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Abstract. Optimal transport is a machine learning problem with ap-
plications including distribution comparison, feature selection, and gen-
erative adversarial networks. In this paper, we propose feature-robust
optimal transport (FROT) for high-dimensional data, which solves high-
dimensional OT problems using feature selection to avoid the curse of
dimensionality. Specifically, we find a transport plan with discriminative
features. To this end, we formulate the FROT problem as a min—max op-
timization problem. We then propose a convex formulation of the FROT
problem and solve it using a Frank—Wolfe-based optimization algorithm,
whereby the subproblem can be efficiently solved using the Sinkhorn al-
gorithm. Since FROT finds the transport plan from selected features, it
is robust to noise features. To show the effectiveness of FROT, we pro-
pose using the FROT algorithm for the layer selection problem in deep
neural networks for semantic correspondence. By conducting synthetic
and benchmark experiments, we demonstrate that the proposed method
can find a strong correspondence by determining important layers. We
show that the FROT algorithm achieves state-of-the-art performance
in real-world semantic correspondence datasets. Code can be found at
https://github.com/Mathux/FROT

Keywords: Optimal transport - Feature selection

1 Introduction

Optimal transport (OT) is a machine learning problem with several applications
in the computer vision and natural language processing communities. The ap-
plications include Wasserstein distance estimation (Peyré et al., 2019), domain
adaptation (Yan et al., 2018), multitask learning (Janati et al., 2019), barycen-
ter estimation (Cuturi and Doucet, 2014), semantic correspondence (Liu et al.,
2020), feature matching (Sarlin et al., 2020), and photo album summarization
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(Liu et al., 2021). The OT problem is extensively studied in the computer vi-
sion community as the earth mover’s distance (EMD) (Rubner et al., 2000).
However, the computational cost of EMD is cubic and highly expensive. Re-
cently, the entropic regularized EMD problem was proposed; this problem can
be solved using the Sinkhorn algorithm with a quadratic cost (Cuturi, 2013).
Owing to the development of the Sinkhorn algorithm, researchers have replaced
the EMD computation with its regularized counterparts. However, the optimal
transport problem for high-dimensional data has remained unsolved for many
years.

Recently, a robust variant of the OT was proposed for high-dimensional OT
problems and used for divergence estimation (Paty and Cuturi, 2019, 2020). In
the robust OT framework, the transport plan is computed with the discrimina-
tive subspace of the two data matrices X € R*™ and Y € R%*™. The subspace
can be obtained using dimensionality reduction. An advantage of the subspace
robust approach is that it does not require prior information about the sub-
space. However, given prior information such as feature groups, we can consider
a computationally efficient formulation. The computation of the subspace can
be expensive if the dimensionality of data is high (e.g., 10%).

One of the most common prior information items is a feature group. The
use of group features is popular in feature selection problems in the biomedical
domain and has been extensively studied in Group Lasso (Yuan and Lin, 2006).
The key idea of Group Lasso is to prespecify the group variables and select the
set of group variables using the group norm (also known as the sum of ¢5 norms).
For example, if we use a pretrained neural network as a feature extractor and
compute OT using the features, then we require careful selection of important
layers to compute OT. Specifically, each layer output is regarded as a grouped
input. Therefore, using a feature group as prior information is a natural setup
and is important for considering OT for deep neural networks (DNNs).

In this paper, we propose a high-dimensional optimal transport method by
utilizing prior information in the form of grouped features. Specifically, we pro-
pose a feature-robust optimal transport (FROT) problem, for which we select
distinct group feature sets to estimate a transport plan instead of determin-
ing its distinct subsets, as proposed in (Paty and Cuturi, 2019, 2020). To this
end, we formulate the FROT problem as a min—max optimization problem and
transform it into a convex optimization problem, which can be accurately solved
using the Frank—Wolfe algorithm (Frank and Wolfe, 1956; Jaggi, 2013). The
FROT’s subproblem can be efficiently solved using the Sinkhorn algorithm (Cu-
turi, 2013). An advantage of FROT is that it can yield a transport plan from
high-dimensional data using feature selection, using which the significance of the
features is obtained without any additional cost. Therefore, the FROT formula-
tion is highly suited for high-dimensional OT problems. Moreover, we show the
connection between FROT and the L1 regularized OT problem; this result sup-
ports the ability of FROT to select features and robustness of FROT. Through
synthetic experiments, we initially demonstrate that the proposed FROT is ro-
bust to noise dimensions (See Figure 1). Furthermore, we apply FROT to a
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Fig. 1: Transport plans between two synthetic distributions with 10-dimensional

vectors £ = (z',2] )", ¥ = (y',2))", where two-dimensional vectors & ~

N(pz, X;) and y ~ N(py, Xy) arey true features; and z, ~ N(Og,Is) and
zy ~ N(0g, I3) are noisy features. (a) OT between distribution « and y is a
reference. (b) OT between distribution & and y. (¢) FROT transport plan be-
tween distribution & and y where true features and noisy features are grouped,

respectively.

semantic correspondence problem (Liu et al., 2020) and show that the proposed
algorithm achieves SOTA performance.
Contribution:

— We propose a feature robust optimal transport (FROT) problem and derive a
simple and efficient Frank—Wolfe based algorithm. Furthermore, we propose
a feature-robust Wasserstein distance (FRWD).

— We show the connection between FROT and the L1 regularized OT problem;
this result supports the ability of FROT to select features and robustness of
FROT.

— We apply FROT to a high-dimensional feature selection problem and show
that FROT is consistent with the Wasserstein distance-based feature selec-
tion algorithm with less computational cost than the original algorithm.

— We used FROT for the layer selection problem in a semantic correspondence
problem and showed that the proposed algorithm outperforms existing base-
line algorithms.

2 Background

In this section, we briefly introduce the OT problem.

Optimal transport (OT): The following are given: independent and identi-
cally distributed (i.i.d.) samples X = {x;}7, € R¥™™" from a d-dimensional
distribution p, and i.i.d. samples Y = {y;}7-, € R*"™ from the d-dimensional
distribution ¢. In the Kantorovich relaxation of OT, admissible couplings are
defined by the set of the transport plan:

U(p,v)={IT e R : I1,, =a,IT"1, = b},
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where IT € R’_ﬁxm is called the transport plan, 1,, is the n-dimensional vector

whose elements are ones, and @ = (ay,as, ..., a,)' € R% and b = (b1, b2, ..., by )"

R are the weights. The OT problem between two discrete measures p =
Yo a0z, and v = Z] 1 bj6y, determines the optimal transport plan of the
following problem:

i 1
HEH[}I(I; ») ZZW” ‘Buy] ( )

=1 j=1

where c(x,y) is a cost function. For example, the squared Euclidean distance is
used, that is, ¢(z, y) = ||* — y||3. To solve the OT problem, Eq. (1) (also known
as the earth mover’s distance) using linear programming requires O(n?), (n = m)
computation, which is computationally expensive. To address this, an entropic-
regularized optimal transport is used (Cuturi, 2013).

n m

min ) Zzﬂ'ijc(mi»yj) —eH(IT),

IeU(p,
€U (nv i=1 j=1

where ¢ > 0 is the regularization parameter, and H(II) =
—> iy 2oy mij(log(mi;) — 1) is the entropic regularization. If ¢ = 0,
then the regularized OT problem reduces to the EMD problem. Owing to
entropic regularization, the entropic regularized OT problem can be accurately
solved using Sinkhorn iteration (Cuturi, 2013) with a O(nm) computational
cost (See Algorithm 2 in the supplementary material.).

Wasserstein distance: If the cost function is defined as c(z,y) = d(x,y)
with d(x,y) as a distance function and p > 1, then we define the p-Wasserstein
distance of two discrete measures p = Y_" | a;05, and v = Y77 | bjdy, as

1/p

Wp(p,v) = Hergl(rllt ) Z; 3221 mij (@i, y;)"

Recently, a robust variant of the Wasserstein distance, called the subspace
robust Wasserstein distance (SRW), was proposed (Paty and Cuturi, 2019). The
SRW computes the OT problem in the discriminative subspace. This can be
determined by solving dimensionality-reduction problems. Owing to the robust-
ness, it can compute the Wasserstein from noisy data. The SRW is given as

1

2

_ T T
SRW (1, v) = HE%IEV)UE@&ZZMHU o —U'yl3| |

where U is the orthonormal matrix with £ < d, and I € R¥*F ig the identity
matrix. The SRW or its relaxed problem can be efficiently estimated using either
eigenvalue decomposition or the Frank—Wolfe algorithm.

€
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3 Proposed Method

This paper proposes FROT. We assume that the vectors are grouped as ¢ =
(m(l)T, e 7$(L)T)T and y = (y(l)T, .. .,y(L)T)T. Here, () € R%* and y© €
R% are the d; dimensional vectors, where ZeL=1 dy = d. This setting is useful
if we know the explicit group structure for the feature vectors a priori. In an
application in L-layer neural networks, we consider (¥ and y® as outputs of
the fth layer of the network. If we do not have a priori information, we can
consider each feature independently (i.e., dy = ds = ... =d; =1 and L = d).
All proofs in this section are provided in the the supplementary material.

3.1 Feature-Robust Optimal Transport (FROT)
The FROT formulation is given by

FROT(p,v) = min  max ZZW”Zagc - ,yj ) (2)

ITeU (p,v) ae XL
i=1 j=1

where ¥* = {a € RY : @1, = 1} is the probability simplex. The underlying
concept of FROT is to estimate the transport plan IT using distinct groups
with large distances between {wgf)}? and {y(e)}’” We note that determining
the transport plan in nondistinct groups is dlfﬁcult because the data(s)amples in

}TL

{:c(é)}" , and {y( )}m 1 overlap. By contrast, in distinct groups, {;1: 1 and

{y] )} * , are different, and this aids in determining an optimal transport plan.
This is an intrinsically similar idea to the subspace robust Wasserstein distance
(Paty and Cuturi, 2019), which estimates the transport plan in the discriminative
subspace, while our approach selects important groups. Therefore, FROT can
be regarded as a feature selection variant of the vanilla OT problem in Eq. (1),
whereas the subspace robust version uses dimensionality-reduction counterparts.

Using FROT, we can define a p-feature robust Wasserstein distance (p-
FRWD).

Proposition 1 For the distance function d(x,vy),

1/p

FRWD, (1, v) = Hergi(rzlt,u) (irelaz"XL ;; Tij Z oyd(x I ’yj ) ) (3)

1s a distance for p > 1.

Note that we can show that FRWDs is a special case of SRW with d(x,y) =
lz—yl|2 (See the supplementary material). Another difference between SRW and
FRWD is that FRWD can use any distance, while SRW can only use d(z,y) =
|z — yl|l2. Moreover, FRWD,, can be regarded as a special case of the min-max
optimal transport (Dhouib et al., 2020). A contribution of this paper is first to
introduce feature selection using min-max optimal transport.
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3.2 FROT Optimization

Here, we propose two FROT algorithms based on the Frank—Wolfe algorithm.
Frank—Wolfe: We propose a continuous variant of the FROT algorithm using
the Frank—Wolfe algorithm, which is fully differentiable. To this end, we intro-
duce entropic regularization for a and rewrite the FROT as a function of IT:

min  max J,(IT,a),
ITeU (p,v) ae Xl

with J Zzﬂ-z] Zafc ayj(@) nH(a)’

i=1 j=1

where 1 > 0 is the regularization parameter, and H (o) = ZeL:1 ay(log(ap)—1) is
the entropic regularization for a. An advantage of entropic regularization is that
the nonnegative constraint is naturally satisfied, and the entropic regularizer is
a strong convex function.

Lemma 2 The optimal solution of the optimization problem

o =argmax J,(IT, o), with J,( Zawﬁz nH (o)
aeXxl —1

with a fized admissible transport plan IT € U(u,v), is given by

1
exp (;@)
L
D pr—1 €Xp (%‘W’

Using Lemma 2 (or Lemma 4 in Nesterov (2005)) with the setting ¢, =
D ey mige(x; (¢ ),yy)) = (I1,Cy), [Cylij = c(=; (¢ ),yl( ), the global problem
is equivalent to

HeI{lII(I;i V)G n(IT) = nlog <Z exp < (7 C(>>> (4)

Note that this is known as a smoothed max-operator (Nesterov, 2005; Blondel
et al., 2018). The regularization parameter 7 controls the “smoothness” of the
maximum. Moreover, a; becomes an one-hot vector if 7 is small; we select only
one feature if we set 7 = 0. In contrast, thanks to the entropic regularization,
o takes non-zero values and we can select multiple features using ;.

*_
=
=1

L
) ,with J,(IT, a™) = nlog (Z exp (;W)) +n

Proposition 3 G, (I) is a convex function relative to II.

The derived optimization problem of FROT is convex. Therefore, we can de-
termine globally optimal solutions. Note that the SRW optimization problem is
not jointly convex (Paty and Cuturi, 2019) for the projection matrix and the
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Algorithm 1 FROT with the Frank—Wolfe.

1: Input: {z;};", {y;}72;, n, and €.
2: Initialize IT, compute {Cy}r_;.

3: fort=0...7T do

4: I = argmin ey ) (I, M) +eH (IT)
5. ITWHD = (1 — )T 4 4IT
6 with v = %ﬂ

7: end for

8: return IT(™)

transport plan. In this study, we employ the Frank—Wolfe algorithm (Frank and
Wolfe, 1956; Jaggi, 2013), using which we approximate G, (IT) with linear func-
tions at IT® and move IT toward the optimal solution in the convex set (See
Algorithm 1).

The derivative of G, (IT) at IT® is given by

Lo , exp (%(H(t), Cg>)
= ag )Cg = M, with ag’) = .
1 Zé/zl exXp (%<H(t)7C[l>)

=
Then, we update the transport plan by solving the EMD problem:

0G,(IT)

T

oY = (1 —4)mI® +7I/Y\, with IT = argmin T, M),
IT€U (p,v)

where v = 2/(2 + k). Note that M« is given by the weighted sum of the cost
matrices. Thus, we can utilize multiple features to estimate the transport plan
IT for the relaxed problem in Eq. (4).

Using the Frank—Wolfe algorithm, we can obtain the optimal solution. How-

ever, solving the EMD problem requires a cubic computational cost that can
be expensive if n and m are large. To address this, we can solve the regular-
ized OT problem, which requires O(nm). We denote the Frank—Wolfe algorithm
with EMD as FW-EMD and the Frank—Wolfe algorithm with Sinkhorn as FW-
Sinkhorn.
Computational complexity: The proposed method depends on the Sinkhorn
algorithm, which requires an O(nm) operation. The computation of the cost
matrix in each subproblem needs an O(Lnm) operation, where L is the number
of groups. Therefore, the entire complexity is O(T Lnm), where T is the number
of Frank—Wolfe iterations (in general, T = 10 is sufficient).

Proposition 4 For each t > 1, the iteration IT™ of Algorithm 1 satisfies

40 maz (P P)

GulIT) = 6T < =

(1+49),
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where ey (®TP) is the largest eigenvalue of the matriv ®'® and & =
(vec(C1),vec(Cs), ...,vec(CL))"; and § > 0 is the accuracy to which internal
linear subproblems are solved.

Based on Proposition 4, the number of iterations depends on 7, €, and the number
of groups. If we set a small ), convergence requires more time. In addition, if we
use entropic regularization with a large e, the § in Proposition 4 can be large.
Finally, if we use more groups, the largest eigenvalue of the matrix &' & can be
larger. Note that the constant term of the upper bound is large; however, the
Frank—Wolfe algorithm converges quickly in practice.

3.3 Connection to L1 regularization

A natural way to select features is to introduce an L1 regularization term for the
feature coeflicient . We prove the set of features selected by Ll-regularized op-
timal transport is the same as that of FROT. Let the standard optimal transport
with feature coefficient o be:

n o m L
_ : B @ 0

Then, the Ll-regularized optimal transport is defined as follows:

L10T(p,v) = max OT(p,v, o) — A|al]z. (5)
acRL

>0

Note that the regularization is negative because this is a maximization problem.
We assume that A\ > FROT(u, v) because otherwise L10T diverges. Let Fp,1 be
the set of features that the L1 regularization selects. We consider a feature is
selected if the corresponding coefficient can take a positive value in the optimal
solution. Specifically, Fr,; is the set of indices f € {1,---,L} such that there
exists a such that ay > 0 and «a takes the optimum value in Eq. (5). Similarly,
let FrroT be the set of selected features by FROT. To be precise, Frrot is the
set of indices f € {1,---, L} such that there exists IT and « such that ay >0
and (IT, ) takes the optimum value in Eq. (2).

Theorem 5 Frror = Fri when A = FROT(u,v).

In other words, FROT and L1 regularization select the same set of features.
This result supports the ability of FROT to select features and robustness of
FROT.

3.4 Connection to Subspace Robust Wasserstein

Here, we show that 2-FRWD with d(x,y) = || — y||2 is a special case of SRW.
Let us define U = (\/aqe1,/azes, ..., /ageq)' € R4 where e, € RY is the
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one-hot vector whose fth element is 1 and a"1 = 1, oy > 0. Then, the objective
function of SRW can be written as

n

EthaMﬂm—U*wﬁ:EjE)m —y;) " diag(a)(z; — y;)

i=1 j=1 =1 j=1

_ZZTFUZOM 0 ))2.

=1 j=1

Therefore, SRW and 2-FRWD are equivalent if we set U =
(Varer, Jases, ..., \/ageq) and d(x,y) = ||z — yl|2.

3.5 Application: Semantic Correspondence

We applied our proposed FROT algorithm to semantic correspondence. The
semantic correspondence is a problem that determines the matching of objects
in two images. That is, given input image pairs (A, B), with common objects,
we formulated the semantic correspondence problem to estimate the transport
plan from the key points in A to those in B; this framework was proposed in
(Liu et al., 2020). In Figure 2, we show an overview of our proposed framework.
Cost matrix computation C;: We employed a pretrained convolutional neural
network to extract dense feature maps for each convolutional layer. The dense
feature map of the fth layer output of the sth image is given by

fs(eqj-(r 1)hs € Rdz’ S [[hs]],T € [[wS]LE € IIL]L
where [L] = {1,2,..., L}, ws and h, are the width and height of the sth image,
respectively, and dy is the dimension of the ¢th layer’s feature map. Note that
because the dimension of the dense feature map is different for each layer, we
sample feature maps to the size of the 1st layer’s feature map size (i.e., hs X wy).
The ¢th layer’s cost matrix for images s and s’ is given by

[Cdiy = 1£7 — 717713, i € [wshi], j € [wyhy].

A potential problem with FROT is that the estimation depends significantly
on the magnitude of the cost of each layer (also known as a group). Hence,
normalizing each cost matrix is important. Therefore, we normalized each feature

vector by fi(e’s) — f,i(e’s) / fi(é’s)Hg. Consequently, the cost matrix is given by

T /
[Cg]ij =2 in(f,s) f;e’s ). We can use distances such as the L1 distance.

Computation of a and b with staircase re-weighting: Setting a € R/s™s
and b € R"'"s is important because semantic correspondence can be affected
by background clutter. Therefore, we generated the class activation maps (Zhou
et al., 2016) for the source and target images and used them as a and b, respec-
tively. For CAM, we chose the class with the highest classification probability
and normalized it to the range [0, 1].
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Feature Robust Optimal Transport (FROT)

i) ¢
(o B9 %} )

Target image CAM

Fig. 2: Semantic correspondence framework based on FROT.

3.6 Application: Feature Selection

Since FROT finds the transport plan and discriminative features between X and
Y, we can use FROT as a feature-selection method. We considered X € R¢x"
and Y € RX™ as sets of samples from classes 1 and 2, respectively. The optimal
feature importance is given by

_ew(pmmen) o -
ap = — = , with IT = argmin 7log Zexp —(I1,Cy) ) |,
Zé’:l exp <5<H’ Cgl>> ITeU (p,v) (=1 n

where [C(l;; = (ml(-e) - yj(-e))z. Finally, we selected the top K features by the
ranking @. Hence, a changes to a one-hot vector for a small n and to ay =~ %

for a large 7.

4 Related Work

The Wasserstein distance can be determined by solving the OT problem, and
has many applications in NLP and CV such as measuring document similarity
(Kusner et al., 2015; Sato et al., 2022) and finding local feature matching between
images (Sarlin et al., 2020; Liu et al., 2020). An advantage of the Wasserstein
distance is its robustness to noise; moreover, we can obtain the transport plan,
which is useful for many applications. To reduce the computation cost for the
Wasserstein distance, the sliced Wasserstein distance is useful (Kolouri et al.,
2016). Recently, a tree variant of the Wasserstein distance was proposed (Evans
and Matsen, 2012; Le et al., 2019; Sato et al., 2020; Takezawa et al., 2021, 2022);
the sliced Wasserstein distance is a special case of this algorithm.
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Fig.3: (a) Objective scores for LP, FW-EMD, and FW-Sinkhorn. (b) MSE be-
tween transport plan of LP and FW-EMD and that with LP and FW-Sinkhorn
with different 7. (¢) MSE between transport plan of LP and FW-Sinkhorn with
different e.

The approach most closely related to FROT is a robust variant of the Wasser-
stein distance, called the subspace robust Wasserstein distance (SRW) (Paty and
Cuturi, 2019). SRW computes the OT problem in a discriminative subspace; this
is possible by solving dimensionality-reduction problems. Owing to the robust-
ness, SRW can successfully compute the Wasserstein distance from noisy data.
The max-sliced Wasserstein distance (Deshpande et al., 2019) and its general-
ized counterpart (Kolouri et al., 2019) can also be regarded as subspace-robust
Wasserstein methods. Note that SRW (Paty and Cuturi, 2019) is a min-maz
based approach, while the max—sliced Wasserstein distances (Deshpande et al.,
2019; Kolouri et al., 2019) are maz—min approaches. The FROT is a feature
selection variant of the Wasserstein distance, whereas the subspace approaches
are used for dimensionality reduction.

As a parallel work, a general minimax optimal transport problem called the
robust Kantorovich problem (RKP) was recently proposed (Dhouib et al., 2020).
RKP involves using a cutting-set method for a general minmax optimal trans-
port problem that includes the FROT problem as a special case. The approaches
are technically similar. However, we aim to solve a high-dimensional OT problem
using feature selection and apply it to semantic correspondence problems, while
the RKP approach focuses on providing a general framework and uses it for
color transformation problems. As a technical difference, the cutting-set method
may not converge to an optimal solution if we use the regularized OT (Dhouib
et al., 2020). By contrast, because we use a Frank—Wolfe algorithm, our algo-
rithm converges to a true objective function with regularized OT solvers. The
multiobjective optimal transport (MOT) is an approach (Scetbon et al., 2021)
parallel to ours. The key difference between FROT and MOT is that MOT tries
to use the weighted sum of cost functions, while FROT considers the worst case.
Moreover, we focus on the cost matrices computed from subsets of features, while
MOT considers cost matrices with different distance functions.
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5 Experiments

In this section, we evaluate the FROT algorithm using synthetic and real-world
datasets.

5.1 Synthetic Data

We compare FROT with a standard OT using synthetic datasets. In these ex-
periments, we initially generate two-dimensional vectors @ ~ N(u., X,) and
y ~ N(py,%,). Here, we set p, = (5,007, p, = (5,07, ¥, = ¥, =
((5,1)7,(4,1)T). Then, we concatenate z, ~ N(0g,Is) and 2z, ~ N(0g,Is)
to « and y, respectively, to give z = (z,2] )T, g = (y', z;r)‘r_

For FROT, we set = 1.0, T = 10, and € = 0.02, respectively. To show the
proof-of-concept, we set the true features as a group and the remaining noise
features as another group.

Fig. 1a shows the correspondence from & and y with the vanilla OT al-
gorithm. Figs. 1b and 1lc show the correspondence of FROT and OT with «
and vy, respectively. Although FROT can identify a suitable matching, the OT
fails to obtain a significant correspondence. We observed that the a parameter
corresponding to a true group is a; = 0.9999. Moreover, we compared the ob-
jective scores of the FROT with LP, FW-EMD, and FW-Sinkhorn (¢ = 0.1).
Figure 3a shows the objective scores of FROTs with the different solvers, and
both FW-EMD and FW-Sinkhorn can achieve almost the same objective score
with a relatively small . Moreover, Figure 3b shows the mean squared error be-
tween the LP method and the FW counterparts. Similar to the objective score
cases, it can yield a similar transport plan with a relatively small 5. Finally, we
evaluated the FW-Sinkhorn by changing the regularization parameter 7. In this
experiment, we set 7 = 1 and varied the € values. The result shows that we can
obtain an accurate transport plan with a relatively small e.

5.2 Semantic correspondence

We evaluated our FROT algorithm for semantic correspondence. In this study,
we used the SPair-71k (Min et al., 2019b). The SPair-71k dataset consists of
70,958 image pairs. For evaluation, we employed a percentage of accurate key
points (PCK), which counts the number of accurately predicted key points given
a fixed threshold (Min et al., 2019b). All semantic correspondence experiments
were run on a Linux server with NVIDIA P100.

For the optimal transport based frameworks, we employed ResNet101 (He
et al., 2016) pretrained on ImageNet (Deng et al., 2009) for feature and activation
map extraction. The ResNet101 consists of 34 convolutional layers and the entire
number of features is d = 32, 576. Note that we did not fine-tune the network. We
compared the proposed method with several baselines (Min et al., 2019b) and the
SRW Paty and Cuturi (2019). Owing to the computational cost and the required
memory size for SRW, we used the first and the last few convolutional layers of
ResNet101 as the input of SRW. In our experiments, we empirically set T = 3
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0.1) results using SPair-71k. All models use
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ResNet101. The numbers in the bracket of SRW are the input layer indicies.

Table 1: Per-class PCK (appor
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and € = 0.1 for FROT and SRW, respectively. For SRW, we set the number of
latent dimension as k = 50 for all experiments. HPF (Min et al., 2019a) and OT-
HPF (Liu et al., 2020) are state-of-the-art methods for semantic correspondence.
HPF and OT-HPF required the validation dataset to select important layers,
whereas SRW and FROT did not require the validation dataset. OT is a simple
Sinkhorn-based method that does not select layers.

Table 1 lists the per-class PCK results obtained using the SPair-71k dataset.
FROT (n = 0.3) outperforms most existing baselines, including HPF and OT.
Moreover, FROT (n = 0.3) is consistent with OT-HPF (Liu et al., 2020), which
requires the validation dataset to select important layers. In this experiment,
setting 7 < 1 results in favorable performance (See Table 2 in the supplementary
material). The computational costs of FROT is 0.29, while SRWs are 8.73, 11.73,
15.76, respectively. Surprisingly, FROT outperformed SRWs. However, this is
mainly due to the used input layers.

We further evaluated FROT by tuning hyperparameters n and € using val-
idation sets, where the maximum search ranges for n and e are set to 0.2 to
2.0 and 0.1 to 0.6 with intervals of 0.1, respectively. By using hyperparameter
search, we selected (n = 0.2,¢ = 0.4) as an optimal parameter. The FROT with
optimal parameters outperforms the state-of-the-art method (Liu et al., 2020).

5.3 Feature Selection Experiments

Here, we compared FROT with several baseline algorithms in terms of solving
feature-selection problems. In this study, we employed a high-dimensional and
a few sample datasets with two class classification tasks (see Table 3 in the
supplementary material). All feature selection experiments were run on a Linux
server with an Intel Xeon CPU E7-8890 v4 with 2.20 GHz and 2 TB RAM.

In our experiments, we initially randomly split the data into two sets (75%
for training and 25% for testing) and used the training set for feature selection
and building a classifier. Note that we standardized each feature using the train-
ing set. Then, we used the remaining set for the test. The trial was repeated
50 times, and we considered the averaged classification accuracy for all trials.
Considered as baseline methods, we computed the Wasserstein distance, maxi-
mum mean discrepancy (MMD) (Gretton et al., 2007), and linear correlation®
for each dimension and sorted them in descending order. Note that the Wasser-
stein distance is computed via sorting, which is computationally more efficient
than the Sinkhorn algorithm when d = 1. Then, we selected the top K features
as important features. For FROT, we computed the feature importance and se-
lected the features that had significant importance scores. In our experiments,
we set 7 = 1.0 and 7' = 10. Then, we trained a two-class SVM7 with the selected
features.

Fig. 4 shows the average classification accuracy relative to the number of
selected features. From Figure 4, FROT is consistent with the Wasserstein

5 https://scikit-learn.org/stable/modules/feature_selection.html
" https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
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Fig. 4: Feature selection results. We average over 50 runs of accuracy (on test
set) of SVM trained with top k features selected by several methods.

distance-based feature selection and outperforms the linear correlation method
and the MMD for two datasets. Table 3 in the supplementary file shows the
computational time(s) of the methods. FROT is about two orders of magni-
tude faster than the Wasserstein distance and is also faster than MMD. Note
that although MMD is as fast as the proposed method, it cannot determine the
correspondence between samples.

6 Conclusion

In this paper, we proposed FROT for high-dimensional data. This approach
jointly solves feature selection and OT problems. An advantage of FROT is
that it is a convex optimization problem and can determine an accurate glob-
ally optimal solution using the Frank—Wolfe algorithm. We used FROT for fea-
ture selection and semantic correspondence problems. Through experiments, we
demonstrated that the proposed algorithm is consistent with state-of-the-art
algorithms in both feature selection and semantic correspondence.
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