minimizing overall
CPA and maximizing the number of conversions. Their definition will be detailed
in Sec. 4.1.

3 Methodology

As shown in Sec. 2.1, the RTB problem is a multi-objective optimization problem.
We need to control advertisers’ budgets and make profitable decisions for the ad
platform. Traditional RTB control policy or RL agent can hardly handle these
challenges. In this work, we design MoTiAC to decouple the training procedure
of multiple objectives into disentangled worker groups of actor-critics. We will
elaborate on the technical details of MoTiAC in the following subsections.



Multi-Objective Actor-Critics for RTB in Display Advertising 5

User Profile 
Feature 

Target Ad 
Feature

Context
Feature

State Representation

Critic Actor

Critic Actor

Local WorkerⅠ

RewardⅠ(CPA) 

Embedding Layer

CriticⅠ

Actor 𝜋

CriticⅡ

Global Network Gradient Update

Partial Update

Global Gradient

Local Gradient

Critic Actor

Critic Actor

Local WorkerⅡ

RewardⅡ(Conversion) 

Fig. 1: Framework of the proposed MoTiAC in RTB.

3.1 Asynchronous Advantage Actor-Critic Model in RTB

An actor-critic reinforcement learning setting [8] in our RTB scenario consists
of:

– state s: each state is composed of anonymous feature embeddings extracted
from the user profile and bidding environment, indicating the current bidding
state.

– action a: action is defined as the bidding price for each ad based on the
input state. Instead of using discrete action space [20], our model outputs a
distribution so that action can be sampled based on probability.

– reward r: obviously, the reward is a feedback signal from the environment
to evaluate how good the previous action is, which guides the RL agent
towards a better policy. In our model, we design multiple rewards based on
different optimization goals. Each actor-critic worker group deals with one
type of reward from the environment and later achieves multiple objectives
together.

– policy πθ(·): policy is represented as πθ(at|st), which denotes the probability
to take action at under state st. In an actor-critic thread, actor works as a
policy network, and critic stands for value function V (s; θv) of each state.
The parameters are updated according to the experience reward obtained
during the training process.

For each policy πθ, we define the utility function as

U(πθ) = Eτ∼pθ(τ)[R(τ)], (4)

where pθ(τ) denotes the distribution of trajectories under policy πθ, and R(τ)
is a return function over trajectory τ , calculated by summing all the reward
signals in the trajectory. The utility function is used to evaluate the quality of
an action taken in a specific state. We also introduce value function from critic
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to reduce the varaition that may occur when updating parameters in real time.
After collecting a number of tuples (st, at, rt) from each trajectory τ , the policy
network πθ(·) is updated by

θ ← θ + ηactor

T∑
t=1

(R(st)− V (st))∇θ log πθ(at | st), (5)

where ηactor represents the learning rate of policy network, T is a preset max-
imum step size in a trajectory, R(st) =

∑T
n=t γ

n−trn denotes the cumulative
discounted reward, and γ is a decaying factor. The critic network, V (s; θv),
could also be updated by:

θv → θv + ηcritic
∂ (Rt − Vθv (st))

2

∂θv
, (6)

where ηcritic represents the learning rate of value function.

3.2 Adaptive Reward Partition

In this subsection, we consider the general K-objective case, where K is the
total number of objectives. As stated in Sec. 2.2, multiple objectives should be
considered in modeling the RTB problem. One intuitive way [14] of handling
multiple objectives is to integrate them into a single reward function linearly,
and we call it Reward Combination: (i) A linear combination of rewards is firstly
computed, where wk quantifies the relative importance of the corresponding
objective Rk(·):

R(s) =

K∑
k=1

wk ×Rk(s). (7)

(ii) A single-objective agent is then defined with the expected return equal to
value function V (s). However, a weighted combination is only valid when objec-
tives do not compete [17]. In the RTB setting, the relationship between objectives
can be complicated, and they usually conflict on different sides. The intuitive
combination might flatten the gradient for each objective, and thus the agent is
likely to limit itself within a narrow boundary of search space. Besides, a pre-
defined combination may not be flexible in the dynamic bidding environment.
Overall, such a Reward Combination method is unstable and inappropriate for
the RTB problem, as we will show in the experiments.

Reward Partition. We now propose the Reward Partition scheme in MoTiAC.
Specifically, we design reward for each objective and employ one group of actor-
critic networks with the corresponding reward. There is one global network with
an actor and multiple critics in our model. At the start of one iteration, each
local network copies parameters from a global network. Afterward, local net-
works from each group will begin to explore based on their objective and apply
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weighted gradients to the actor and one of the critics (partial update) in the
global network asynchronously, as shown in Fig. 1. Formally, we denote the to-
tal utility and value function of the kth group (k = 1, · · · ,K) as Uk(πθ) and
Vk(s; θv), respectively. Different from the original Eqn. (5), the parameter up-
dating of policy network in one actor-critic group of MoTiAC is formulated as

θ ← θ + ηactorwk

T∑
t=1

(Rk(st)− Vk(st))∇θ log πθ(at | st), (8)

where wk is an objective-aware customized weight for optimization in range (0,1)
and is tailored for each adj ∈ A. We can simply set wk as

wk =
Rk(st)− Vk(st)∑K
l=1(Rl(st)− Vl(st))

, (9)

while dynamically adjusting the value of wk by giving higher learning weights
to the local network that contributes more to the total reward. Motivated by
Bayesian RL [5], we can generalize the customized weight and parameterize wk
by introducing a latent multinomial variable φ with wk = p(φ = k|τ) under
trajectory τ , named as agent’s prior. We set the initial prior as

p(φ = k|τ0) =
1

K
, ∀ k = 1, 2, . . . ,K, (10)

where τ0 indicates that the trajectory just begins. When τt is up to state st, i.e.,
τt = {s1, a1, r1, s2, a2, r2, . . . st}, we update the posterior by

p(φ = k|τt) =
p(τt|φ = k)p(φ = k)∑
k p(τt|φ = k)p(φ = k)

, (11)

where p(τt|φ = k) tells how well the current trajectory agrees with the utility of
objective k. Based on priority factor wk, together with the strategy of running
different exploration policies in different groups of workers, the overall changes
being made to the global actor parameters θ are likely to be less correlated
and more objective-specific in time, which means our model can make wide
exploration and achieve a balance between multiple objectives with a global
overview.

In addition, we present some analysis for the two reward aggregation methods
in terms of parameters update and value function approximation. If we attach
the weights of Reward Combination to the gradients in Reward Partition, the
parameters updating strategy should be identical on average. For Reward Com-
bination, global shared actor parameters θ is updated by

θ ← θ + ηactor
∑
t

((
K∑
k=1

wk ×Rk(st)− Vk(st)

)
×∇θ log πθ(at | st)

)
,

while in Reward Partition, the expected global gradient is given as

θ ← θ + ηactor
∑
t

((
K∑
k=1

(wk ×Rk(st)− wk × Vk(st))

)
×∇θ log πθ(at | st)

)
.
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The difference between the two reward aggregating methods lies in the advan-
tage part. Thus the effect of parameter updates heavily depends on how well
and precisely the critic can learn from its reward. By learning in a decomposed
manner, the proposed Reward Partition advances the Reward Combination by
using easy-to-learn functions to approximate single rewards, thus yielding a bet-
ter policy.

3.3 Optimzation and Training Procedure

In the framework of MoTiAC, the policy network explores continuous action space
and outputs action distribution for inference. Therefore, loss for a single actor-
critic worker (objective-k) is gathered from actor θ, critic θv, and action distribu-
tion entropy H to improve exploration by discouraging premature convergence
to sub-optimal [13],

Lθ,θv = ηactorE[R(τ)] + ηcritic
∑
st∈τ
‖Vθv (st)−R(st)‖

2
+ β

∑
st∈τ

H(π(st)), (12)

where β represents the strength of entropy regularization.
After one iteration (e.g., 10-minute bidding simulation), we compute gradi-

ents for each actor-critic network and push the weighted gradients to the global
network. With multiple actor-learners applying online updates in parallel, the
global network could explore to achieve a robust balance between multiple ob-
jectives. The training procedure of MoTiAC is shown in Algorithm 1.

3.4 Convergence Analysis of MoTiAC

In this section, we use a toy demonstration to provide insights into the con-
vergence property for the proposed MoTiAC. As illustrated in Fig. 2, the solid
black line is the gradient contour of objective 1, and the black dash line is for
objective 2. The yellow area within their intersection is the area of the optimal
strategy, where both advertisers and publishers satisfy with their benefits. Due
to the highly dynamic environment of RTB [3], the optimal bidding strategy will
change dramatically.

Traditionally in a multi-objective setting, when people use linear combina-
tions or other more complex transformations [11], like policy votes [18] of reward
functions. They implicitly assume that the optimal solution is fixed, as shown
in the upper part of Fig. 2. Consequently, their models can only learn the initial
optimal and fail to characterize the dynamics. However, according to the dy-
namic environment in RTB, our MoTiAC adjusts the gradient w.r.t each possible
situation towards a new optimal based on each objective separately and will
easily be competent for real-world instability. Each gradient w.r.t the objectives
forces the agent closer to the optimal for compensation rather than conflicts.
Finally, the agent would reach the area of new optimal and tunes its position in
the micro-level, called convergence.
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Algorithm 1: Training for each actor-critic thread in MoTiAC

1 // Assume global shared parameters θ and θv;
2 // Assume objective-specific parameters θ′k and θ′v,k, k ∈ {1, 2, . . . ,K};
3 Initialize step counter t← 1; epoch T ; discounted factor γ;
4 while t < Tmax do
5 Reset gradients: dθ ← 0 and dθv ← 0 ;
6 Synchronize specific parameters θ′k = θ and θ′v,k = θv;
7 Get state st extracted from user profile features and bidding

environment;
8 // Assume ad set A = {ad1, ad2, ...};
9 for adj ∈ A do

10 repeat
11 Determine bidding price at according to policy π(at | st; θ′k);
12 Receive reward rt w.r.t objective k ;
13 Reach new state st+1;
14 t← t+ 1;
15 until terminal state;
16 for n ∈ {t− 1, ..., 1} do
17 rn ← rn + γ × rn+1;
18 // Accumulative gradient w.r.t θ′k;
19 dθ′k ← dθ′k + ηactor

∑
(rn − V (sn; θ

′
v,k))∇θ′k log π(an|sn) +

β
∑
∇θ′kH (π (an|sn));

20 // Accumulative gradient w.r.t θ′v,k;
21 dθ′v,k ← dθ′v,k + ηcritic

∑
∂‖rn − V (sn; θ

′
v,k)‖2/∂θ′v,k;

22 end
23 // Asynchronously update θ and θv with dθ′k and dθ′v,k;
24 // Compute wk = p(φ = k|τ) w.r.t objective k;
25 θ ← θ + wk × dθ′k and θv ← θv + wk × dθ′v,k;
26 end
27 end

We further prove that the global policy will converge to the Pareto optimality
between these objectives. The utility expectation of the objective k is denoted
as E[Uk(πθ)]. We begin the analysis with Theorem 1 [10],

Theorem 1. (Pareto Optimality). If π∗ is a Pareto optimal policy, then for any
other policy π, one can at least find one k, so that 0 < k ≤ K and,

E[Uk(π∗)] ≥ E[Uk(π)]. (13)

The multi-objective setting assumes that the possible policy setΠ spans a convex
space (K-simplices). The optimal policy of any affine interpolation of objective
utility will be also optimal [4]. We restate in Theorem 2 by only considering the
non-negative region.
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Fig. 2: Convergence illustration of MoTiAC.

Theorem 2. π∗ is Pareto optimal iff there exits {lk > 0 :
∑
k lk = 1} such that,

π∗ ∈ argmax
π

[∑
k

lkE[Uk(π)]

]
. (14)

Proof. We derive the gradient by aggregating Eqn. (8) as,

∇ =
∑
τt

∑
k

p(φ = k|τt)∇θUk(τt;πθ) ∝
∑
k

p(φ = k)
∑
τt

p(τt|φ = k)∇θUk(τt;πθ)

=
∑
k

p(φ = k)∇θEτt [Uk(τt;πθ)] = ∇θ

[∑
k

p(φ = k)Eτt [U
k(τt;πθ)]

]
.

(15)
By making lk = p(φ = k) (Note that

∑
k p(φ = k) = 1), we find that the

overall gradient conform with the definition of Pareto optimality in Eqn. (14).
Therefore, we conclude that MoTiAC converges to Pareto optimal, indicating that
it can naturally balance different objectives.

4 Experiments

In the experiment, we use real-world industrial data to answer the following
three research questions:

– RQ1: How does MoTiAC perform compared with other baseline methods?
– RQ2: What is the best way to aggregate multiple objectives?
– RQ3: How does MoTiAC balance the exploration of different objectives?
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Table 1: Statistics of click data from Tencent bidding system.

Date # of Ads # of clicks # of conversions

20190107 10,201 176,523,089 3,886,155
20190108 10,416 165,676,734 3,661,060
20190109 10,251 178,150,666 3,656,714
20190110 9,445 157,084,102 3,287,254
20190111 10,035 181,868,321 3,768,247

4.1 Experiment Setup

Dataset. In the experiment, the dataset is collected from the real-time commer-
cial ads bidding system of Tencent. There are nearly 10,000 ads daily with a
huge volume of click and conversion logs. According to real-world business, the
bidding interval is set to be 10 minutes (144 bidding sessions for a day), which
is much shorter than one hour [7]. Basic statistics can be found in Table 1.

Compared Baselines. We carefully select related methods for comparison and
adopt the same settings for all the compared methods with 200 iterations. Details
about implementation can be seen in Appendix ??.

– Proportional-Integral-Derivative (PID): [2] is a widely used feedback
control policy, which produces the control signal from a linear combination
of proportional, integral, and derivative factors.

– Advantage Actor-Critic (A2C): [13] makes the training process more
stable by introducing an advantage function. [7] generalizes the actor-critic
structure in the RTB setting.

– Deep Q-Network (DQN): [20] uses DQN with a single objective under
the assumption of consistent state transition in the RTB problem, while the
similar structure can also be coupled with a dynamic programming appro-
rach [3].

– Aggregated A3C (Agg-A3C): Agg-A3C [13] is proposed to disrupt the
correlation of training data by introducing an asynchronous update mecha-
nism.

We linearly combine multiple rewards (following Reward Combination) for all
the baselines. Besides, we adopt two variants of our model: Objective1-A3C (O1-
A3C) and Objective2-A3C (O2-A3C), by only considering one of the objectives.
We use four days of data for training and another day for testing and then use
the cross-validation strategy on the training set for hyper-parameter selection.
Similar settings can be found in literature [20,26].

Evaluation Metrics. We clarify the objectives of our problem based on the col-
lected data. In Sec. 2.2, we claim that our two objectives are: (1)minimize overall
CPA; (2) maximize conversions. We refer to the industrial convention and rede-
fine our goals in the experiments. Revenue is a common indicator for platform
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Table 2: Comparative results based on PID.

Model Relative Cost Relative ROI Relative Revenue R-score

PID 1.0000 1.0000 1.0000 1.0000
A2C 1.0366 (+3.66%) 0.9665 (-3.35%) 1.0019 (+0.19%) 0.9742
DQN 0.9765 (-2.35%) 1.0076 (+0.76%) 0.9840 (-1.60%) 0.9966

Agg-A3C 1.0952 (+9.52%) 0.9802 (-1.98%) 1.0625 (+6.25%) 0.9929

O1-A3C 0.9580 (-4.20%) 1.0170 (+1.70%) 0.9744 (-2.56%) 1.0070
O2-A3C 1.0891 (+8.91%) 0.9774 (-2.26%) 1.0645 (+6.45%) 0.9893

MoTiAC 1.0150 (+1.50%) 1.0267 (+2.67%) 1.0421 (+4.21%) 1.0203

earnings, which turns out to be proportional to conversions. Cost is the money
paid by advertisers, which also appears to be a widely accepted factor in online
advertising. Therefore, without loss of generality, we reclaim our two objectives
to be:

Revenue(j) = conversions (j) × CPA(j)
target, Cost(j) = #clicks(j) × CPC(j)

next ,
(16)

maxROI← max
∑

Adj∈A

Revenue(j)

Cost(j)
, (17)

which corresponds to the first objective: CPA goal, and

maxRevenue← max
∑

Adj∈A

Revenue(j), (18)

related to the second objective: Conversion goal.
For the two variants of MoTiAC, O1-A3C corresponds to maximizing ROI,

while O2-A3C is related to maximizing Revenue. In addition to directly compar-
ing these two metrics, we also use R-score proposed in [12] to evaluate the model
performance. The higher the R-score, the more satisfactory the advertisers and
platform will be. In the real-world online ad system, PID is currently used to
control bidding. We employ it as a standard baseline, and most of the comparison
results will be based on PID, i.e., value→ value

valuePID
, except for Sec. 4.4.

4.2 RQ1: Comparison with Recent Baselines

We perform the comparison of MoTiAC with other approaches. The results are
shown in Table 2. The values in the parentheses represent the percentage of im-
provement or reduction towards PID. An optimal method is expected to improve
both metrics (ROI & Revenue) compared with the current PID baseline.
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Fig. 3: Bidding quality distribution of compared methods over PID.

Objective Comparison. We find that MoTiAC best balances the trade-off be-
tween two objectives (ROI & Revenue) based on the above considerations. Also,
it has the highest R-score. Specifically, A2C is the worst since it gains a similar
revenue (conversion goal) but a much lower ROI (CPA goal) than PID. The
result proves that the A2C structure cannot fully capture the dynamics in the
RTB environment. Based on a hybrid reward, DQN has a similar performance as
O1-A3C, with relatively fewer conversions than other methods. We suspect the
discrete action space may limit the policy to a local and unstable optimal. By
solely applying the weighted sum in a standard A3C (Agg-A3C), the poor result
towards ROI is not surprising. As the RTB environment varies continuously, fix-
ing the formula of reward aggregation cannot capture the dynamic changes. It
should be pointed out that two ablation models, O1-A3C and O2-A3C, present
two extreme situations. O1-A3C performs well in the first ROI objective but per-
forms poorly for the Revenue goal and vice versa for O2-A3C. By shifting the
priority of different objectives over time, our proposed MoTiAC uses the agent’s
prior as a reference to make the decision in the future, precisely capturing the
dynamics of the RTB sequence. Therefore, it outperforms all the other baselines.

Comparing Reward Partition and Reward Combination, the advantages of
MoTiAC over other baselines show that our proposed method of accumulating
rewards overall reduces the difficulty of agent learning and makes it easier for
the policy network to converge around the optimal value.

Bidding Quality Analysis. To further verify the superiority of MoTiAC com-
pared to other methods, we analyze the relative bidding quality of these methods
over PID. We group all the ads into five categories based on their bidding re-
sults. The detailed evaluation metrics can be found in Appendix ??. As shown
in Fig. 3, both A2C and O2-A3C present more bad results compared than good
ones, indicating that these two models could not provide a gain for the existing
bidding system at a finer granularity. O1-A3C has a relatively similar perfor-
mance as PID, as they both aims at minimizing real CPA. We also find that
DQN tends to make bidding towards either very good or very bad, once again
demonstrating the instability of the method. Agg-A3C shares the same distribu-
tion pattern with O1-A3C and vanilla PID, which indicates that the combined
reward does not work in our scenario. The proposed MoTiAC turns out to have a
desirable improvement over PID with more ads on the right good side and fewer
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Fig. 4: Results under different priority functions.

ads on the left bad side. Note that the negative transfer of multi-objective tasks
makes some bidding results inevitably worse. However, we can still consider that
MoTiAC can achieve the best balance among all the compared methods.

4.3 RQ2: Variants of wk

To give a comprehensive view of MoTiAC, we perform different ways to aggregate
objectives. Four different variants of wk are considered in the experiment. Since
we have two objectives, we use w1(t) for the first objective and 1−w1(t) for the
second:

– equal priority: w1(t) =
1
2 ;

– changing priority: w1(t) = exp(−α · t) with a scalar α;
– random priority: w1(t) = random([0, 1]);
– Bayesian priority: One can refer to Eqn. (11).

As shown in Fig. 4, we present the training curves for ROI and Revenue. The first
three strategies are designed before training and will not adjust to the changing
environment. It turns out that they perform similarly in both objectives and
could gain a decent improvement over the PID case by around +2.5% in ROI
and +3% in Revenue. However, in equal priority, the curve of ROI generally drops
when the iteration goes up, which stems from the fact that fixed equal weights
cannot fit the dynamic environment. For changing priority, it is interesting that
ROI first increases then decreases for priority shifting, as different priority leads
to different optimal. In random priority, curves dramatically change in a small
range since the priority function outputs the weight randomly. The Bayesian
priority case, on the contrary, sets priority based on the conformity of the agent’s
prior and current state. Reward partition with agent prior dominates the first
three strategies by an increasingly higher ROI achievement by +2.7% and better
Revenue by around +4.2%.

4.4 RQ3: Case Study

In this section, we try to investigate how MoTiAC balances the exploration of
multiple objectives and achieves the optimal globally. We choose one typical ad
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Fig. 5: ROI and Revenue curves of the target ad’s reponse.

Table 3: Numerical results of the target ad using PID and MoTiAC.

Models Revenue (CNY) Cost (CNY) ROI

PID 3.184× 103 2.548× 103 0.8003
MoTiAC 4.298× 103 5.199× 103 0.8267

with large conversions and show the bidding process within 24 hours. As PID is
the current model in the real ad system, we use PID to compare with MoTiAC
and draw the results of ROI and Revenue curve in Fig. 5. We also collect the
final numerical results in Table 3.

Fig. 5 shows a pretty low ROI initially. For the target ad, both models first
try to lift the ROI. Based on the figure presented on the left, the red dashed curve
rises from 0 to about 0.7 sharply for PID at 8h. The potential process should be
that PID has given up most of the bid chances and only concentrates on those
with a high conversion rate (CVR) so that we have witnessed a low Revenue
gain of the PID model in the right figure from 8h to around 21h. Though the
ROI curve remains relatively low, our MoTiAC can select good impression-level
chances while considering the other objective. At 24h, MoTiAC finally surpasses
PID in ROI because of the high volume of pre-gained Revenue. With long-term
consideration, MoTiAC beats PID on both the cumulative ROI and Revenue. We
can conclude that PID is greedy out of the immediate feedback mechanism. It is
always concerned with the current situation and never considers further benefits.
When the current state is under control, PID will appear conservative and give a
shortsighted strategy, resulting in a seemingly good ROI and poor Revenue (like
the red curve in Fig. 5). However, MoTiAC has a better overall view. It foresees
the long-run benefit and will keep exploration even temporarily deviating from
the right direction or slowing down the rising pace (ROI curve for the target
ad at 8h). Under a global overview, MoTiAC can finally reach better ROI and
Revenue than PID.
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5 Related Work

Real-time Bidding. Researchers have proposed static methods [15] for optimal
biddings, such as constraint optimization [24], to perform an impression-level
evaluation. However, traditional methods inevitably ignore that real-world sit-
uations in RTB are often dynamic [21] due to the unpredictability of user be-
havior [7] and different marketing plans [22] from advertisers. Furthermore, the
auction process of optimal bidding is formulated as a Markov decision process
(MDP) in recent study [7,12]. Considering the various goals of different players
in RTB, a robust framework is required to balance these multiple objectives.
Therefore, we are motivated to propose a novel multi-objective RL model to
maximize the overall utility of RTB.

Reinforcement Learning. Significant achievements have been made by the emer-
gence of RL algorithms, such as policy gradient [19] and actor-critic [8]. With
the advancement of GPU and deep learning (DL), more successfully deep RL al-
gorithms [9,13] have been proposed and applied to various domains. Meanwhile,
there are previous attempts to address the multi-objective reinforcement learn-
ing (MORL) problem [6], where the objectives are combined mainly by static
or adaptive linear weights [1,14] or captured by a set of policies and evolving
preferences [16].

6 Conclusion and Future Directions

In this paper, we propose Multi-ObjecTive Actor-Critics for real-time bidding
in display advertising. MoTiAC utilizes objective-aware actor-critics to solve the
problem of multi-objective bidding optimization. Our model can follow adaptive
strategies in a dynamic RTB environment and outputs the optimal bidding policy
by learning priors from historical data. We conduct extensive experiments on the
real-world industrial dataset. Empirical results show that MoTiAC achieves state-
of-the-art on the Tencent advertising dataset. One future direction could be
extending multi-objective solutions with priors in the multi-agent reinforcement
learning area.
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