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Abstract. Synthetic-to-real transfer learning is a framework in which a
synthetically generated dataset is used to pre-train a model to improve
its performance on real vision tasks. The most significant advantage of
using synthetic images is that the ground-truth labels are automatically
available, enabling unlimited expansion of the data size without human
cost. However, synthetic data may have a huge domain gap, in which
case increasing the data size does not improve the performance. How can
we know that? In this study, we derive a simple scaling law that predicts
the performance from the amount of pre-training data. By estimating the
parameters of the law, we can judge whether we should increase the data
or change the setting of image synthesis. Further, we analyze the theory
of transfer learning by considering learning dynamics and confirm that
the derived generalization bound is consistent with our empirical findings.
We empirically validated our scaling law on various experimental settings
of benchmark tasks, model sizes, and complexities of synthetic images.

1 Introduction

The success of deep learning relies on the availability of large data. If the target
task provides limited data, the framework of transfer learning is preferably
employed. A typical scenario of transfer learning is to pre-train a model for
a similar or even different task and fine-tune the model for the target task.
However, the limitation of labeled data has been the main bottleneck of supervised
pre-training. While there have been significant advances in the representation
capability of the models and computational capabilities of the hardware, the size
and the diversity of the baseline dataset have not been growing as fast [57]. This
is partially because of the sheer physical difficulty of collecting large datasets
from real environments (e.g., the cost of human annotation).

? Equal contribution
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In computer vision, synthetic-to-real (syn2real) transfer is a promising strategy
that has been attracting attention [9, 12, 22, 29, 44, 56, 61]. In syn2real, images
used for pre-training are synthesized to improve the performance on real vision
tasks. By combining various conditions, such as 3D models, textures, light
conditions, and camera poses, we can synthesize an infinite number of images
with ground-truth annotations. Syn2real transfer has already been applied in some
real-world applications. Teed and Deng [59] proposed a simultaneous localization
and mapping (SLAM) system that was trained only with synthetic data and
demonstrated state-of-the-art performance. The object detection networks for
autonomous driving developed by Tesla was trained with 370 million images
generated by simulation [36].

The performance of syn2real transfer depends on the similarity between
synthetic and real data. In general, the more similar they are, the stronger
the effect of pre-training will be. On the contrary, if there is a significant gap,
increasing the number of synthetic data may be completely useless, in which case
we waste time and computational resources. A distinctive feature of syn2real is
that we can control the process of generating data by ourselves. If a considerable
gap exists, we can try to regenerate the data with a different setting. But how do
we know that? More specifically, in a standard learning setting without transfer,
a “power law”-like relationship called a scaling law often holds between data size
and generalization errors [35, 53]. Is there such a rule for pre-training?

In this study, we find that the generalization error on fine-tuning is explained
by a simple scaling law,

test error ' Dn−α + C, (1)

where coefficient D > 0 and exponent α > 0 describe the convergence speed of
pre-training, and constant C ≥ 0 determines the lower limit of the error. We
refer to α as pre-training rate and C as transfer gap. We can predict how large
the pre-training data should be to achieve the desired accuracy by estimating the
parameters α,C from the empirical results. Additionally, we analyze the dynamics
of transfer learning using the recent theoretical results based on the neural tangent
kernel [50] and confirm that the above law agrees with the theoretical analysis.
We empirically validated our scaling law on various experimental settings of
benchmark tasks, model sizes, and complexities of synthetic images.

Our contributions are summarized as follows.

– From empirical results and theoretical analysis, we elicit a law that describes
how generalization scales in terms of data sizes on pre-training and fine-tuning.

– We confirm that the derived law explains the empirical results for various
settings in terms of pre-training/fine-tuning tasks, model size, and data
complexity (e.g., Figure 1). Furthermore, we demonstrate that we can use
the estimated parameters in our scaling law to assess how much improvement
we can expect from the pre-training procedure based on synthetic data.

– We theoretically derive a generalization bound for a general transfer learning
setting and confirm its agreement with our empirical findings.
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Fig. 1: Empirical results of syn2real transfer for different tasks. We conducted four
pre-training tasks: object detection (objdet), semantic segmentation (semseg),
multi-label classification (mulclass), surface normal estimation (normal), and
three fine-tuning tasks for benchmark datasets: object detection for MS-COCO,
semantic segmentation for ADE20K, and single-label classification (sinclass)
for ImageNet. The y-axis indicates the test error for each fine-tuning task. Dots
indicate empirical results and dashed lines indicate the fitted curves of scaling
law (1). For more details, see Section 4.2.

2 Related Work

Pre-training for visual tasks Many empirical studies show that the performance
at a fine-tuning task scales with pre-training data (and model) size. For example,
Huh et al. [32] studied the scaling behavior on ImageNet pre-trained models.
Beyond ImageNet, Sun et al. [57] studied the effect of pre-training with pseudo-
labeled large-scale data and found a logarithmic scaling behavior. Similar results
were observed by Kolesnikov et al. [38].

Syn2real transfer The utility of synthetic images as supervised data for computer
vision tasks has been continuously studied by many researchers [9, 12, 14, 22,
29, 31, 43–45, 56, 61]. These studies found positive evidence that using synthetic
images is helpful to the fine-tuning task. In addition, they demonstrated how data
complexity, induced by e.g., light randomization, affects the final performance.
For example, Newell and Deng [45] investigated how the recent self-supervised
methods perform well as a pre-training task to improve the performance of
downstream tasks. In this paper, following this line of research, we quantify the
effects under the lens of the scaling law (1).

Neural scaling laws The scaling behavior of generalization error, including some
theoretical works [e.g., 3], has been studied extensively. For modern neural
networks, Hestness et al. [28] empirically observed the power-law behavior of
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generalization for language, image, and speech domains with respect to the
training size. Rosenfeld et al. [53] constructed a predictive form for the power-law
in terms of data and model sizes. Kaplan et al. [35] pushed forward this direction
in the language domain, describing that the generalization of transformers obeys
the power law in terms of a compute budget in addition to data and model sizes.
Since then, similar scaling laws have been discovered in other data domains [25].
Several authors have also attempted theoretical analysis. Hutter [33] analyzed
a simple class of models that exhibits a power-law n−β in terms of data size n
with arbitrary β > 0. Bahri et al. [5] addressed power laws under four regimes
for model and data size. Note that these theoretical studies, unlike ours, are
concerned with scaling laws in a non-transfer setting.

Hernandez et al. [27] studied the scaling laws for general transfer learning,
which is the most relevant to this study. A key difference is that they focused
on fine-tuning data size as a scaling factor, while we focus on pre-training data
size. Further, they found scaling laws in terms of the transferred effective data,
which is converted data amount necessary to achieve the same performance gain
by pre-training. In contrast, Eq. (1) explains the test error with respect to the
pre-training data size directly at a fine-tuning task. Other differences include
task domains (language vs. vision) and architectures (transformer vs. CNN).

Theory of transfer learning Theoretical analysis of transfer learning has been
dated back to decades ago [7] and has been pursued extensively. Among others,
some recent studies [16, 42, 62] derived an error bound of a fine-tuning task in
the multi-task scenario based on complexity analysis; the bound takes an additive
form O(An−1/2 +Bs−1/2), where n and s are the data size of pre-training and
fine-tuning, respectively, with coefficients A and B. Neural network regression has
been also discussed with this bound [62]. In the field of domain adaptation, error
bounds have been derived in relation to the mismatch between source and target
input distributions [1, 19]. They also proposed algorithms to adopt a new data
domain. However, unlike in this study, no specific learning dynamics has been
taken into account. In the area of hypothesis transfer learning [18, 64], among
many theoretical works, Du et al. [17] has derived a risk bound for kernel ridge
regression with transfer realized as the weights on the training samples. The
obtained bound takes a similar form to our scaling law. However, the learning
dynamics of neural networks initialized with a pre-trained model has never been
explored in this context.

3 Scaling Laws for Pre-training and Fine-tuning

The main obstacle in analyzing the test error is that we have to consider interplay
between the effects of pre-training and fine-tuning. Let L(n, s) ≥ 0 be the test
error of a fine-tuning task with pre-training data size n and fine-tuning data size
s. As the simplest case, consider a fine-tuning task without pre-training (n = 0),
which boils the transfer learning down to a standard learning setting. In this
case, the prior studies of both classical learning theory and neural scaling laws
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Fig. 2: Scaling curves with different (a) pre-training size and (b) fine-tuning size.

tell us that the test error decreases polynomially5 with the fine-tuning data size
s, that is, L(0, s) = Bs−β + E with decay rate β > 0 and irreducible loss E ≥ 0.
The irreducible loss E is the inevitable error given by the best possible mapping;
it is caused by noise in continuous outputs or labels. Hereafter we assume E = 0
for brevity.

3.1 Induction of scaling law with small empirical results

To speculate a scaling law, we conducted preliminary experiments.6 We pre-
trained ResNet-50 by a synthetic classification task and fine-tuned by ImageNet.
Figure 2 (a) presents the log-log plot of error curves with respect to pre-training
data size n, where each shape and color indicates a different fine-tuning size s. It
shows that the pre-training effect diminishes for large n. In contrast, Figure 2 (b)
presents the relations between the error and the fine-tuning size s with different
n. It indicates the error drops straight down regardless of n, confirming the
power-law scaling with respect to s. The above observations and the fact that
L(0, s) decays polynomially are summarized as follows.

Requirement 1 lims→∞ L(n, s) = 0.

Requirement 2 limn→∞ L(n, s) = const.

Requirement 3 L(0, s) = Bs−β.

Requirements 1 and 3 suggest the dependency of n is embedded in the coefficient
B = g(n), i.e., the pre-training and fine-tuning effects interact multiplicatively.
To satisfy Requirement 2, a reasonable choice for the pre-training effect is

5 For classification with strong low-noise condition, it is known that the decay rate can
be exponential [49]. However, we focus only on the polynomial decay without such
strong condition in this paper.

6 The results are replicated from Appendix C.2; see the subsection for more details.
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g(n) = n−α + γ; the error decays polynomially with respect to n but has a
plateau at γ. By combining these, we obtain

L(n, s) = δ(γ + n−α)s−β , (2)

where α, β > 0 are decay rates for pre-training and fine-tuning, respectively,
γ ≥ 0 is a constant, and δ > 0 is a coefficient. The exponent β determines
the convergence rate with respect to fine-tuning data size. From this viewpoint,
δ(γ + n−α) is the coefficient factor to the power law. The influence of the pre-
training appears in this coefficient, where the constant term δγ comes from
the irreducible loss of the pre-training task and n−α expresses the effect of pre-
training data size. The theoretical consideration in Section E.5 suggests that
the rates α and β can depend on both the target functions of pre-training and
fine-tuning as well as the learning rate.

3.2 Theoretical deduction of scaling law

Next, we analyze the fine-tuning error from a purely theoretical point of view. To
incorporate the effect of pre-training that is given as an initialization, we need
to analyze the test error during the training with a given learning algorithm
such as SGD. We apply the recent development by Nitanda and Suzuki [50] to
transfer learning. The study successfully analyzes the generalization of neural
networks in the dynamics of learning, showing it achieves minmax optimum rate.
The analysis uses the framework of the reproducing kernel Hilbert space given
by the neural tangent kernel [34].

For theoretical analysis of transfer, it is important to formulate a task similarity
between pre-training and fine-tuning. If the tasks were totally irrelevant (e.g.,
learning MNIST to forecast tomorrow’s weather), pre-training would have no
benefit. Following Nitanda and Suzuki [50], for simplicity of analysis, we discuss
only a regression problem with square loss. We assume that a vector input x
and scalar output y follow y = φ0(x) for pre-training and y = φ0(x) + φ1(x)
for fine-tuning, where we omit the output noise for brevity; the task types are
identical sharing the same input-output form, and task similarity is controlled by
φ1.

We analyze the situation where the effect of pre-training remains in the fine-
tuning even for large data size (s→∞). More specifically, the theoretical analysis
assumes a regularization term as the `2-distance between the weights and the
initial values, and a smaller learning rate than constant in the fine-tuning. Hence
we control how the pre-training effect is preserved through the regularization
and learning rate. Other assumptions made for theoretical analysis concern the
model and learning algorithm; a two-layer neural network having M hidden units
with continuous nonlinear activation7 is adopted; for optimization, the averaged
SGD [51], an online algorithm, is used for a technical reason.

The following is an informal statement of the theoretical result. See Ap-
pendix E for details. We emphasize that our result holds not only for syn2real
transfer but also for transfer learning in general.
7 ReLU is not included in this class, but we can generalize this condition; see [50].
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Theorem 1 (Informal) Let f̂n,s(x) be a model of width M pre-trained by n
samples (x1, y1), . . . , (xn, yn) and fine-tuned by s samples (x′1, y

′
1), . . . , (x

′
s, y
′
s)

where inputs x, x′ ∼ p(x) are i.i.d. with the input distribution p(x) and y = φ0(x)
and y′ = ϕ(x′) = φ0(x

′) + φ1(x
′). Then the generalization error of the squared

loss L(n, s) = |f̂n,s(x)− ϕ(x)|2 is bounded from above with high probability as

ExL(n, s) ≤ A1(cM +A0n
−α)s−β + εM . (3)

εM and cM can be arbitrary small for large M ; A0 and A1 are constants; the
exponents α and β depend on φ0, φ1, p(x), and the learning rate of fine-tuning.

The above bound (3) shows the correspondence with the empirical derivation of
the full scaling law (2). Note that the approximation error εM is omitted in (2).

We note that the derived bound takes a multiplicative form in terms of the
pre-training and fine-tuning effects, which contrasts with the additive bounds such
as An−1/2+Bs−1/2 [62]. The existing studies consider the situation where a part
of a network (e.g., backbone) is frozen during fine-tuning. Therefore, the error of
pre-training is completely preserved after fine-tuning, and both errors appear in
an additive way. This means that the effect of pre-training is irreducible by the
effect of fine-tuning, and vice versa. In contrast, our analysis deals with the case
of re-optimizing the entire network in fine-tuning. In that case, the pre-trained
model is used as initial values. As a result, even if the error in pre-training is large,
the final error can be reduced to zero by increasing the amount of fine-tuning
data.

3.3 Insights and Practical Values

Lo
g 
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Log Pre-training Size

Target Error

(a) (b)

(d)(c)

Fig. 3: Pre-training scenarios.

The form of the full scaling law (2) suggests
that there are two scenarios depending on
whether fine-tuning data is big or small. In
“big fine-tune” regime, pre-training contributes
relatively little. By taking logarithm, we can
separate the full scaling law (2) into the pre-
training part u(n) = log(n−α + γ) and the
fine-tuning part v(s) = −β log s. Consider
to increase n by squaring it. Since the pre-
training part cannot be reduced below log(γ)
as u(n) > u(n2) > log(γ), the relative improve-
ment (u(n2)−u(n))/v(s) becomes infinitesimal
for large s. Figure 2 (b) confirms this situation.
Indeed, prior studies provide the same conclu-
sion that the gain from pre-training can easily vanish [24, 45] or a target task
accuracy even degrade [67] if we have large enough fine-tuning data.

The above observation, however, does not mean pre-training is futile. Dense
prediction tasks such as depth estimation require pixel-level annotations, which
critically limits the number of labeled data. Pre-training is indispensable in such
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“small fine-tune” regime. Based on this, we hereafter analyze the case where the
fine-tuning size s is fixed. By eliminating s-dependent terms in (2), we obtain a
simplified law (1) by setting D = δs−β and C = δγs−β . After several evaluations,
these parameters including α can be estimated by the nonlinear least squares
method (see also Section 4.1).

As a practical benefit, the estimated parameters of the simplified law (1)
bring a way to assess syn2real transfer. Suppose we want to solve a classification
task that requires at least 90% accuracy with limited labels. We generate some
number of synthetic images and pre-train with them, and we obtain 70% accuracy
as Figure 3 (a). How can we achieve the required accuracy? It depends on the
parameters of the scaling law. The best scenario is (b) — transfer gap C is
low and pre-training rate α is high. In this case, increasing synthetic images
eventually leads the required accuracy. In contrast, when transfer gap C is larger
than the required accuracy (c), increasing synthetic images does not help to solve
the problem. Similarly, for low pre-training rate α (d), we may have to generate
tremendous amount of synthetic images that are computationally infeasible. In
the last two cases, we have to change the rendering settings such as 3D models
and light conditions to improve C and/or α, rather than increasing the data size.
The estimation of α and C requires to compute multiple fine-tuning processes.
However, the estimated parameters tell us whether we should increase data or
change the data generation process, which can reduce the total number of trials
and errors.

4 Experiments

4.1 Settings

For experiments, we employed the following transfer learning protocol. First, we
pre-train a model that consists of backbone and head networks from random
initialization until convergence, and we select the best model in terms of the
validation error of the pre-training task. Then, we extract the backbone and add
a new head to fine-tune all the model parameters. For notations, the task names
of object detection, semantic segmentation, multi-label classification, single-label
classification, and surface normal estimation are abbreviated as objdet, semseg,
mulclass, sinclass, and normal, respectively. The settings for transfer learning
are denoted by arrows. For example, objdet→semseg indicates that a model is
pre-trained by object detection, and fine-tuned by semantic segmentation. All the
results including Figure 1 are shown as log-log plots. The details of pre-training,
fine-tuning, and curve fitting are described in Appendix A.1.

4.2 Scaling law universally explains downstream performance for
various task combinations

Figure 1 shows the test errors of each fine-tuning task and fitted learning curves
with Eq. (1), which describes the effect of pre-training data size n for all combina-
tions of pre-training and fine-tuning tasks. The scaling law fits with the empirical
fine-tuning test errors with high accuracy in most cases.
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Fig. 4: Effect of model size. Best viewed in color. Left: The scaling curves for
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are the same as those in Figure 1. Right: The estimated transfer gap C (y-axis)
versus the model size (x-axis) in log-log scale. The dots are estimated values, and
the lines are linear fittings of them.

4.3 Bigger models reduce the transfer gap

We compared several ResNet models as backbones in mulclass→sinclass and
objdet→objdet to observe the effects of model size. Figure 4 (left) shows the
curves of scaling laws for the pre-training data size n for different sizes of backbone
ResNet-x, where x ∈ {18, 34, 50, 101, 152}. The bigger models attain smaller test
errors. Figure 4 (right) shows the values of the estimated transfer gap C. The
results suggest that there is a roughly power-law relationship between the transfer
gap and model size. This agrees with the scaling law with respect to the model
size shown by Hernandez et al. [27].

4.4 Scaling law can extrapolate for more pre-training images

We also evaluated the extrapolation ability of the scaling law. We increased
the number of synthetic images from the original size (n = 64,000) to 1.28
million, and see how the fitted scaling law predicts the unseen test errors where
n > 64,000. As a baseline, we compared the power-law model, which is equivalent
to the derived scaling law (1) with C = 0. Figure 5 (left) shows the extrapolation
results in objdet→objdet setting, which indicates the scaling law follows the
saturating trend in regions with large pre-training sizes for all models, while the
power-law model fails to capture it. The prediction errors is numerically shown
in Figure 5 (right), which again shows our scaling law achieves better prediction
performance.

4.5 Data complexity affects both pre-training rate and transfer gap

We examined how the complexity of synthetic images affects fine-tuning per-
formance. We controlled the following four rendering parameters: Appearance:
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Number of objects in each image; single or multiple (max 10 objects). Light :
Either an area and point light is randomized or fixed in terms of height, color,
and intensity. Background : Either the textures of floor/wall are randomized or
fixed. Object texture: Either the 3D objects used for rendering contain texture
(w/) or not (w/o). Indeed, the data complexity satisfies the following ordered
relationships: single < multiple in appearance, fix < random in light and back-
ground, and w/o < w/ in object texture8. To quantify the complexity, we computed
the negative entropy of the Gaussian distribution fitted to the last activation
values of the backbone network. For this purpose, we pre-trained ResNet-50 as a
backbone with MS-COCO for 48 epochs and computed the empirical covariance
of the last activations for all the synthetic data sets.

The estimated parameters are shown in Figure 6, which indicates the following
(we discuss the implications of these results further in Section 5.1).

– Data complexity controlled by the rendering settings correlates with the neg-
ative entropy, implying the negative entropy expresses the actual complexity
of pre-training data.

– Pre-training rate α correlates with data complexity. The larger complexity
causes slower rates of convergence with respect to the pre-training data size.

– Transfer gap C mostly correlates negatively with data complexity, but not
for object texture.

As discussed in Section 4.1, we have fixed the value of D to avoid numerical
instability, which might cause some bias to the estimates of α. We postulate,
however, the value of D depends mainly on the fine-tuning task and thus has
8 The object category of w/o is a subset of w/, and w/ has a strictly higher complexity
than w/o.
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a fixed value for different pre-training data complexities. This can be inferred
from the theoretical analysis in Appendix E.5: the exponent β in the main factor
s−β of D does not depend on the pre-training data distribution but only on the
fine-tuning task or the pre-training true mapping. Thus, the values of D should
be similar over the different complexities, and the correlation of α preserves.

5 Conclusion and Discussion

In this paper, we studied how the performance on syn2real transfer depends
on pre-training and fine-tuning data sizes. Based on the experimental results,
we found a scaling law (1) and its generalization (2) that explain the scaling
behavior in various settings in terms of pre-training/fine-tuning tasks, model
sizes, and data complexities. Further, we present the theoretical error bound for
transfer learning and found our theoretical bound has a good agreement with
the scaling law.

5.1 Implication of complexity results in Section 4.5

The results of Section 4.5 has two implications. First, data complexity (i.e., the
diversity of images) largely affects the pre-training rate α. This is reasonable
because if we want a network to recognize more diverse images, we need to train
it with more examples. Indeed, prior studies [5, 55] observed that α is inversely
proportional to the intrinsic dimension of the data (e.g., dimension of the data
manifold), which is an equivalent concept of data complexity.

Second, the estimated values of the transfer gap C suggest that increasing
the complexity of data is generally beneficial to decrease C, but not always.
Figure 6 (right) shows that increasing complexities in terms of appearance, light,
and background reduces the transfer gap, which implies that these rendering
operations are most effective to cover the fine-tuning task that uses real images.
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However, the additional complexity in object texture works negatively. We suspect
that this occurred because of shortcut learning [20]. Namely, adding textures
to objects makes the recognition problem falsely easier because we can identify
objects by textures rather than shapes. Because CNNs prefer to recognize objects
by textures [21, 26], the pre-trained models may overfit to learn the texture
features. Without object textures, pre-trained models have to learn the shape
features because there is no other clue to distinguish the objects, and the learned
features will be useful for real tasks.

5.2 Lessons to transfer learning and synthetic-to-real generalization

Our results suggest the transfer gap C is the most crucial factor for successful
transfer learning because C determines the maximum utility of pre-training.
Large-scale pre-training data can be useless when C is large. In contrast, if C is
negligibly small, the law is reduced essentially to n−α, which tells that the volume
of pre-training data is directly exchanged to the performance of fine-tuning tasks.
Our empirical results suggest two strategies for reducing C: 1) Use bigger models
and 2) fill the domain gap in terms of the decision rule and image distribution.
For the latter, existing techniques such as domain randomization [60] would be
helpful.

5.3 Limitations

We have not covered several directions in this paper. In theory, we assume several
conditions that may not fit with the actual setting; the additive fine-tuning model
φ0(x) + φ1(x) in Theorem 1 does not address the transfer to different type of
tasks, and the distributional difference of the inputs (synthetic versus real) is
not considered. We analyzed only ASGD as the optimization and the effect of
the choice is not fully clarified. In spite of these theoretical simplifications, our
analysis has revealed the important aspects of the transfer learning as discussed
in Section 3. In the experiments, although our theory is justified, we have not
investigated the case when a pre-training dataset is not synthetic but real. These
topics are left for future work.
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