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Abstract. General Circulation Models (GCMs) are established numer-
ical models for simulating multiple climate variables, decades into the
future. GCMs produce such simulations at coarse resolution (100 to 600
km), making them inappropriate to monitor climate change at the local
regional level. Downscaling approaches are usually adopted to infer the
statistical relationship between the coarse simulations of GCMs and lo-
cal observations and use the relationship to evaluate the simulations at a
finer scale. In this paper, we propose a novel deep learning framework for
forecasting daily precipitation values via downscaling. Our framework,
named Precipitation CNN or PCNN, employs multi-head convolutional
neural networks (CNNs) followed by Bahdanau attention blocks and an
uncertainty quantification component with Bayesian inference. We apply
PCNN to downscale the daily precipitation above the New Jersey portion
of the Hackensack-Passaic watershed. Experiments show that PCNN is
suitable for this task, reproducing the daily variability of precipitation.
Moreover, we produce local-scale precipitation projections for multiple
periods into the future (up to year 2100).

Keywords: Machine Learning - Convolutional Neural Networks - Sta-
tistical Downscaling - Climate Change.
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1 Introduction

Climate change refers to the phenomena where regional and global climate pat-
terns change over time. Following the industrial revolution, greenhouse gas emis-
sions from human activities are the primary driver of climate change [4]. This
anthropogenic climate change is severely impacting communities’ infrastructure
and ecosystems, causing sea level rise, species extinction, in addition to distur-
bance in the operation of key infrastructures, such as bridges and power supply.
Although national and international policies and research centers are mainly
focused on the changes in global climate patterns, climate change involves re-
gional/local climate variability as well. Subsequently monitoring climate change
at the local regional level is of utmost importance. General Circulation Mod-
els (GCMs) are numerical models for simulating the physical processes taking
place on land and ocean surfaces, as well as in the atmosphere. The very large
spatial resolutions of GCMs make them too coarse to monitor climate change
at a smaller scale. As such, to analyze and project regional climatic changes,
one would need to perform spatial downscaling of GCM outputs to desired finer
scales. Spatial downscaling, in the context of GCMs, refers to enhancing the
coarse spatial resolution of the GCM simulations, where the simulations are
downscaled either to a local weather station level, to a finer grid resolution,
or to a local region level (say a watershed). Multiple attempts exist in the lit-
erature that leverage machine learning for downscaling climate variables, such
as temperature [5,25], wind [6,12], and precipitation [20,25]. Machine learning
methods used in the previous studies include classical techniques such as support
vector regression (SVR) [9], random forests (RF) [24], decision trees (DT) [27],
and multi-layer perceptron (MLP) [1], as well as deep learning techniques such
as convolutional neural networks (CNNs) [18,23]. With the GCM simulations,
we present a novel deep learning method, named PCNN, for the downscaling of
daily precipitation. PCNN employs a multi-head CNN framework, with embed-
ded self-attention and stacked Bahdanau attention layers, that aims to implicitly
capture the spatial relationship between multiple GCM grid points. Moreover,
we adopt the Monte-Carlo dropout sampling technique [13,21,22] to quantify
aleatoric and epistemic uncertainties. The CNNs used in the previous studies
differ from ours in that they attempt to downscale a GCM grid to multiple grid
locations at the same time where the output is also a grid. Furthermore, the pre-
vious CNNs adopt one type of simulations. In contrast, our PCNN downscales a
GCM grid to a local region/area while employing multiple types of simulations
(e.g., temperature, humidity, wind, and so on). As a case study, we apply PCNN
to downscale the daily precipitation over the Hackensack-Passaic watershed in
New Jersey. The main contributions of our work are summarized below.

— We develop a multi-head CNN framework (PCNN) with embedded self-
attention and stacked Bahdanau attention blocks to downscale/forecast the
daily precipitation in a local region (i.e., the area above the New Jersey
portion of the Hackensack-Passaic watershed).

— We incorporate the Monte-Carlo dropout sampling technique into our frame-
work to quantify the aleatoric and epistemic uncertainties.
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— Experimental results obtained from forecasting/downscaling the daily pre-
cipitation in the local region show that our framework is suitable for the
downscaling task.

— We apply our trained deep learning model to future climate simulations to
produce local-scale projections for multiple periods into the future (up to
year 2100).

2 Problem Formulation and Data Collection

2.1 Problem Formulation

To perform statistical downscaling, one would need to relate large-scale GCM
simulations of weather patterns to local observations. In this study, we aim to
downscale the daily precipitation values using coarse-resolution simulations of
multiple climate variables (temperature, heat flux, humidity, wind, and so on).
To capture the different interactions of weather patterns, we extract the GCM
simulations from multiple grid points, surrounding the area of interest. Fig. 1
shows the New Jersey portion of the Hackensack-Passaic watershed (highlighted
in orange color), for which we attempt to downscale precipitation. The GCM
grid points we use in our downscaling are represented by black circles. We select
a total of 7 x 7 = 49 points, covering around 1.5 million km2 surrounding the
watershed area. We formulate the downscaling task as a regression problem, and
we aim to use GCM-simulated climate variables from the 49 grid points, treated
as input features, to forecast the daily precipitation, treated as the label, above
the watershed.

2.2 Local Observations

Our study area, highlighted in orange color in Fig. 1, consists of the New Jersey
portion of the Hackensack-Passaic watershed. We aim to downscale the average
daily precipitation over the whole area instead of a single station. We extracted
the daily precipitation values from the meteorological data set (NCEI Acces-
sion 0129374) provided by the National Centers for Environmental Information
(NCEI), of the National Oceanic and Atmospheric Administration (NOAA) [19].
These data are provided as a grid, with a 1/16 degree resolution. We selected the
grid points contained within the watershed and computed their average for each
day from January 1st, 1950, to December 31st, 2005 (daily data for 56 years).
These local observations are used as labels (ground truth) in our study.

2.3 GCM Simulations

There are multiple GCMs included in CMIP5. We opted-in to select the CM3
model of the Geophysical Fluid Dynamics Laboratory (GFDL) of NOAA [11].
GFDL CMS3 simulations are at grid with a 2 deg x 2.5 deg resolution ( 220
km x 270 km). For each of the 49 grid points shown in Fig. 1, we extract,
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Fig. 1. GCM grid points (black circles) selected for downscaling. The area highlighted
in orange color depicts the New Jersey portion of the Hackensack-Passaic watershed,
for which we attempt to downscale/forecast daily precipitation.

from the CM3 model, 26 climate variables, which are listed in Table 1. As such,
we have a total of 49 x 26 = 1,274 input features. We retrieved the daily data
from January 1st, 1950, to December 31st, 2005, obtaining a total of 20,418
data records. Moreover, we retrieved the simulations for the periods between
2030-2040, 2060-2070, and 2090-2100, which are to be used for the long-term
local-scale projections. We selected these future periods because we have the
corresponding simulations available.

3 The PCNN Framework

We present a novel deep learning framework, named PCNN. This framework
aims to apply convolution neural networks (CNNs) to each climate variable in-
dependently, where each climate variable is represented by a matrix containing
values for all the 49 grid points, followed by a sequence of Bahdanau attention
blocks. We apply dropout steps across the PCNN framework to perform uncer-
tainty quantification using the Monte-Carlo dropout sampling technique. The
main architecture of our deep learning framework is illustrated in Fig. 2.

3.1 Multi-Head Convolutional Neural Networks

Convolution neural networks (CNNs) [7, 8] have gained popularity for their per-
formance in computer vision and image analysis. CNNs are based on a grid-like
topology [10], and consist of a set of convolution and pooling layers. Convolution
is a specialized matrix operation, which is the core of CNNs, used to extract local
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Table 1. Large-scale Climate Variables Extracted from GCM Simulations.

Climate Variable|Description Unit
clt Total cloud fraction %
hfls Surface upward latent heat flux W/m2
hfss Surface upward sensible heat flux W/m2
husa2s0 Specific humidity at 250 hPa -
hussoo Specific humidity at 500 hPa -
hussgso Specific humidity at 850 hPa -

huss Specific humidity at near-surface -

pr Precipitation Kg/m2/s
psl Sea level pressure Pa
rhs Relative humidity at near-surface %
sfcWind Daily mean wind speed at near-surface|m/s
tasso Air temperature at 250 hPa K
tasoo Air temperature at 500 hPa K
tasso Air temperature at 850 hPa K

tas Air temperature at near-surface K
uazso Eastward wind at 250 hPa m/s
Uas00 Eastward wind at 500 hPa m/s
Uasso Eastward wind at 850 hPa m/s
uas Eastward wind at near-surface m/s
Va250 Northward wind at 250 hPa m/s
Vas00 Northward wind at 500 hPa m/s
vagso Northward wind at 850 hPa m/s
vas Northward wind at near-surface m/s
29250 Geopotential height at 250 hPa m
23500 Geopotential height at 500 hPa m
29850 Geopotential height at 850 hPa m

patterns (learnable features) of the corresponding feature group. The convolu-
tion layer applies filters to the input features using a set of kernels. A pooling
layer often follows each convolution layer and aims to extract the patterns by
focusing on the maximum, minimum, or average-based statistical summary of
the neighborhood. In our architecture, we utilize a self-attention layer after each
pooling layer, which allows our network to learn to choose a subset of the pooling
output by giving selective attention to the features. On each input matrix repre-
senting a climate variable, we apply a sequence of convolution-pooling-attention
two times, where the first pooling layer applies maximum pooling, and the second
is average pooling. These sequences are applied independently to each climate
variable where the sequences are followed by a dense layer. The outputs of the
dense layer are concatenated and fed to the next component. We refer to our
architecture as “multi-head,” which is not related to the multi-head attention
mechanism but rather the multiple input heads of our model (reminiscent of the
“multi-convolutional heads” [14,16]). Specifically, we have 26 climate variables,
so there are totally 26 input heads. Each climate variable is represented by a 7 x
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Fig. 2. Architecture of the proposed PCNN model. The input consists of the 26 7x7
matrices corresponding to the 26 climate variables considered in the study. Each 7x7
matrix contains the values of the corresponding climate variable taken from the 49 grid
points shown in Fig. 1. Each matrix is independently fed to a sequence of convolution,
pooling, and self-attention layers, followed by a dense layer. Red arrows represent
dropout steps. The outputs of the 26 independent sequences are concatenated and fed
to a sequence of Bahdanau attention layers. By utilizing the Monte-Carlo sampling
technique, the proposed model outputs R prediction samples (P, for 1 < o < R). The
mean of the R prediction samples is the predicted daily precipitation. Our model also
outputs the aleatoric and epistemic uncertainty values associated with the input data
and the model.

7 matrix corresponding to the 49 grid points in Fig. 1. As shown in Fig. 2, each
input matrix is fed to a different sub-model, each starting with a convolution
layer.

3.2 Bahdanau Attention Blocks

The Bahdanau attention methodology [2] was originally proposed to improve the
performance of conventional encoder-decoder models. The main difference be-
tween the Bahdanau attention and the conventional attention is that the former
alms to use a variable-length vector instead of the fixed-length one, to enhance
the translation performance of the models. Similar to other attention approaches,
the components of the Bahdanau attention include hidden decoder states s, con-
text vectors ¢, weights a, attention scores e, as well as an annotation vector h.
In the Bahdanau attention, the encoder uses the input sequence to generate
the annotation sets h;, which are combined with the hidden decoder state of
the previous step s;_1, and fed to an alignment model to evaluate the attention
scores e; ;. These attention scores are normalized into wights a; ;, which are used
to evaluate the context vector c¢;. Similar to other attention methodologies, the
context vector is used with the previous target hidden state to produce the fi-
nal output. In our PCNN framework, we adopt two Bahdanau attention blocks
followed by a dense layer as shown in Fig. 2 to improve the learning capability
of the proposed model.
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3.3 Uncertainty Quantification

In many real-world applications, uncertainty quantification is important [17,
26]. Uncertainty occurs in different components (or steps) within a deep neural
network. We are particularly interested in quantifying two uncertainty types:
aleatoric, which portrays the intrinsic randomness in the input data, and epis-
temic, which portrays the uncertainty of the deep learning model itself. We
incorporate the Monte-Carlo dropout sampling technique to quantify the two
uncertainties, following the methodology in [13,15]. This methodology employs
the Bayes’ theorem P(W | D) = (P(D | W)P(W))/P(D) to calculate the prob-
ability P(W) over the network weights W. However, evaluating the posterior
probability was shown to be a difficult task, and we could opt-in to leverage
the parameterized variational distribution gg(WW) over the weights (variational
inference [3]). This could be achieved by using dropout mechanisms across the
network during training. Still, one would need to minimize the relative entropy of
go(W), which could be done by using the Adam optimizer, with the cross-entropy
loss function. It is standard to use dropout mechanisms within deep learning
models to tackle the problem of over-fitting. The methodology behind dropout
is to randomly (following a certain rate) drop neurons in selected layers. Using
dropout during training would enable better generalization, and subsequently
better performance on unseen data. To quantify the uncertainties in our case,
we apply the dropout mechanisms during testing and perform the prediction R
times (where R is set to 50 in our study) to produce R Monte-Carlo samples
for each test case. We calculate the mean and variance over the R samples and
leverage them to quantify the aleatoric and epistemic uncertainties [13, 15].

4 Experiments and Results

4.1 Experimental Setup

We followed the 80/20 split procedure, in which, 80% of the data, from January
1950 to August 1994 with 16,334 data records, are used to train and calibrate our
model, and 20% of the data, from September 1994 to October 2005 with 4,084
data records, are used for testing. We adopt multiple performance metrics that
are often employed in the precipitation downscaling literature. These are the
root mean squared error (RMSE) reported in millimeter (mm), the same unit as
precipitation, mean absolute error (MAE) reported in the same unit as precip-
itation (mm), and error in daily mean (Mean Bias) which denotes the absolute
difference (reported in %) between the mean of the predicted and observed pre-
cipitation values (over the evaluation period), viz: Mean Bias = | observed mean
— predicted mean| / observed mean x 100%. We also compute the error in daily
standard deviation (SD Bias), which depicts the absolute difference (reported in
%) between the standard deviation of the predicted and observed precipitation
values (over the evaluation period), viz: SD Bias = | observed SD — predicted
SD| / observed SD x 100%. We used 20% of the training data for hyperparam-
eter tuning. Table 2 summarizes the hyperparameters and their corresponding
values that gave the best results, and that are used to configure PCNN.
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Table 2. Hyperparameters Used by PCNN.

Hyperparameter |Value |Description
Epochs 2000 |Number of epochs
Batch Size 64 Size of each batch
Activation (Conv)|ReLU |Activation function in the convolution layers
Filters 32 Number of filters in convolution layers
Optimizer Adam|Optimization algorithm used
Loss Function MSE |Loss function used
a b
1. 1.
E =

c PCNN-BA PCNNSA  PCNN-BA-SA B

PCNN PCNN-BA PCNN-SA  PCNN-BA-SA

PCNN PCNN-BA PCNN-SA  PCNN-BA-SA PCNN PCNN-BA PCNNSA  PCNN-BA-SA

Fig. 3. Results of the ablation studies, in terms of a) RMSE reported in mm, b) MAE
reported in mm, c¢) Mean Bias reported in %, and d) Standard Deviation (SD) Bias
reported in %.

4.2 Ablation Studies

To assess the contribution of each component of our model, we turned off the
Bayesian inference in our model and compared the performance of four variants:
(i) PCNN which refers to the original model; (ii) PCNN-BA which refers to
the model without the Bahdanau attention layers; (iii) PCNN-SA which refers
to the model without the self-attention layers; and (iv) PCNN-BA-SA which
refers to the model without the Bahdanau attention and self-attention layers.
We report in Fig. 3 the RMSE, MAE, Mean Bias, and Mean SD for the four
variants. PCNN has better performance than the other three variants, indicating
the importance of both the Bahdanau attention and self-attention components.

4.3 Comparative Studies

Next, we compared the performance of PCNN with that of widely used machine
learning (ML) methods in the downscaling literature: support vector regression
(SVR) [9], random forests (RF) [24], decision trees (DT) [27], multilayer percep-
tron (MLP) [1], and convolutional neural networks (CNN) [25]. Since the related
ML methods cannot quantify uncertainties, we again turned off the Bayesian in-
ference in our model when comparing with the related ML methods. Notice that
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Fig. 4. Performance comparison between PCNN and the related ML methods in terms
of a) RMSE reported in mm, b) MAE reported in mm, ¢) Mean Bias reported in %,
and d) Standard Deviation (SD) Bias reported in %.

the CNN in the downscaling literature is tailored for multiple input types but
without the attention mechanisms, and therefore the CNN in the downscaling
literature is equivalent to the PCNN-BA-SA used in our ablation studies. Fig.
4 presents the results of the comparative studies. It can be seen from the figure
that PCNN outperforms the other ML methods in terms of RMSE, MAE and
Mean Bias. We note that decision trees (DT) produced the closest daily standard
deviation (SD) to the observed data.

4.4 Uncertainty Quantification Results

The use of the Monte-Carlo dropout sampling technique allowed us to quantify
the aleatoric and epistemic uncertainty when making predictions. Fig. 5 presents
predicted mean daily precipitation within each month for the evaluation period,
as well as the obtained epistemic and aleatoric uncertainties. More uncertainties
come from the data than from our model. For reference, the average aleatoric
(data) and epistemic (model) uncertainties are 1.41 and 0.86 respectively. These
values depict that the model and data uncertainties are relatively low over the
evaluation period. One could further reduce these uncertainties by better tun-
ing the hyperparameters of the model (for model uncertainty) and refining the
dataset (for data uncertainty). The aleatoric uncertainty is data-dependent, as
such, when applying PCNN on a different location, a different value for such
uncertainty would arise. This is due to the fact that the bias and noise in the
GCM simulations are location-dependent.

4.5 Daily Variability

An important goal of downscaling precipitation is to reproduce the daily vari-
ability in addition to calculating the accuracy of daily predictions. Performance
metrics such as RMSE and MAE are related to the accuracy of daily predictions



10 F. Gerges et al.

W WNW

0
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
Year

12

N

-

Precipitation (mm)

»

mm Epistemic Uncertainty Aleatoric Uncertainty Prediction

Fig. 5. Predicted monthly averages of daily precipitation as well as the epistemic and
aleatoric uncertainties for the 1994-2005 period.

and are important when comparing machine learning (ML) methods to identify
the most suitable one. However, to assess the true suitability of that identified
ML method, one would need to analyze its performance in reproducing the daily
variability and calculating certain precipitation measures, such as mean wet and
dry spell lengths. Mean wet spell length is computed as the average number
of consecutive days with precipitation (i.e., precipitation > 1 mm). Similarly,
mean dry spell length is the average number of consecutive days without pre-
cipitation (i.e., precipitation < 1 mm). In climatology, a total precipitation of 1
mm is often the cutoff to classify days as wet or dry. Fig. 6 presents the mean
wet and dry spell lengths (and standard deviations as error bars), as extracted
from PCNN prediction results, as well as from NOAA observations. These re-
sults demonstrate the ability of PCNN to reproduce wet and dry spells, with
relatively low bias errors (0.68% and 7.3% respectively). Here, Wet Bias error =
|observed mean wet spell length — predicted mean wet spell length| / observed
mean wet spell length x 100% and Dry Bias error = |observed mean dry spell
length — predicted mean dry spell length| / observed mean dry spell length x
100%. Moreover, we investigate the ability of our PCNN framework to repro-
duce the probability distribution of precipitation. Fig. 7 shows the cumulative
distribution functions (CDF) for daily precipitation as obtained from the PCNN
prediction results and the NOAA observations respectively. It is apparent that
the probability distribution of the prediction results from PCNN is tightly close
to that of the NOAA observations. To further assess the ability of PCNN to re-
produce variability, we cluster precipitation values into ranges and compute the
number of days (frequency) predicted within each range. For example, PCNN
predicted a precipitation value between 0 and 2 mm for 2520 days, and as such,
the range 0-2 will have a frequency of 2520 days. Fig. 8 compares the frequency
(i.e., the number of days) of each precipitation range between those predicted
by PCNN (gray bars) and the NOAA observations (yellow bars) where the his-
tograms are log scaled for visibility. It can be seen from Fig. 8 that our PCNN
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Fig. 7. Cumulative distribution function (CDF) for the daily precipitation using PCNN
(dashed red line). The blue line represents the observed cumulative distribution func-
tion.

framework reproduces the frequency distribution well, which supports our claim
that PCNN is suitable for the downscaling task.

4.6 Long-Term Projections

Heavy precipitation has multiple impacts on the environment, leading to crop
damage, increased flooding rate, as well as soil erosion. Furthermore, runoff from
precipitation can wash pollutants into water bodies, affecting the water quality.
As such, long-term projections of local-scale daily precipitation is crucial for
water quality and risk management. Our experimental results demonstrate the
suitability of PCNN for the downscaling of daily precipitation in the Hackensack-
Passaic watershed. As such, we re-trained our PCNN model using the 20,418
data records obtained from the period between 1950 and 2005 and applied the
trained model to produce future projections. In particular, we used the GCM
simulations for the periods between 2031-2040, 2061-2070, and 2091-2100 where
we have the data available for these periods. We downscaled the precipitation
for each period independently where the RCP8.5 was the radiative heat scenario
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Fig. 8. Frequency histograms (log scaled) of daily precipitation (mm) values predicted
by the PCNN framework (gray) and obtained from NOAA observaions (yellow) for
the 1994-2005 period. The X-axis shows the precipitation ranges used to compute the
frequency. For instance, a histogram for the 0-2 range represents all those days with
precipitation between 0 mm and 2 mm.

used in the study. Fig. 9 shows the a) mean daily precipitation, b) mean wet
spell length, ¢) mean dry spell length, and d) average of the number of wet
days (with precipitation geg 1 mm) annually for each period where red error
bars represent standard deviations. We note the large standard deviations of
the mean daily precipitation values, which are expected given that the observed
daily precipitation values from NOAA in the period between 1950 and 2005 have
a standard deviation of 6.9 mm. The reported mean and standard deviation are
for all the days within a study period (10 years each). As such, the large standard
deviation depicts that the PCNN model is not predicting a near-mean value for
each day, but with a variability that resembles that of the training period. A low
standard deviation would imply that most days have precipitation values close
to the mean daily precipitation over the 10-year period, which would be wrong,
given the large number of dry days, as well as days with high rainfall rate, in the
period between 1950 and 2005. Fig. 10 shows the mean daily precipitation within
each month for the selected future periods, as well as the epistemic and aleatoric
uncertainties. We note that the increasing trend of the mean daily precipitation
from 2031 to 2100 agree with existing climate change studies which argue that
more rain and snow are expected in the future. This fact is further supported
by Fig. 9d which shows an increasing trend in the average number of wet days
annually. We note that an increasing trend in mean daily precipitation might
not be visible when examining each 10-years period independently (see Fig. 5
and each period in Fig. 10). However, such a trend will become apparent when
analyzing a relatively longer period (e.g., 2031-2100) as shown in Fig. 10.
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Fig. 9. Projected a) mean daily precipitation, b) mean wet spell length, ¢) mean dry
spell length, and d) average of the number of wet days annually for three future periods
where red error bars represent standard deviations. The standard deviations of the
projected daily precipitation values are large, which means that we don’t have a near-
mean value for all the days within each period. This is expected given that the observed
standard deviation on the training data is 6.9 mm.

5 Conclusions

In this paper, we develop a novel deep learning framework (PCNN) based on con-
volution neural networks and Bahdanau attention for the statistical downscaling
of daily precipitation. Our framework employs a multi-head model, consisting
of convolution neural networks with self-attention, as well as stacked Bahdanau
attention layers. Moreover, we incorporate the Monte-Carlo dropout sampling
technique to quantify the aleatoric and epistemic uncertainties. We trained the
PCNN model to downscale the daily precipitation above the New Jersey portion
of the Hackensack-Passaic watershed by using the coarse-resolution simulations
from the GCM as the input to the model. Experiments show that PCNN outper-
forms closely related machine learning methods and is able to reproduce the daily
variability of precipitation. This variability is depicted by the mean daily precip-
itation, mean dry and wet spell lengths, the cumulative distribution function, as
well as the frequency distribution of daily precipitation values. Our results were
obtained by utilizing an 80/20 split procedure. We also conducted additional
experiments with five-fold cross validation and obtained similar results. We then
trained the PCNN model by data from 1950 to 2005 and applied the trained
model to project the long-term daily precipitation using future GCM simula-
tions for the periods between 2031-2040, 2061-2070, and 2091-2100 respectively.
We reported the projected statistics for each future period (mean, wet and dry
spell lengths, number of wet days).
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The periods are separated by dashed lines.
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