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Abstract. Knowledge Graphs (KGs) have been applied to many down-
stream applications such as semantic web, recommender systems, and
natural language processing. Previous research on Knowledge Graph
Completion (KGC) usually requires a large number of training instances
for each relation. However, considering the accelerated growth of on-
line information, there can be some relations that do not have enough
training examples. In fact, in most real-world knowledge graph datasets,
instance frequency obeys a long-tail distribution. Existing knowledge
embedding approaches suffer from the lack of training instances. One
approach to alleviating this issue is to incorporate few-shot learning. De-
spite the progress they bring, they sorely depend on entities’ local graph
structure and ignore the multi-modal contexts, which could make up for
the lack of training information in the few-shot scenario. To this end,
we propose a multi-modal few-shot relational learning framework, which
utilizes the entities’ multi-modal contexts to connect few instances to the
knowledge graphs. For the first stage, we encode entities’ images, text
descriptions, and neighborhoods to acquire well-learned entity represen-
tations. In the second stage, our framework learns a matching metric to
match the query triples with few-shot reference examples. The experi-
mental results on two newly constructed datasets show the superiority
of our framework against various baselines.

Keywords: Few-shot learning - Meta-learning - Knowledge graphs - At-
tention aggregation function - Multi-modal contexts

1 Introduction

Knowledge Graphs (KGs) encode structured information of entities and their
relations in the form of triples (h, 7, t), where h represents some head entity and
r represents some relation that connects h to some tail entity ¢. For example,
a statement like “Isaac Newton worked at the University of Cambridge” can be
represented as (Isaac Newton, Work location, University of Cambridge). KGs
are the key components of various practical applications such as visual trans-
fer learning [19], recommender systems [33] and so on. Despite their usefulness
and popularity, KGs are often highly incomplete. Extensive research, termed as
knowledge embedding [2,30,25], has made great progress in automatically com-
pleting missing links in KGs.
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Fig.1: (a) The distribution of relation frequencies in FB15K. (b) An example of multi-
modal contexts of KGs: The left presents the images and textual descriptions of the
entities in the triple (Issac Newton, Work location, University of Cambridge); The right
presents the one-hop graph structure of the entity Issac Newton.

However, research on Knowledge Graph Completion (KGC) for KGs usually
assume that sufficient training examples for each relation are available and can-
not cope with few-shot relations. In the real world, the KGs evolve quickly with
new entities and relations being added by the second and some new relations
may not have enough training examples. Even in the classic knowledge graph
FB15K, long-tail relations (few-shot relations), which have very few training
triples, are actually very common as shown in Figure 1 (a). To be more specific,
FB15K contains 1345 relations and about 0.6 million instances, but over 36% of
these relations contain no more than 10 instances.

There are also some few-shot learning methods, such as GMatching [38] and
FAAN [21], concentrating on alleviating the challenge of the lack of training
examples for the long-tail relations. These models aim at predicting new links
given only few training triples in a meta-learning scenario. Their main ideas
are devising a neighbor encoder to acquire well-represented entities from the
neighbors, and then represent few-shot relations with the learned entities. One
of the key challenges is to learn the accurate entity representations with very
few training information available.

While the few-shot learning models focus on developing various complicated
algorithms, they depend on limited training information sorely from the entities’
neighborhoods and ignore other crucial multi-modal contexts widely existing in
KGs and Freebase [1], such as images and the text descriptions. As Figure 1
(b) shows, these additional multi-modal contexts contain abundant information,
which could be helpful during training and make up for the lack of training
information in the few-shot scenario.

With the aforementioned statements, we go back to the original KGs, and
extract the entities’ images, text descriptions and neighborhoods as additional vi-
sual, textual and topological information respectively. To predict new links with
only few-shot given instances, we propose a MULTI-modal Few-shOt Relational
learning fraMework (MULTIFORM). In contrast to previous few-shot learning
models sorely depending on entities’ neighborhoods, MULTIFORM is able to
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Fig. 2: Multi-modal context encoder for entities: (a) Image encoder; (b) Text encoder;
(c¢) Neighbor encoder; (d) Multi-modal embedding fusion model.

benefit from all multi-modal contexts. MULTIFORM consists of a multi-modal
context encoder and a metric learning module. The multi-modal context encoder
produces well-learned representations of entities via multi-modal contexts. We
separately encode image embedding, text descriptions and one-hop neighbors
of entities and leverage an ensemble function to produce new accurate embed-
dings containing multi-modal information of entities. Our metric learning module
aims at learning a matching function that can be used to discover more similar
triples given few-shot reference triples. With two newly constructed datasets,
i.e., MM-FB15K and MM-DBpedia, we show that our model can achieve consis-
tent improvements over various state-of-the-art baselines on the few-shot KGC
task. In summary, the present work makes the following contributions:

e As far as we know, this paper is the first to study few-shot KGC tasks with
multi-modal contexts. We design three encoders to extract crucial informa-
tion from different multi-modal data.

e We explore the impact of different multi-modal contexts, which is empirically
important but ignored by the previous studies on multi-modal KGs.

e We construct two new datasets MM-FB15K and MM-DBpedia from FB15K
and DBpedia for multi-modal few-shot KGC evaluation. We evaluate our
model in the few-shot scenario and the experimental results show the supe-
riority of our model against various state-of-the-art baselines.

2 Related Work

Here we survey three topics relevant to our research: unimodal knowledge embed-
ding models, multi-modal knowledge embedding models, and few-shot learning.
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2.1 Unimodal Knowledge Embedding Models

Unimodal knowledge embedding models aim at modeling multi-relational data
and automatically inferring missing facts in KGs. Many of them encode both
entities and relations into a continuous low dimensional vector space. RESCAL
[17] utilizes tensor operations to model relations. TransE [2] is a classic work that
encodes both entities and relations into a 1-D vector space. Following this line
of research, more effective models such as DistMult [39], ComplEx [30], ConvE
[5], Rotate [26], and Rot-Pro [25] have been proposed for further improvements.
These embedding-based models heavily rely on extensive collections of training
examples, and they are not qualified to deal with sparse triples, as presented in
[2] and [38].

2.2 Multi-modal Knowledge Embedding Models

Multi-modal knowledge embedding models mainly focus on encoding visual and
structural contexts. IKRL [37] separately trains visual information and struc-
tural information on TransE [2]. Mousselly et al. [15] uses three different en-
semble function, i.e., simple concatenation, DeViSE [8], and Imagined [4] to fuse
multi-modal context embeddings. TransAE [35] utilizes an auto-encoder to inte-
grate them. RSME [34] evaluates different image encoders for multi-modal KGC
and verify the effectiveness of Visual Transformer (ViT), so we adopt ViT as
image encoder in this paper. There are several models [22,36] taking rich text
descriptions into consideration to handle unseen entities.

2.3 Few-Shot Learning

Few-shot learning methods seek to learn novel concepts with only a small number
of labeled examples. Recent deep learning based few-shot learning models can
be classified into three groups. The first group is model-based approaches, which
depend on a specially designed part like memory to quickly optimize the model
parameters given few-shot training examples. MetaNet [16], a typical model-
based approach, learns meta knowledge across tasks and generalizes rapidly via
its fast parameterization. The second group is metric-based approaches, which
try to learn a generalizable metric and the corresponding matching functions
among a set of training examples. For example, prototypical networks [24] classify
each instance by calculating the similarity to prototype representation of each
class, whose idea is similar to some nearest neighbor algorithms. GMatching [38§],
FSRL [40], and FAAN [21] can also be considered as a metric-based approach.
The third group is optimization-based approaches [20,7,13], which aim to learn
faster by changing the optimization methods on few-shot reference instances.
One example is model-agnostic meta-learning (MAML) [7], which first proposed
the framework of updating parameters of a task-specific learner and performing
meta optimization across tasks by using the above updated parameters. MetaR
[3], which transfers relation-specific meta information from support set to query
set, can also be regarded as an optimization-based approach for knowledge graph.
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Previous few-shot learning research mainly focuses on vision [28], sentiment
analysis [12] domains. As for few-shot learning on KGC, Bordes et al. [2] first
realized the number of training examples for each relation in KGs have a great
impact on the accuracy of the embedding model. However, he did not formulate
it as a few-shot learning task. Existing few-shot learning models [38,40,21] on
KGC tasks all sorely depend on local graph structures. In contrast to their
approaches, we intend to leverage visual, textual and topological context to
improve the quality of entity embeddings.

3 Preliminaries

3.1 Task Formulation

Here we give the definition of the few-shot KGC task via multi-modal contexts
as follows:

Definition 1. Given an incomplete KG G = (E,R, T), where E, R and T are
the entity set, relation set, and triple set, respectively, the few-shot KGC task
completes G by finding a set of missing triples T' = {(h,r,t) | (h,r,t) ¢ T, h,t €
E,r € R} when only few-shot entity pairs (h,t) and their multi-modal contexts
are known for each relation r.

In Definition 1, it is also called the K-shot KGC task when K training examples
are given for each relation. In contrast to previous work, which usually assumes
the availability of enough triples for training, this work studies the case where
only few training triples are available. To be more specific, the goal is to rank
the true tail entity higher than other candidate entities, given only K example
triples (hl,r, t;)iKzl for relation r. The candidate set is constructed using the
entity type constraint [29].

3.2 Few-Shot Learning Settings

Following the standard meta-learning pipelines [20,7], we describe the settings for
training and evaluation of our few-shot learning model. We have different sets for
meta-training, meta-validation, and meta testing (Dmeta—train, Dmeta—validation;
and Diyeta test) respectively. Note that none of the above share the same relation
label space. On Deta-train, We are interested in training a learning procedure
(the meta-learner) that can take few examples as input and produce a matching
metric (the learner) that could be used to predict new facts. Using Dieta—validation
we can perform hyper-parameter selection of the meta-learner and evaluate its
generalization performance on D eta test-

More specifically, a Dpeta train corresponding to a certain relation r € R,
consists of support and query triples: D, = {Ds , Dq }. There are K triples in
Dy , for K-shot KGC tasks. Dy = {h;,r, t;, C;m} consists of the query triples
of r with ground-truth tail entities ¢; for each query (h;,r), and the corresponding
tail entity candidates Cj, , = {t;;} where each t;; is an entity in the KGs. Then
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the metric model can be tested on this set by ranking the candidate set Cp, .,
given the test query (h;,r) and the labeled triple in Dy ;. Deta validation and
Dineta—test are composed of Dy , Dq ;. We denote the r_anking loss of relation
r as fy (hi,r, t; | Ch,.ry Ds r), where 0 represents the parameters of our model.
Thus, the objective of model training can be defined as:

69 (h27 T, t’L | Chq‘,ﬂ"? Ds_r)

1
Dy | (1)

rrbinEDT Z

(hi,rti,Chy r)EDg_x

where D, is sampled from the meta-training set Dpeta-train and ‘Dq r‘ denotes
the number of tuples in Dy ..

After sufficient training, we are able to predict facts of each new relation
r" € R'. Due to the assumption of K-shot learning, the relation label space of
the above meta-sets is disjoint with each other, i.e., R N R’ = ¢. Otherwise,
the metric model will actually see more than K-shot labeled data during meta-
testing, thus the few-shot assumption is violated. Finally, we construct a subset
G* from G by removing all relations in Dmetatrain, Dmeta—validation a0d Dmetatest
to construct entities’ neighborhoods.

4 Model

Our model MULTIFORM consists of two modules: a multi-modal context en-
coder and a metric learning module. The core of our proposed model is a similar-
ity function fs ((h,t), (W', t") | V*,T*,G*), where V*, T*,G* is the set of entities’
visual context, textual context, and topological context, respectively. Given K
known facts (h},r, t;)fil for any query relation r, the model could predict the
likelihood of testing triples {(h;, r,ti;) | ti;j € Ch, r}, based on the matching score
between each (h;,t;;) and its semantic average of (h/, t;)fil The implementation
of the above matching function involves two sub-tasks: (1) the representations
of entity pairs; and (2) the comparison function between two entity-pair repre-
sentations.

4.1 Multi-Modal Context Encoder

Multi-modal context encoder aims at utilizing the multi-modal contexts to learn
well-represented entities. Specifically, it can be split into four parts: an image
encoder, a text encoder, a neighbor encoder and a multi-modal embedding fusion
model as illustrated in Figure 2. The image encoder aims to extract the visual
representations of entities’ images and acquire visual embeddings for entities.
The text encoder takes textual descriptions as input and output entities’ tex-
tual embeddings. The neighbor encoder learns from entities’ neighborhoods and
produces topological embedding. The multi-modal embedding fusion model con-
catenates on integrating various multi-modal context embeddings and acquiring
the accurate entity embeddings.
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Image Encoder. Since most entities have more than one image collected in var-
ious scenarios, the image set is very possible to contain wrong images, which do
not match the corresponding entities. It is essential to find out which images
better represent their corresponding entities and filter out the noisy images.
[34] shows that incorrect images account for only a small proportion of all im-
ages in KGs. Inspired by [34], we utilize a filter gate based on the empirical
analysis that the incorrect images have low similarity with the right images.
To be more specific, given an entity h, its multiple images can be presented
as V = {v1,v2,...,v,}, where V € V*. The filter gate selects the image with
the highest similarity to the other images of the given entity to learn the visual
embeddings:

vp, = argmax Z S (v, v5)||, (2)

v, €V i

where S is the function to measure the visual similarity of two images. We
adopt pHash [18] for simplicity. As ViT achieves the best performance over the
Convolutional Neural Network (CNN) based models according to [34], we adopt
ViT to encode the selected right images to obtain the corresponding embeddings
of images in V' as {zy,, Zu,5 - - - , 20, }- Finally, we devise an attention aggregation
function f,ggre to model representations of different images of the given entity
and obtain the visual embedding zy:

faggre<v) =0 (Z aizvi> , (3)

exp {Uf (Vvvzvi + bv)}
5 exp {uf (Wozs, +5,))
where sigma denotes activation unit (we use Tanh); z, € R¥*! is the out-

put representations of ViT and d is dimension of representation vectors; u, €
R W, € R¥*? b, € R¥! are learnable parameters.

(4)

Q; =

Text Encoder. Given a certain entity and its text description X = {x1,z2,...,z,}
where z is the word in the sentence, we first use BERT [6] to generate the
word embedding {2, 2z, - - -, 2z, }. Similarly, we adopt the attention aggrega-
tion function f,ggre to obtain the textual embedding zx:

faggre(X) =0 (Z ﬁzle> , (5)

exp {ul Wyzp, +bs)}
> exp (uf (Wozs, + b))
where z,, € R%*! is the output representations of BERT and d is dimension

of word embedding vectors; u, € R™>! W, € R¥*4 b, € R¥! are learnable
parameters.

Bi = (6)
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Neighbor Encoder. Recently, Xiong et al. [38] and Zhang et al. [40] have demon-
strated the effectiveness of encoding local graph structures as entity representa-
tions. Following their researches and inspired by the progress in Graph Convolu-
tional Network (GCN), we consider CompGCN [31] to model the local heteroge-
neous feature of the neighborhoods. Specifically, for each given head entity h, its
neighborhoods forms a set of {relation, tail entity} tuples. As shown in Figure 2
(¢), for the entity Issac Newton, one of such tuples is { Occupation, Mathemati-
ctan}. Thus, the neighbor set can be denoted as N, = {r;, ti}le, where r; and
t; represent the i-th relation and corresponding tail entity of h, respectively. I
is the number of such neighbors and (h,r;,t;) € G*.

Our CompGCN-based neighbor encoder aims at encoding A}, and generating
a well-learned vector as the feature representation of local connections of h. The
details are as follows:

=l S wie (B ) ) (7)
(riyti)ENG

where W)(\](CT)) is a relation-specific shared parameter to learn; ¢ a composition
function of the relation 7; with its respective tail entity ¢;. The composition
Y RY x R* — RY can be any entity-relation function akin to TransE [2] or
RotatE [26](We choose RotatE according to experimental results); yp, yr, ¥4 is
the embeddings of h,r,t respectively and can random initialized or pretrained
by existing embedding-based models; y,(Lk) is the final topological embedding.
Multi-Modal Entity Embedding Fusion Model. With multi-modal context infor-
mation encoded, an embedding fusion model is developed to improve the repre-
sentations of the given entity. Among various ensemble functions, [15] point out
that simple concatenation works better than DeViSE [8] and Imagined [4] on
multi-modal KGC tasks, and taking limited computational resources and scal-
ability of MULTIFORM, we use simple concatenation to aggregate the visual
embedding, textual embedding and topological embedding.

4.2 Metric Learning Module

This module is designed to do effective similarity matching given the output of
feature fusion module. For K-shot learning scenario, we get two sets of entity
pairs: the query entity pair set (h;,t;;) and the support pair set (h;,té)fil. We
obtain well represented entity embeddings for each set: [0 (Np,);0 (N, )] and
[0 (Nps) ;0 (Ny)] via the multi-modal context encoder. When K > 1, we employ

a simple sematic averaging function to get Ny and Ny :

K
i Ny
N = L}l( i 8)

K
1 Ne
wy = Z=2 M, (9
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Table 1: Statistics of the Datasets. # Entities denotes the number of unique entities
and # Relations denotes the number of all relations. # Tasks denotes the number of
relations we use as few-shot tasks.

Dataset  #Entities # Relations # Triples # Tasks

MM-FB15K 14951 1345 592,213 356
MM-DBpedia 12842 279 297,084 69

We can simply concatenate o(N3/) and o(N3/) and calculate similarity between
pairs in the two sets. For our model’s scalability, we use the same multi-step
matching processor as [38]. Every process step is defined as follows:

Rjs1s Chpr = LSTM (p, [hi @ s, ci]) (10)
hir = hjyy +p (11)

hk.;,_l ®s
score = — 12
I (12)

where s = 0 (Ny) @0 (Ny), p=0(Np,) ®o (N,) are concatenated well-learned
embeddings of the support pair and query pair. After n processing steps, we use
scorey, as the final similarity score between the query and support entity pair.

4.3 Loss Function

For a selected query relation r and its support triples (h},7, t;)fil, we employ
negative sampling methods to construct query triples, i.e., we collect a group of
positive query triples {(hi, T, tj) | (hi,r, ti_) ¢ g} and corrupt the tail entities
to comnstruct another group negative query triples {(hi, T, t;) | (hi7r, t;) ¢ |G}.
Following previous few-shot learning models, we utilize a hinge loss function for
our model:

lg = max (0,7 + score, — scorey) (13)

where score;r and scorey are scalars calculated by comparing the query triple
(hi,r, t:‘/t;) with the support triples (hl,r, t;)fil using our metric learning
model, and the margin - is a hyperparameter to tune. For each training episode,
we first sample D, from the meta-training set Deta train- Lhen we sample K
triple as the support triple Dy . and a batch of other triples as the positive
query/test triples Dy , from all known triples in D,..

5 Experiments

With MULTIFORM, we investigate three issues: (1) Will the incorporation of
multi-modal contexts help the few-shot KGC tasks? (2) How much visual con-
text, textual context and topological context contribute to MULTIFORM’s per-
formance, respectively? (3) Does the number of multi-modal training triples af-
fect the performance of MULTIFORM? To explore these questions, we conduct
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a series of experiments on two few-shot multi-modal knowledge graph datasets
and systematically analyze the corresponding results.

5.1 Datasets

Our constructed multi-modal datasets MM-FB15K and MM-DBpedia are based
on FB15K [2,1] and DBpedia [14,11,23]. The dataset statistics are shown in Table
1. Figure 1 (b) shows an example of visual and textual contexts. Each entity in
MM-FB15K and MM-DBpedia has at least one image and a description of no
less than 15 words. Following [38], we construct few-shot multi-modal KGs by
selecting those relations that do not have too many training triples. Specifically,
to guarantee enough triples for evaluation, we select the relations with less than
500 but more than 50 triples as few-shot tasks, i.e., we obtain 356 and 69 few-shot
relations in MM-FB15K and MM-DBpedia, respectively. The rest of the relations
are referred to as background relations and their triples provide neighborhoods to
learn topological information. In addition, For MM-FB15K, we use 267/18/71
and 51/6/12 task relations for training/validation/testing in MM-FB15K and
MM-DBpedia, respectively. The division ratio is about 15 : 1 : 4, similar to the
data split in [38,40].

5.2 Baseline Methods

For fair comparison, we select three kinds of baseline methods including unimodal
knowledge embedding models, multi-modal knowledge embedding models, and
few-shot learning models.

e Unimodal Knowledge Embedding Models. This line of research models
multi-relational structures in KGs and encodes both entities and relations
into a continuous low dimensional vector space. We consider the four widely
used baseline methods as follows: TransE [2], DistMult [39], ComplEx [30]
and Rot-Pro [25]. For implementation, we use an Open Toolkit [9] released
by Xu Han et al. which provides the above knowledge embedding models.
We also select RotatE [26], which has been reported very robust under differ-
ent evaluation protocols in the extensive conducted experiments, comparing
with a series of state-of-the-art knowledge embedding methods [27]. For fair
comparison, all triples of background relations, training triples, and support
triples of validation and test relations, are used during training.

e Multi-modal Knowledge Embedding Models. The models mainly fo-
cus on encoding visual and structural contexts. We select two state-of-the-art
methods, i.e., TransAE [35] and RSME [34] as our baselines.

e Few-Shot Learning Models. This type of model concentrates on predict-
ing new facts in KGs with only few-shot reference triples. For fair comparison,
we select three typical neighbor encoder based models, i.e., GMatching [38],
FSRL [40], FAAN [21].
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Table 2: The 5-shot KGC results on the testing dataset. The best baseline results are
indicated by underline and the best results of all methods are highlighted in bold.

MM-FB15K MM-DBpedia
Model [MRR Hits@10 Hits@5 Hits@1|MRR Hits@10 Hits@5 Hits@1
TransE 0.116 0.164 0.139 0.089 |0.103 0.155 0.120 0.077
DistMult 0.083 0.132  0.095 0.037 [0.091 0.141 0.118 0.088
ComplEx 0.067 0.147 0.089 0.05 [0.121 0.17 0.123 0.109
RotatE 0.131 0.189 0.160 0.101 [0.150 0.242 0.179 0.120
Rot-Pro 0.099 0.145 0.112 0.061 |0.139 0.200 0.154 0.107
TransAE 0.130 0.243 0.155 0.116 [0.156 0.237 0.185 0.131
RSME 0.188 0.308 0.249 0.152 |0.177 0.280 0.219 0.145
GMatching  |0.261 0.377 0.340 0.189 [0.176 0.293 0.231 0.116
FSRL 0.162 0.289 0.197 0.085 |0.158 0.304 0.220 0.071
FAAN 0.341 0.458 0.382 0.279 |0.195 0.310 0.217 0.136

MULTIFORM‘O.437 0.550 0.461 0.305‘0.303 0.425 0.334 0.279

Table 3: Results of model variants on MM-FB15K dataset. The best results are high-
lighted in bold.

Model Variants MRR Hits@10 Hits@5 Hits@1

AS 1 0.401 0.499 0.450 0.293
AS 2 0.383 0.482 0.443 0.288
AS 3 0.351 0.472 0.397 0.282

MULTIFORM 0.437 0.550 0.461 0.305

5.3 Implementation Details

The embedding size d is set to 128 and 256 for MM-FB15K and MM-DBpedia
datasets, respectively. The number of local neighbors used in the neighbor en-
coder is set to 45, which works the best for both datasets. As for image encoder
and text encoder, we use the open resource from huggingface to implement ViT
!'and BERT 2 and keep their default settings about transformer layers. Besides,
the LSTM cell is utilized in the matching function as a matching processor. The
dimension of LSTM’s hidden state is set to 128 and 256 for MM-FB15K and
MM-DBpedia datasets, respectively. The optimal matching step is 2. For pa-
rameter updates, we use Adam [10] with the initial learning rate of 0.001 and we
have the learning rate decay 0.2 for each 50k training step. The margin v used
in the base loss function is 5.0.

! https://huggingface.co/docs/transformers/model_doc/bert
2 https://huggingface.co/docs/transformers/model_doc/vit
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5.4 Results

We first evaluate our model on the few-shot KGC task, which predicts new facts
on a query set given only few support triples and their multi-modal contexts.
As shown in Table 2, MULTIFORM shows a significant margin over all three
types of baselines in the 5-shot scenario. Taking the experimental results (test-
ing MRR and Hits@10) on MM-FB15K as an example, the relative improvement
(%) of MULTIFORM against RotatE (the best-performing knowledge embed-
ding models) is up to 233.59% and 191.01% ; MULTIFORM outperforms RSME
(the best-performing multi-modal knowledge embedding models) by 132.45%
and 78.37%; MULTIFORM shows a significant improvement margin over FAAN
(the best-performing few-shot learning models) by 28.15% and 20.09%. These
results, to some extent, confirm the effectiveness of the idea that incorporat-
ing multi-modal contexts can be helpful to few-shot KGC tasks since multi-
modal contexts shape more accurate and well-represented entities’ embeddings.
Thus, we have so far answered the first question, i.e., MULTTFORM can be well
adapted into the few-shot KGC task and produce consistent improvements over
all types of baselines by incorporating multi-modal contexts. We also observe
that most multi-modal knowledge embedding models have better performance
than unimodal knowledge embedding models, which verifies the benefit of uti-
lizing multi-modal contexts. We also noticed that unimodal /multi-modal knowl-
edge embedding models have a big gap in performance compared with few-shot
learning models. We guess unimodal /multi-modal knowledge embedding models
are designed for transductive learning with sufficient training data and can not
be adapted into the few-shot scenario where only few training data are available.
By the way, this demonstrates that the few-shot KGC task is a very challenging
problem.

5.5 Ablation Study

Here We seek the answer to our second question in this section, i.e., investigating
the effectiveness of each context of the proposed model. We consider the following
ablation studies:

e (AS_ 1) We evaluate the effectiveness of images. We use randomly initialized
vectors as visual embeddings and keep the other two encoders.

e (AS_2) We use randomly initialized vectors as the output of the text en-
coder to verify the effectiveness of text descriptions.

e (AS_3) We use randomly initialized vectors as topological embeddings to
evaluate the effectiveness of entities’ graph structure.

As shown in Table 3, our model has better performance than all model variants.
The comparison between MULTIFORM and AS 1, AS 2, and AS 3 indicates
that all visual context, textual context and topological context contribute to
improvements of our model. By comparison among AS 1, AS 2 and AS 3, we
also notice that topological context contributes most to the model’s performance,
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Fig. 3: Impact of few-shot size K.

since MULTTFORM shows the largest decrease when randomly initializing topo-
logical embeddings (refer to AS _3); We think it is because the knowledge of the
same modality can be absorbed by neural networks more easily. The next largest
contribution is made by textual context (refer to AS_2). We guess it is because
KGs are originally extracted from the text so there exists semantic similarity.
In summary, these results demonstrate that all contexts are important and con-
tribute to MULTTFORM.

5.6 Impact of Few-Shot Size

Since this work studies few-shot learning for KGC tasks, we conduct experiments
to analyze the impact of few-shot size K. MULTIFORM consistently outper-
forms all few-shot baselines under different K, indicating the effectiveness of our
model on few-shot link prediction on KGs. We also notice that as K increases,
MULTIFORM gets relatively stable improvements compared to GMatching and
FSRL, which demonstrates MULTIFORM’s stability and robustness.

6 Conclusion and Future Work

In the present work, we introduce a multi-modal few-shot learning framework
named MULTIFORM for KGC tasks. MULTIFORM aims at predicting new
facts with only several training data and their multi-modal contexts, which is
a challenging problem. MULTIFORM leverages visual, textual, and topological
information of entities to produce well-learned representations and uses a metric
learning method to match entity pairs. The experiment results demonstrate that
MULTIFORM can outperform the state-of-the-art baselines. We also analyze the
impact of few-shot size and conduct ablation studies on multi-modal contexts,
which verify the effectiveness of each context. The goal of our future work is
to incorporate external text content of relations and try more feature fusion
methods to extend our model in the zero-shot scenario.
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