
Differentially Private Bayesian Neural Networks
on Accuracy, Privacy and Reliability

Qiyiwen Zhang1,∗, Zhiqi Bu1,∗, Kan Chen1, and Qi Long�1

University of Pennsylvania
*Equal contribution

qiyiwen.zhang@pennmedicine.upenn.edu {zbu,kanchen,qlong}@upenn.edu

Abstract. Bayesian neural network (BNN) allows for uncertainty quan-
tification in prediction, offering an advantage over regular neural networks
that has not been explored in the differential privacy (DP) framework.
We fill this important gap by leveraging recent development in Bayesian
deep learning and privacy accounting to offer a more precise analysis of
the trade-off between privacy and accuracy in BNN. We propose three
DP-BNNs that characterize the weight uncertainty for the same network
architecture in distinct ways, namely DP-SGLD (via the noisy gradi-
ent method), DP-BBP (via changing the parameters of interest) and
DP-MC Dropout (via the model architecture). Interestingly, we show a
new equivalence between DP-SGD and DP-SGLD, implying that some
non-Bayesian DP training naturally allows for uncertainty quantification.
However, the hyperparameters such as learning rate and batch size, can
have different or even opposite effects in DP-SGD and DP-SGLD.
Extensive experiments are conducted to compare DP-BNNs, in terms of
privacy guarantee, prediction accuracy, uncertainty quantification, calibra-
tion, computation speed, and generalizability to network architecture. As
a result, we observe a new tradeoff between the privacy and the reliability.
When compared to non-DP and non-Bayesian approaches, DP-SGLD is
remarkably accurate under strong privacy guarantee, demonstrating the
great potential of DP-BNN in real-world tasks.

Keywords: deep learning· Bayesian neural network· differential pri-
vacy· uncertainty quantification· optimization· calibration.

1 Introduction

Deep learning has exhibited impressively strong performance in a wide range
of classification and regression tasks. However, standard deep neural networks
do not capture the model uncertainty and fail to provide the information avail-
able in statistical inference, which is crucial to many applications where poor
decisions are accompanied with high risks. As a consequence, neural networks
are prone to overfitting and being overconfident about their prediction, reducing
their generalization capability and more importantly, their reliability. From this
perspective, Bayesian neural network (BNN) [22,23,7,27] is highly desirable and
useful as it characterizes the model’s uncertainty, which on one hand offers a

2 Zhang, Bu, et al.

reliable and calibrated prediction interval that indicates the model’s confidence
[35,15,4,19], and on the other hand reduces the prediction error through the model
averaging over multiple weights sampled from the learned posterior distribution.
For example, networks with the dropout [31] can be viewed as a Bayesian neural
network by [13]; the dropout improves the accuracy from 57% [37] to 63% [31]
on CIFAR100 image dataset and 69.0% to 70.4% on Reuters RCV1 text dataset
[31]. In another example, on a genetics dataset where the task is to predict the
occurrence probability of three alternative-splicing-related events based on RNA
features. The performance of ‘Code Quality’ (a measure of the KL divergence
between the target and the predicted probability distributions) can be improved
from 440 on standard network to 623 on BNN [36].

In a long line of research, much effort has been devoted to making BNNs
accurate and scalable. These approaches can be categorized into three main
classes: (i) by introducing random noise into gradient methods (e.g. SG-MCMC
[34]) to quantify the weight uncertainty; (ii) by considering each weight as a
distribution, instead of a point estimate, so that the uncertainty is described inside
the distribution; (iii) by introducing randomness on the network architecture
(e.g. the dropout) that leads to a stochastic training process whose variability
characterizes the model’s uncertainty. To be more specific, we will discuss these
methods including the Stochastic Gradient Langevin Descent (SGLD) [21], the
Bayes By Backprop (BBP) [4] and the Monte Carlo Dropout (MC Dropout) [13].

Another natural yet urgent concern on the standard neural networks is
the privacy risk. The use of sensitive datasets that contain information from
individuals, including medical records, email contents, financial statements, and
photos, has incurred serious risk of privacy violation. For example, the sale of
Facebook user data to Cambridge Analytica [8] leads to the $5 billion fine to the
Federal Trade Commission for its privacy leakage. As a gold standard to protect
the privacy, the differential privacy (DP) has been introduced by [11] and widely
applied to deep learning [1,5,30,6], due to its mathematical rigor.

Although both uncertainty quantification and privacy guarantee have drawn
increasing attention, most existing work studied these two perspectives separately.
Previous arts either studied DP Bayesian linear models [34,38] or studied DP-
BNN using SGLD [20] but only for the accuracy measure without uncertainty
quantification. In short, to the best of our knowledge, no existing deep learning
models have equipped with the differential privacy and the Bayesian uncertainty
quantification simultaneously.

Our proposal contributes on several fronts. First, We propose three distinct
DP-BNNs that all use the DP-SGD (stochastic gradient descent) but characterize
the weight uncertainty in fundamentally distinct ways, namely DP-SGLD (via
the noisy gradient method), DP-BBP (via changing the parameters of interest),
and DP-MC Dropout (via the model architecture). Our DP-BNNs are essentially
DP Bayesian training procedures, as summarized in Figure 10, while the inference
procedures of DP-BNNs are the same as regular non-private BNNs.

Second, we establish the precise connection between the Bayesian gradient
method, DP-SGLD and the non-Bayesian method, DP-SGD. Through a rigorous

2. DIFFERENTIALLY PRIVATE NEURAL NETWORKS 3

analysis, we show that DP-SGLD is a sub-class of DP-SGD yet the training
hyperparameters (e.g. learning rate and batch size) have very different impacts
on the performance of these two methods.

Finally, We empirically evaluate DP-BNNs through the classification and
regression tasks. Notice that although all three DP-BNNs are equally private
and capable of uncertainty quantification, their performance can be significantly
different under various measures, as discussed in Section 4.

2 Differentially Private Neural Networks

In this work, we consider (ε, δ)-DP and also use µ-GDP as a tool to compose the
privacy loss ε iteratively. We first introduce the definition of (ε, δ)-DP in [12].

Definition 1. A randomized algorithm M is (ε, δ)-differentially private (DP) if
for any pair of datasets S, S′ that differ in a single sample, and any event E,

P[M(S) ∈ E] 6 eεP [M (S′) ∈ E] + δ. (1)

A common approach to learn a DP neural network (NN) is to use DP gradient
methods, such as DP-SGD (see Algorithm 1; possibly with the momentum and
weight decay) and DP-Adam [5], to update the neural network parameters, i.e.
weights and biases. In order to guarantee the privacy, DP gradient methods differ
from its non-private counterparts in two steps. For one, the gradients are clipped
on a per-sample basis, by a pre-defined clipping norm C. This is to ensure the
sum of gradients has a bounded sensitivity to data points (this concept is to
be defined in Appendix A). We note that in non-neural-network training, DP
gradient methods may apply without the clipping, for instance, DP-SGLD in
[34] requires no clipping and is thus different from our DP-SGLD in Algorithm 2
(also our DP-SGLD need not to modify the noise scale). For the other, some level
of random Gaussian noises are added to the clipped gradient at each iteration.
This is known as the Gaussian mechanism which has been rigorously shown to
be DP by [12, Theorem 3.22].

Algorithm 1: Differentially private SGD (DP-SGD) with regularization
Input: Examples {(xi, yi)}, loss `(·;w), regularization r(w).
for t = 1 to T do
Randomly sample Bt ⊂ {1, 2, . . . , N};
for i ∈ Bt do
Compute gi = ∇w`(xi, yi;wt−1)
Clip g̃i = min{1, Ct

‖gi‖2
} · gi. ;

Add noise ĝ = 1
|Bt|

∑
i∈Bt

g̃i + σ·Ct

|Bt| · N (0, Id).
Update wt ← wt−1 − ηt (ĝ +∇wr(wt−1)) ;

Output: w1,w2, · · · ,wT

4 Zhang, Bu, et al.

In the training of neural networks, the Gaussian mechanism is applied mul-
tiple times and the privacy loss ε accumulates, indicating the model becomes
increasingly vulnerable to privacy risk though more accurate. To compute the
total privacy loss, we leverage the recent privacy accounting methods: Gaussian
differential privacy (GDP) [10,5] and Moments accountant [1,9]. Both methods
give valid though different upper bounds of ε as a consequence of using different
composition theories. Notably, the rate at which the privacy compromises depends
on the certain hyperparameters, such as the number of iterations T , the learning
rate η, the noise scale σ, the batch size |B|, the clipping norm C. In the following
sections, we exploit how these training hyperparameters influences DP and the
convergence, and subsequently the uncertainty quantification.

3 Bayesian Neural Networks

BNNs have achieved significant success recently, by incorporating expert knowl-
edge and making statistical inference through uncertainty quantification. On the
high level, BNNs share the same architecture as regular NNs f(x;w) but are
different in that BNNs treat weights as a probability distribution instead of a
single deterministic value. Learned properly, these weight distributions can char-
acterize the uncertainty in prediction and improve the generalization behavior.
For example, suppose we have obtained the weight distribution W , then the
prediction distribution of BNNs is f(x;W), which is unavailable by regular NNs.
We now describe three popular yet distinct approaches to learn BNNs, leaving
the algorithms in Section 4, which has the DP-BNNs but reduces to non-DP
BNNs when σ = 0 (no noise) and Ct =∞ (no clipping). We highlight that all
three approaches are heavily based on SGD (though other optimizers can also be
used): the difference lies in how SGD is applied. The Pytorch implementation is
available at github.com/JavierAntoran/Bayesian-Neural-Networks.

3.1 Bayesian Neural Networks via Sampling
Stochastic Gradient Langevin Dynamics (SGLD) SGLD [35,21] is a
gradient method that applies on the weights w of NN, and the weight uncertainty
arises from the random noises injected into the training dynamics. Therefore,
SGLD works on regular NN without any modification. However, unlike SGD,
SGLD makes w to converge to a posterior distribution rather than to a point
estimate, from which SGLD can sample and characterize the uncertainty of w.
In details, SGLD takes the following form

wt = wt−1 + ηt

(
∇ log p(wt−1) + n

|Bt|
∑

i∈Bt

∇ log p(xi, yi|wt−1)
)

+N (0, ηt)

where p(w) is the pre-defined prior distribution of weights and p(x, y|w) is the
likelihood of data. In the literature of empirical risk minimization, SGLD can be
viewed as SGD with random Gaussian noise in the updates:

wt = wt−1 − ηt
(
∇r(wt−1) + n

|Bt|
∑

i∈Bt

∇`(xi, yi;wt−1)
)

+N (0, ηt),

github.com/JavierAntoran/Bayesian-Neural-Networks

3. BAYESIAN NEURAL NETWORKS 5

where r(w) is the regularization and `(x, y;w) is loss. We summarize in Footnote 1
an one-to-one correspondence between the regularization r(w) and the prior p(w),
as well as between the loss `(x, y;w) and the likelihood p(x, y|w). Writing the
penalized loss as LSGLD(xi, yi;w) := n · `(xi, yi;w) + r(w), we obtain

wt = wt−1 −
ηt
|Bt|

∑
i∈Bt

∂LSGLD(xi, yi;wt−1)
∂wt−1

+N (0, ηt).

Interestingly, although SGLD adds an isotropic Gaussian noise to the gradient
(similar to DP-SGD in Algorithm 1), it is not guaranteed as DP without the
per-sample gradient clipping . Nevertheless, while SGLD is different from SGD,
we show in Theorem 1 that DP-SGLD is indeed a sub-class of DP-SGD.

3.2 Bayesian Neural Networks via Optimization

In contrast to SGLD, which is considered as a sampling approach that modifies
the updating algorithm, we now introduce two optimization approaches of BNNs
that use the regular optimizers like SGD, but modify the objective of minimization
or the network architecture instead.

Bayes By Backprop (BBP) BBP [4] uses the standard SGD except it is
applied on the hyperparameters of pre-defined weight distributions, rather than
on the weights w directly. For example, suppose we assume that w ∼ N (µ, σ2).
Then BBP updates hyperparameters (µ, σ) while the regular SGD updates w.

This approach is known as the ‘variational inference’ or the ‘variational
Bayes’, where a variational distribution q(w|θ) is learned through its governing
hyperparameter θ. Consequently, the weight uncertainty is included in such
variational distribution from which we can sample during the inference time.

In order to update the hyperparameter θ, the objective of minimization
requires highly non-trivial transformation from `(x, y;w) and is derived as follows.
Given data D = {(xi, yi)}, the likelihood is p(D|w) = Πip(yi|xi,w) under some
probabilistic model p(y|x,w). By the Bayes theorem, the posterior distribution
p(w|D) is proportional to the likelihood and the prior distribution p(w),

p(w|D) ∝ p(D|w)p(w) = Πip(yi|xi, w)p(w).

Within a pre-specified variational distribution q(w|θ), we seek the distribu-
tional parameter θ such that q(w|θ) ≈ p(w|D). Conventionally, the variational
distribution is restricted to be Gaussian and we learn its mean and standard
deviation θ = (µ, σ) through minimizing the KL divergence:

minθKL
(
q(w|θ)

∥∥p(w|D)
)
≡ E log q(w|θ)− E log p(w)− E log p(D|w). (2)

This objective function is analytically intractable but can be approximated
by drawing w(j) from q(w|θ) for N independent times:

LBBP(D; θ) := 1
N

∑
j∈[N]

log q(w(j)|θ) + r(w(j)) + `(D;w(j))

6 Zhang, Bu, et al.

This approximated KL divergence is the actual objective to optimize instead
of `(D;w) used by the non-Bayesian NN (see the derivation of LBBP in Ap-
pendix B.1). It follows that in BBP, the SGD updating rule for the reparameteri-
zation θ = (µ, ρ) with σ = log(1 + exp(ρ)) is

µt = µt−1 −
ηt
|Bt|

∑
i∈Bt

dLBBP(xi, yi)
dµ

, ρt = ρt−1 −
ηt
|Bt|

∑
i∈Bt

dLBBP(xi, yi)
dρ

.

Monte Carlo Dropout (MC Dropout) MC Dropout is proposed by [13]
that establishes an interesting connection: optimizing the loss with L2 penalty
in regular NNs with dropout layers is equivalent to learning Bayesian inference
approximately. From this perspective, the weight uncertainty is described by the
randomness of the dropout operation. We refer to Appendix B.2 for an in-depth
review of MC dropout.

In more details, denoting LDropout(xi, yi;w) := `(xi, yi;w) + r(w), such con-
nection claims equivalence between the problem minw

1
n

∑n
i=1 LDropout(xi, yi;w)

and the variational inference problem (2), when the prior distribution is a zero
mean Gaussian one. This equivalence makes MC Dropout similar to BBP in the
sense of minimizing the same KL divergence. Nevertheless, while BBP directly
minimizes the KL divergence, MC Dropout in practice leverages the equivalence
to minimize the regular loss `(D;w) via the empirical risk minimization. Hence
MC Dropout also shares similarity with SGD or SGLD. From the algorithmic
perspective, suppose wt is the remaining weights after the dropout in the t-th
iteration, then the updating rule for MC Dropout with SGD is

wt = wt−1 −
ηt
|Bt|

∑
i∈Bt

∂LDropout(xi, yi;wt−1)
∂wt−1

.

4 Differentially Private Bayesian Neural Networks

To prepare the development of DP-BNNs, we summarize how to transform a
regular NN to be Bayesian and to be DP, respectively. To learn a BNN, we
need to establish the relationship between the Bayesian quantities (likelihood
and prior) and the optimization loss and regularization. Under the Bayesian
regime, ` is the negative log-likelihood − log p(x, y|θ) and log p(θ) is the log-prior.
Under the empirical risk minimization regime, ` is the loss function and we view
− log p(θ) as the regularization or penalty1. To learn a DP network, we simply
apply DP gradient methods that guarantee DP via the Gaussian mechanism (see
Appendix A). Therefore, we can privatize each BNN to gain DP guarantee by
applying DP gradient methods to update the parameters, as shown in Figure 10
and Figure 11 in Appendix E.

1 For example, if the prior is N (0, σ2), then − log p(θ) ∝ ‖θ‖2

2σ2 is the L2 penalty; if the
prior is Laplacian, then − log p(θ) is the L1 penalty; additionally, the likelihood of a
Gaussian model corresponds to the mean squared error loss.

4. DIFFERENTIALLY PRIVATE BAYESIAN NEURAL NETWORKS 7

Although the high-level ideas of DP-BNNs are easy to understand, we em-
phasize that different DP-BNNs vary significantly in terms of generalizability,
computation efficiency, and uncertainty quantification (see Table 5).

4.1 Differentially Private Stochastic Gradient Langevin Dynamics

Algorithm 2: Differentially private SGLD (DP-SGLD)
Input: Examples {(xi, yi)}, loss `(·;w), regularization r(w).
for t = 1 to T do
Randomly sample a batch Bt ⊂ {1, 2, . . . , n};
for i ∈ Bt do
Compute gi = ∇w`(xi, yi;wt−1)
Clip g̃i = min{1, Ct

‖gi‖2
} · gi. ;

Update wt ← wt−1 − ηt
(

n
|Bt|

∑
i∈Bt

g̃i +∇wr(wt−1)
)

+N (0, ηt) ;
Output: w1,w2, . . . ,wT

We first prove in Theorem 1 (with proof in Appendix D) that DP-SGLD is a
sub-class of DP-SGD: every DP-SGLD is equivalent to some DP-SGD; however,
only DP-SGD with σ = |B|√

nηC is a DP-SGLD. In fact, DP-SGLD with non-
informative prior is a special case of vanilla DP-SGD; DP-SGLD with Gaussian
prior is equivalent to some DP-SGD with weight decay (i.e. with L2 penalty).

Theorem 1. For DP-SGLD with some prior assumption and DP-SGD with the
corresponding regularization,

DP-SGLD(ηSGLD=η,CSGLD=C) = DP-SGD(ηSGD=ηn,σSGD=|B|/(n√ηC),CSGD=C),

DP-SGD(ηSGD=η,σSGD=σ,CSGD=C) = DP-SGLD(ηSGLD=η/n,CSGLD=C=|B|/(√nησ)).

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

rac
y

DP-SGD
DP-SGLD

Fig. 1: Performance of DP-SGLD
within DP-SGD family, on MNIST
with CNN. Here δ = 10−5, |B| =
256, ηSGD = 0.25, ηSGLD = 10−5, epoch
≤ 15, C ∈ [0.5, 5], σSGD ∈ [0.5, 3].

In Figure 1, we empirically observe
that DP-SGLD is indeed a sub-class in
the family of DP-SGD and is superior
to other members of this family as it
occupies the top left corner of the graph.
In fact, it has been suggested by [34] in
the non-deep learning that, training a
Bayesian model using SGLD automat-
ically guarantees DP. In contrast, Theo-
rem 1 is established in the deep learning
regime and brings in a new perspective:
training a regular NN using DP-SGD
may automatically allow Bayesian un-
certainty quantification.

8 Zhang, Bu, et al.

Furthermore, DP-SGLD is generalizable to any network architecture (when-
ever DP-SGD works) and to any weight prior distribution (via different regular-
ization terms); DP-SGLD does not require the computation of the complicated
KL divergence. Computationally speaking, DP-SGLD enjoys fast computation
speed (i.e. low computation complexity) since the per-sample gradient clipping
can be very efficiently calculated using the outer product method [14,29], the
fastest acceleration technique of DP deep learning implemented in Opacus library.
For example, on MNIST in Section 5, DP-SGLD requires only 10 sec/epoch,
while DP-BBP takes 480 sec/epoch since it is incompatible with outer product.

However, DP-SGLD only offers empirical weight distribution {wt}, which is
not analytic and requires large memory for storage in order to give sufficiently
accurate uncertainty quantification (e.g. we record 100 iterations of wt in Figure 7
and 1000 iterations in Figure 4). The memory burden can be too large to scale
to large models that have billions of parameters, such as GPT-2.

4.2 Differentially Private Bayes by BackPropagation

Our DP-BBP can be viewed as DP-SGD working on the distributional hyperpa-
rameters such as the mean and the variance. In fact, it is the only method that
does not works on weights directly, and thus requires to work with KL divergence
via the variational inference problem (2).

Algorithm 3: Differentially private Bayes by BackPropagation (DP-
BBP)
Input: Examples {(xi, yi)}, loss LBBP(·; θ).
for t = 1 to T do
Randomly sample a batch Bt ⊂ {1, 2, . . . , n};
for i ∈ B do
for j = 1 to N do
Sample w(j) from q(w|θt−1) and compute

g
(j)
i = ∇θLBBP(xi, yi;w(j), θ) ;

Define ḡi = 1
N

∑
j g

(j)
i and clip g̃i = min{1, Ct

‖ḡi‖2
} · ḡi ;

Add noise ĝ = 1
|Bt|

∑
i∈B g̃i + σ·Ct

|Bt| · N (0, Id).
Update θt ← θt−1 − ηtĝ ;

Output: θT

There are three major drawbacks of DP-BBP due to the KL divergence
approach. Firstly, the updating rule needs significant modification for each type
of network layers, e.g. convolutional layers and embedding layers. Therefore
DP-BBP cannot work flexibly on general NNs. Secondly, DP-BBP suffers from
high computation complexity. Under Gaussian variational distributions, DP-BBP
needs to compute two hyperparameters (mean and standard deviation) for a

4. DIFFERENTIALLY PRIVATE BAYESIAN NEURAL NETWORKS 9

single parameter (weight), which doubles the complexity of DP-SGLD, DP-MC
Dropout and DP-SGD. The computational issue is further exacerbated due
to the N samplings of w(j) from q(w|θt), which means the number of back-
propagation is N times that of DP-SGLD and DP-MC Dropout. This introduces
an inevitable tradeoff: when N is larger, DP-BBP tends to be more accurate but
its computational complexity is also higher, leading to the overall inefficiency of
DP-BBP. Thirdly, DP-BBP cannot be accelerated by the outer product method as
it violates the supported network layers2. Since the per-sample gradient clipping
is the computational bottleneck for acceleration, DP-BBP can be too slow to be
practically useful if the computation consideration overweighs its utility.

As for its advantages, DP-BBP is compatible to general DP optimizers such
as DP-Adam. Similar to DP-SGLD, the DP-BBP can flexibly work under various
priors by using different regularization terms r(w) inside LBBP. Moreover, in
sharp contrast to DP-SGLD and DP-MC Dropout, which only describe the weight
distribution empirically, the distributional hyperparameters updated by DP-BBP
directly characterize an analytic weight distribution for inference.

4.3 Differentially Private Monte Carlo Dropout

We can view our DP-MC Dropout as applying DP-SGD (or any other DP
optimizers) on any NN with dropout layers, and thus DP-MC Dropout enjoys
the low computation costs provided by the outer product acceleration in Opacus.
Regarding the uncertainty quantification, DP-MC Dropout offers the empirical
weight distribution at low storage costs since only wT is stored, which means that
its posterior is not analytic and will not be accurate if the number of training
iterations is not sufficiently large.

Algorithm 4: Differentially private MC Dropout (DP-MC Dropout)
Input: Examples {(xi, yi)}, loss LDropout(·;w), regularization r(w).
for t = 1 to T do
Randomly sample a batch Bt ⊂ {1, 2, . . . , n}.
Randomly drop out some weights and denote the remained as wt−1;
for i ∈ Bt do
Compute gi = ∇wLDropout(xi, yi;wt−1)
Clip g̃i = min{1, Ct

‖gi‖2
} · gi. ;

Add noise ĝ = 1
|Bt|

∑
i∈Bt

g̃i + σ·Ct

|Bt| · N (0, Id)
Update wt ← wt−1 − ηt(ĝ +∇wr(wt−1)) ;

Output: wT

2 Since DP-BBP does not optimize the weights, the back-propagation is much dif-
ferent from using ∂`

∂w
(see Appendix B) and thus requires new design that is

currently not available. See https://github.com/pytorch/opacus/blob/master/
opacus/supported_layers_grad_samplers.py.

https://github.com/pytorch/opacus/blob/master/opacus/supported_layers_grad_samplers.py
https://github.com/pytorch/opacus/blob/master/opacus/supported_layers_grad_samplers.py

10 Zhang, Bu, et al.

A limitation to the theory of MC Dropout [13] is that the equivalence between
the empirical risk minimization of LDropout and the KL divergence minimization
(2) no longer holds beyond the Gaussian weight prior. Nevertheless, algorithmi-
cally speaking, DP-MC Dropout also works with other priors by using different
regularization terms.

4.4 Analysis of Privacy

The following theorem gives the privacy loss ε by the GDP accountant [10,5].

Theorem 2 (Theorem 5 in [5]). For both DP-MC Dropout and DP-BBP,
under any DP-optimizers (e.g. DP-SGD, DP-Adam, DP-HeavyBall) with the
number of iterations T , noise scale σ and batch size |B|, the resulting neural
network is

√
T (e1/σ2 − 1)|B|/n-GDP.

We remark that, from [10, Corollary 2.13], µ-GDP can be mapped to (ε, δ)-DP
via δ(ε;µ) = Φ (−ε/µ+ µ/2)− eεΦ (−ε/µ− µ/2) . As alternatives to GDP, other
privacy accountants such as the Moments Accountant (MA) [1,26,9,2] can be
applied to characterize ε, though implicitly (see Appendix A). Since DP-MC
Dropout and DP-BBP do not quantify the uncertainty via optimizers, all privacy
accountants give the same ε as training DP-SGD on regular NNs. We next give
the privacy of DP-SGLD by writing it as DP-SGD.

Theorem 3. For DP-SGLD with the number of iterations T , learning rate η,
batch size |B| and clipping norm C, the resulting neural network is√
T (en2ηC2/|B|2 − 1)|B|/n-GDP.

The proof follows from Theorem 1 and [5, Theorem 5], given in Appendix D.
We observe sharp contrast between Theorem 2 and Theorem 3: (1) while the
clipping norm C and learning rate η have no effect on the privacy guarantee of
DP-MC Dropout and DP-BBP, these hyperparameters play important roles in
DP-SGLD. For instance, the learning rate triggers a tradeoff: larger η converges
faster but smaller η is more private; see Figure 2. (2) To get stronger privacy
guarantee, DP-MC Dropout and DP-BBP need smaller T and larger σ; however,
DP-SGLD needs smaller T,C and η. (3) Surprisingly, the batch size |B| has
opposite effects in DP-SGLD and in other methods: DP-SGLD with larger |B| is
more private, while smaller |B| amplifies the privacy for DP-SGD [3,33,17,10].

5 Experiments

We further evaluate the proposed DP-BNNs on the classification (MNIST) and
regression tasks, based on performance measures including uncertainty quan-
tification, computational speed and privacy-accuracy tradeoff. In particular, we
observe that DP-SGLD tends to outperform DP-MC Dropout, DP-BBP and
DP-SGD, with little reduction in performance compared to non-DP models. All
experiments (except BBP) are run with Opacus library under Apache License

5. EXPERIMENTS 11

2.0 and on Google Colab with a P100 GPU. A detailed description of the experi-
ments can be found in Appendix C. Code of our implementation is available at
https://github.com/littlekii/DPBBP.

5.1 Classification on MNIST

We first evaluate three DP-BNNs on the MNIST dataset, which contains n =
60000 training samples and 10000 test samples of 28 × 28 grayscale images of
hand-written digits.

0.2 0.4 0.6 0.8 1.0 1.2
0.750

0.775

0.800

0.825

0.850

0.875

0.900

0.925

0.950

Te
st

 A
cc

ur
ac

y

|B|=150
|B|=200
|B|=300
|B|=400
|B|=500

0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.750

0.775

0.800

0.825

0.850

0.875

0.900

0.925

0.950

Te
st

 A
cc

ur
ac

y

|B|=150
|B|=200
|B|=300
|B|=400
|B|=500

0.0 0.2 0.4 0.6 0.8 1.0
0.750

0.775

0.800

0.825

0.850

0.875

0.900

0.925

0.950

Te
st

 A
cc

ur
ac

y

=0.01/n
=0.05/n
=0.15/n
=0.25/n
=0.35/n

Fig. 2: Effects of batch size and learning rate on DP-SGD (left) and DP-SGLD
(middle & right) with CNNs on MNIST. See Appendix C.3 for settings.

Table 1: Test accuracy and running time of DP-BBP, DP-SGLD, DP-MC Dropout,
DP-SGD, and their non-DP counterparts. We use a default two-layer MLP and
additionally a four-layer CNN by Opacus in parentheses.

Methods Weight Prior DP Time/Epoch DP accuracy Non-DP accuracy
Gaussian 10s 0.90 (0.95) 0.95 (0.96)SGLD Laplacian 10s 0.89 (0.89) 0.90 (0.89)
Gaussian 480s 0.80 (——) 0.97 (——)BBP Laplacian 480s 0.81 (——) 0.98 (——)

MC Dropout Gaussian 9s 0.78 (0.77) 0.98 (0.97)
SGD (non-Bayesian) —— 10s 0.77 (0.95) 0.97 (0.99)

Accuracy and Privacy While all of non-DP methods have similar high test
accuracy, in the DP regime in Table 1, DP-SGLD outperforms other Bayesian and
non-Bayesian methods under almost identical privacy budgets (for details, see
Appendix C). For the multilayer perceptron (MLP), all BNNs (DP or non-DP)
do not lose much accuracy when gaining the ability to quantify uncertainty,
compared to the non-Bayesian SGD. However, DP comes at high cost of accuracy,
except for DP-SGLD which does not deteriorate comparing to its non-DP version,
while other methods experience an accuracy drop ≈ 20%. Furthermore, DP-SGLD
enjoys clear advantage in accuracy on more complicated convolutional neural
network (CNN).

Uncertainty and Calibration Regarding uncertainty quantification, we
visualize the empirical prediction posterior of Bayesian MLPs in Figure 7 over
100 predictions on a single image. Note that at each probability (x-axis), we

https://github.com/littlekii/DPBBP

12 Zhang, Bu, et al.

plot a cluster of bins each of which represents a class3. For example, the left-
most cluster represents not predicting a class. As a measure of the reliability,
the calibration [28,16] measures the distance between a classification model’s
accuracy and its prediction probability, i.e. confidence. Formally, denoting the
vector of prediction probability for the i-th sample as πi, the confidence for this
sample is confi = maxk[πi]k and the prediction is predi = argmaxk[πi]k. Two
commonly applied calibration errors are the expected calibration error (ECE)
and the maximum calibration error (MCE) [16].

Concretely, in the left-bottom plot, DP-SGLD has low red (class 3) and
brown (class 5) bins on the left-most cluster, meaning it will predict 3 or 5.
We see that non-DP BNNs usually predict correctly (with a low red bin in
the left-most cluster), though the posterior probabilities of the correct class
are different across three BNNs. Obviously, DP changes the empirical posterior
probabilities significantly in distinct ways. First, all DP-BNNs are prone to make
mistakes in prediction, e.g. both DP-SGLD and DP-BBP tend to predict class
5. In fact, DP-SGLD are equally likely to predict class 3 and 5 yet DP-BBP
seldom predicts class 3 anymore, when DP is enforced. Additionally, DP-SGLD
is less confident about its mistake compared to DP-BBP. This is indicated by
the small x-coordinate of the right-most bins, and implies that DP-SGLD can be
more calibrated, as discussed in the next paragraph. For MC Dropout, DP also
reduces the confidence in predicting class 3 but the mistaken prediction spreads
over several classes. Hence the quality of uncertainty quantification provided by
DP-MC Dropout lies between that by DP-SGLD and DP-BBP.

Ideally, a reliable classifier should be calibrated in the sense that the accuracy
matches the confidence. When a model is highly confident in its prediction yet it
is not accurate, such classifier is over-confident; otherwise it is under-confident. It
is well-known that the regular NNs are over-confident [16,25] and (non-DP) BNNs
are more calibrated [24]. In Table 2 and Table 4, we again test the two-layer MLP
and four-layer CNN on MNIST, with or without Gaussian prior under DP-BNNs
regime. Notice that in the BNN regime, training with weight decay is equivalent
to adopting a Gaussian prior, while training without weight decay is equivalent
to using a non-informative prior.

On MLP, the Gaussian prior (or weight decay) significantly improves the
MCE, in the non-DP regime and furthermore in the DP regime (see Figure 8).
However, on CNN, while the Gaussian prior helps in the non-DP regime, this
may not hold true in the DP regime. For both neural network structures, DP
exacerbates the mis-calibration: leading to worse MCE when the non-informative
prior is used. See lower panel of Figure 8 and Figure 9. However, this is usually
not the case when DP is guaranteed under the Gaussian prior. Additionally,
BNNs often enjoy smaller MCE than the regular MLP but may have larger MCE
than the regular CNN. In the case of SGLD, the effect of DP-BNN and prior
distribution is visualized in Figure 3.

3 Within each cluster, the bins can interchange the ordering. Thus the bin’s x-coordinate
is not meaningful and only the cluster’s x-coordinate represents the prediction
probability.

5. EXPERIMENTS 13

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy DP→

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy BNN−→

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy prior−→

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Fig. 3: Reliability diagram on MNIST with two-layer MLP, using SGD, DP-SGD
and DP-SGLD (right two).
Table 2: Calibration errors of SGLD, BBP, MC Dropout, SGD, and their DP
counterparts on MNIST with two-layer MLP, with or without Gaussian prior.

Methods DP-ECE DP-MCE Non-DP ECE Non-DP MCE
BBP (w/ prior) 0.204 0.641 0.024 0.052
BBP (w/o prior) 0.167 0.141 0.166 0.166
SGLD (w/ prior) 0.007 0.175 0.035 0.175
SGLD (w/o prior) 0.126 0.465 0.008 0.289

MC Dropout (w/ prior) 0.008 0.080 0.030 0.041
MC Dropout (w/o prior) 0.078 0.225 0.002 0.725

SGD (w/ prior) 0.013 0.089 0.016 0.139
SGD (w/o prior) 0.106 0.625 0.005 0.299

5.2 Heteroscedastic synthetic data regression

4 2 0 2 4
x

4

2

0

2

4

6

y

4 2 0 2 4
x

4

2

0

2

4

6

y

4 2 0 2 4
x

4

2

0

2

4

6

y

4 2 0 2 4
x

4

2

0

2

4

6

y

4 2 0 2 4
x

4

2

0

2

4

6

y

4 2 0 2 4
x

4

2

0

2

4

6

y

Fig. 4: Prediction uncertainty on heteroscedasticity re-
gression with Gaussian priors. Left to right: SGLD, BBP,
MC Dropout. Upper: non-DP BNNs. Lower: DP-BNNs.
Orange region refers to the posterior uncertainty. Blue
region refers to the data uncertainty. Black line is the
mean prediction.

Table 3: Mean square
error of heteroscedas-
ticity regression with
Gaussian prior. The
reported error is the
median over 20 inde-
pendent simulations.

Methods DP Non-DP
SGLD 0.510 0.523
BBP 1.276 0.562
MC

Dropout 0.682 0.591

We compare the prediction uncertainty of BNNs on the heteroscedastic data
generated from Gaussian process (see details in Appendix C). Here, the prediction
uncertainty for each data point is estimated by the empirical posterior over 1000

14 Zhang, Bu, et al.

predictions. Specifically, the prediction uncertainty can be decomposed into the
posterior uncertainty (also called epistemic uncertainty, the blue region) and the
data uncertainty (also called aleatoric uncertainty, the orange region), whose
mathematical formulation is delayed in Appendix C. In Figure 4, all three non-DP
BNNs (upper panel) characterize similar prediction uncertainty, regarded as the
ground truth.

In our experiments, we train all BNNs with DP-GD for 200 epochs and noise
multiplier such that the DP is ε = 4.21, δ = 1/250. As shown in Table 3, SGLD
is surprisingly accurate in both DP and non-DP scenarios while BBP and MC
Dropout suffer notably from DP, even though their non-DP versions are accurate.

Clearly, the prediction uncertainty of SGLD and BBP are barely affected
by DP; additionally, given that DP-SGLD has much better mean squared er-
ror, this experiment confirms that DP-SGLD is more desirable for uncertainty
quantification with DP guarantee. Unfortunately, for MC Dropout, DP leads to
substantially greater posterior uncertainty and unstable mean prediction. The
resulting wide out-of-sample predictive intervals provide little information.

6 Discussion

This work proposes three DP-BNNs, namely DP-SGLD, DP-BBP and DP-MC
Dropout, to both quantify the model uncertainty and guarantee the privacy in
deep learning. Our work also provides valuable insights about the connection
between DP-SGLD, a method often applied in the Bayesian settings, and DP-
SGD, which is widely used without the consideration of Bayesian inference. This
connection reveals novel findings about the impact of training hyperparameters
on DP-SGLD, e.g. larger batch size enhances the privacy. All three DP-BNNs
are evaluated through multiple metrics and demonstrate their advantages and
limitations, supported by both theoretical and empirical analyses. For instance, as
a sampling method, DP-SGLD outperforms the optimization methods, DP-BBP
and DP-MC Dropout, on classification and regression tasks, at little expense
of performance in comparison to the non-Bayesian or non-DP counterparts.
However, DP-SGLD requires a possibly long period of burn-in to converge and
its uncertainty quantification requires storing hundreds of weights, making the
method less scalable.

For future directions, it is of interest to extend the connection between DP-
SGD and DP-SGLD to a more general class, i.e. DP-SG-MCMC. Particularly, the
convergence and generalization behaviors of DP-BNNs needs more investigation,
similar to the analysis of different DP linear regression [32].

Acknowledgment

This research was supported by the NIH grants RF1AG063481 and R01GM124111.

6. DISCUSSION 15

References

1. Abadi, M., Chu, A., Goodfellow, I., McMahan, H.B., Mironov, I., Talwar, K.,
Zhang, L.: Deep learning with differential privacy. In: Proceedings of the 2016 ACM
SIGSAC conference on computer and communications security. pp. 308–318 (2016)

2. Asoodeh, S., Liao, J., Calmon, F.P., Kosut, O., Sankar, L.: A better bound gives
a hundred rounds: Enhanced privacy guarantees via f-divergences. In: 2020 IEEE
International Symposium on Information Theory (ISIT). pp. 920–925. IEEE (2020)

3. Balle, B., Barthe, G., Gaboardi, M.: Privacy amplification by subsampling: Tight
analyses via couplings and divergences. arXiv preprint arXiv:1807.01647 (2018)

4. Blundell, C., Cornebise, J., Kavukcuoglu, K., Wierstra, D.: Weight uncertainty in
neural network. In: International Conference on Machine Learning. pp. 1613–1622.
PMLR (2015)

5. Bu, Z., Dong, J., Long, Q., Su, W.J.: Deep learning with gaussian differential
privacy. Harvard data science review 2020(23) (2020)

6. Bu, Z., Gopi, S., Kulkarni, J., Lee, Y.T., Shen, J.H., Tantipongpipat, U.: Fast
and memory efficient differentially private-sgd via jl projections. arXiv preprint
arXiv:2102.03013 (2021)

7. Buntine, W.L.: Bayesian backpropagation. Complex systems 5, 603–643 (1991)
8. Cadwalladr, C., Graham-Harrison, E.: Revealed: 50 million facebook profiles har-

vested for cambridge analytica in major data breach. The guardian 17, 22 (2018)
9. Canonne, C., Kamath, G., Steinke, T.: The discrete gaussian for differential privacy.

arXiv preprint arXiv:2004.00010 (2020)
10. Dong, J., Roth, A., Su, W.J.: Gaussian differential privacy. arXiv preprint

arXiv:1905.02383 (2019)
11. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in

private data analysis. In: Theory of cryptography conference. pp. 265–284. Springer
(2006)

12. Dwork, C., Roth, A., et al.: The algorithmic foundations of differential privacy.
Foundations and Trends in Theoretical Computer Science 9(3-4), 211–407 (2014)

13. Gal, Y., Ghahramani, Z.: Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. In: international conference on machine learning. pp.
1050–1059. PMLR (2016)

14. Goodfellow, I.: Efficient per-example gradient computations. arXiv preprint
arXiv:1510.01799 (2015)

15. Graves, A.: Practical variational inference for neural networks. Advances in neural
information processing systems 24 (2011)

16. Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neural
networks. In: International Conference on Machine Learning. pp. 1321–1330. PMLR
(2017)

17. Kasiviswanathan, S.P., Lee, H.K., Nissim, K., Raskhodnikova, S., Smith, A.: What
can we learn privately? SIAM Journal on Computing 40(3), 793–826 (2011)

18. Koskela, A., Jälkö, J., Honkela, A.: Computing tight differential privacy guarantees
using fft. In: International Conference on Artificial Intelligence and Statistics. pp.
2560–2569. PMLR (2020)

19. Kuleshov, V., Fenner, N., Ermon, S.: Accurate uncertainties for deep learning
using calibrated regression. In: International Conference on Machine Learning. pp.
2796–2804. PMLR (2018)

20. Li, B., Chen, C., Liu, H., Carin, L.: On connecting stochastic gradient mcmc and
differential privacy. In: The 22nd International Conference on Artificial Intelligence
and Statistics. pp. 557–566. PMLR (2019)

16 Zhang, Bu, et al.

21. Li, C., Chen, C., Carlson, D., Carin, L.: Preconditioned stochastic gradient langevin
dynamics for deep neural networks. In: Proceedings of the AAAI Conference on
Artificial Intelligence. vol. 30 (2016)

22. MacKay, D.J.: A practical bayesian framework for backpropagation networks. Neural
computation 4(3), 448–472 (1992)

23. MacKay, D.J.: Probable networks and plausible predictions—a review of practical
bayesian methods for supervised neural networks. Network: computation in neural
systems 6(3), 469–505 (1995)

24. Maroñas, J., Paredes, R., Ramos, D.: Calibration of deep probabilistic models with
decoupled bayesian neural networks. Neurocomputing 407, 194–205 (2020)

25. Minderer, M., Djolonga, J., Romijnders, R., Hubis, F., Zhai, X., Houlsby, N., Tran,
D., Lucic, M.: Revisiting the calibration of modern neural networks. arXiv preprint
arXiv:2106.07998 (2021)

26. Mironov, I., Talwar, K., Zhang, L.: R\’enyi differential privacy of the sampled
gaussian mechanism. arXiv preprint arXiv:1908.10530 (2019)

27. Neal, R.M.: Bayesian learning for neural networks, vol. 118. Springer Science &
Business Media (2012)

28. Niculescu-Mizil, A., Caruana, R.: Predicting good probabilities with supervised
learning. In: Proceedings of the 22nd international conference on Machine learning.
pp. 625–632 (2005)

29. Rochette, G., Manoel, A., Tramel, E.W.: Efficient per-example gradient computa-
tions in convolutional neural networks. arXiv preprint arXiv:1912.06015 (2019)

30. Ryffel, T., Trask, A., Dahl, M., Wagner, B., Mancuso, J., Rueckert, D., Passerat-
Palmbach, J.: A generic framework for privacy preserving deep learning. arXiv
preprint arXiv:1811.04017 (2018)

31. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout:
a simple way to prevent neural networks from overfitting. The journal of machine
learning research 15(1), 1929–1958 (2014)

32. Wang, Y.X.: Revisiting differentially private linear regression: optimal and adaptive
prediction & estimation in unbounded domain. arXiv preprint arXiv:1803.02596
(2018)

33. Wang, Y.X., Balle, B., Kasiviswanathan, S.P.: Subsampled rényi differential privacy
and analytical moments accountant. In: The 22nd International Conference on
Artificial Intelligence and Statistics. pp. 1226–1235. PMLR (2019)

34. Wang, Y.X., Fienberg, S., Smola, A.: Privacy for free: Posterior sampling and
stochastic gradient monte carlo. In: International Conference on Machine Learning.
pp. 2493–2502. PMLR (2015)

35. Welling, M., Teh, Y.W.: Bayesian learning via stochastic gradient langevin dynamics.
In: Proceedings of the 28th international conference on machine learning (ICML-11).
pp. 681–688. Citeseer (2011)

36. Xiong, H.Y., Barash, Y., Frey, B.J.: Bayesian prediction of tissue-regulated splicing
using rna sequence and cellular context. Bioinformatics 27(18), 2554–2562 (2011)

37. Zeiler, M.D., Fergus, R.: Stochastic pooling for regularization of deep convolutional
neural networks. arXiv preprint arXiv:1301.3557 (2013)

38. Zhang, Z., Rubinstein, B., Dimitrakakis, C.: On the differential privacy of bayesian
inference. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 30
(2016)

	Differentially Private Bayesian Neural Networks on Accuracy, Privacy and Reliability

